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Gut microbiome at the crossroad of genetic variants and behavior disorders
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ABSTRACT
Genetic variants are traditionally known to shape the susceptibility to neuropsychiatric disorders. 
An increasing number of studies indicate that remodeling of the gut microbiome by genetic 
variance serves as a versatile regulator of gut-brain crosstalk and behavior. Evidence also emerges 
that certain behavioral symptoms are specifically attributed to gut microbial remodeling and gut- 
to-brain signals, which necessitates rethinking of neuropsychiatric disease etiology and treatment 
from a systems perspective of reciprocal gene-microbe interactions. Here, we present an emerging 
picture of how gut microbes and host genetics interactively shape complex psychiatric pheno
types. We illustrate the growing understanding of how the gut microbiome is shaped by genetic 
changes and its connection to behavioral outcome. We also discuss working strategies and open 
questions in translating associative gene-microbiome-behavior findings into causal links and novel 
targets for neurobehavioral disorders. Dual targeting of the genetic and microbial factors may 
expand the space of drug discovery for neuropsychiatric diseases.
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Introduction

The incidence of neuropsychiatric diseases is ever on 
the increase in modern society. Cumulative genome- 
wide association study (GWAS) findings have high
lighted association of common genetics variants with 
neuropsychiatric disorders typically including autism 
spectrum disorder (ASD)1, major depressive disorder 
(MDD)2, bipolar disorder (BD), and schizophrenia3 

(Table 1). Although the contribution of heritability 
varies, deciphering their links to behavioral symp
toms provides a promising route to therapeutic inno
vation and clinical care. A traditional view is that, by 
directly impacting brain development and function, 
genetic variants are the primary drivers of the beha
vioral symptoms. Indeed, the genetic-risk loci are 
increasingly linked to parameters of neuroinflamma
tion, neurogenesis, synaptic, or neurocircuit function, 
which are commonly viewed as fundamental to dis
ease phenotypes17,18. However, given the inherent 
complex etiology of neuropsychiatric diseases, 
a major unanswered question is how the genetic 
variance may interact with other environmental fac
tors underlying the complex behavioral phenotypes.

The gut microbiome can modulate host beha
viors in a very powerful manner via the gut-brain 
axis19,20. Interestingly, gut dysbiosis has been 
observed as a common trait for neuropsychiatric 
disorders, and emerging data are suggesting that 
host genetics and the gut microbiome interdepen
dently regulate different complex behaviors in 
genetic neurological disorders21. Therefore, it is 
reasonable to propose that dissecting the mechan
isms through which host and microbial factors 
regulate complex behaviors will not only expand 
our understanding of neurobehavioral disorders 
but may also broaden the way of novel therapies. 
Here, we present a growing picture from animal 
studies that gut microbe interaction with host 
genetics to interactively shape complex psychiatric 
phenotypes. We discuss the challenges and poten
tial strategies in gaining mechanistic insights into 
the genetic-microbe interplay in behavior control, 
with a major focus on microbial metabolites as 
signaling molecules for drug discovery. We also 
envision how advances in this frontier may poten
tially change the way we view and treat these com
plex mental illnesses in the clinic.
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Gut dysfunction and dysbiosis in 
neuropsychiatric diseases

In addition to brain-centric symptoms, somatic 
complications have emerged as a common clinical 
problem for neuropsychiatric diseases. Gut dys
function, among others, seems to be the most 
common comorbidity with the behavioral 
changes22. For example, a spectrum of gastrointest
inal disorders, such as constipation, diarrhea, 
abdominal pain, vomiting, and poor nutritional 
absorption, have been reported in up to 90% of 
children with ASD23. Likely, MDD patients largely 
exhibit abnormality in gut motility, dyspepsia, and 
increased susceptibility to colitis. Also, patients 
with BD exhibit an increased frequency of gastro
intestinal illnesses, such as inflammatory bowel 
disease, which has been mechanistically connected 
to microbial community function24. Gut dysfunc
tion and associated metabolic and immune changes 
could in turn aggravate the behavioral symptoms, 
such as anxiety and social disruption25, thus form
ing a vicious cycle that calls for multi-dimensional 
intervention.

Changes in gut physiology are well known to 
affect the colonization and fitness of the commensal 
microbial community. In addition, altered feeding 
behavior and nutritional status, commonly observed 
in neuropsychiatric diseases, are powerful in shaping 
the gut microbial configuration26. Not surprisingly, 
gut microbial remodeling has now been extensively 
observed in patients with neuropsychiatric disorders 
(Table 1). For example, there is early metagenomic 
and metabolic evidence suggesting that ASD is 
accompanied by gut dysbiosis27, and a recent large- 
cohort study confirmed progressive deviation in the 
development of gut microbiota in children with 
ASD28. Intriguingly, ASD risk genes are directly 
involved in regulating gut nutrition processing. For 
example, human patients with Shank3 mutation- 
associated autism show lower expression of zinc 
transporter in enterocytes29. Chd8 mutation, 
a validated risk factor for ASD, is associated with 
slower intestinal motility and discomfort in humans, 
which is also proved in mouse and zebrafish 
models30. Rett syndrome (RTT), a progressive neu
rological disorder characterized by autism-like beha
viors, is thought to be caused by mutations in the 
Mecp2 gene31. Recent study has moved the field one 

step further by showing that RTT patients harbored 
a gut microbiome featuring reduced microbial rich
ness and a dominance of Bifidobacterium, 
Actinomyces, Lactobacillus and Enterococcus32. In 
addition, ample clinical findings show that the gut 
microbiome is altered in MDD patients8,33.

Consistently, genetic manipulations in animals 
induce both behavioral changes and gut microbiome 
remodeling (Table 2). For example, a study in Chd8 
± mice revealed changes in gut microbial structure 
and amino acid transporters, which were linked to 
an increased glutamate/γ-aminobutyric acid 
(GABA) ratio in the brain34. Similarly, a previous 
study in Shank3KO mice reported a significantly dif
ferent gastrointestinal morphology and altered 
microbial composition41. A recent study in RTT 
mice also reported alteration of gut microbiome 
across postnatal development as behavioral symp
toms appear and progress42. Together, the extensive 
observation of gut microbial remodeling in clinical 
patients and preclinical models sheds an additional 
layer of insights into neuropsychiatric diseases and 
genetic underpinnings (Figure 1).

Gut microbiome contributes to genetic variance 
associated behavioral changes

A link between the brain and gut microbiome has 
long been surmised43. In 2009, pioneering studies 
implied that the altered gut microbiota may be 
correlated with social or learning behavior changes 
in rodents44,45. In the following several years, cau
sal evidence for the role of gut microbiome in host 
nervous system development and behavior contin
ued to accumulate46–48. To date, the gut micro
biome has been firmly established as a critical 
regulator of gut-brain communication and 
behavior49. In line with the notion that neuropsy
chiatric disorders involve a complex interaction of 
gene-environmental factors, here we provide 
recent evidence from animal studies showing that 
gut microbial remodeling is causally linked to 
behavioral changes induced by genetic variance.

ASD

ASD is traditionally thought to be a neurological 
disease with a high heritability. Studies in 2013 
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have shown direct evidence that gut microbiota 
could modulate autism-related behavior47. 
A more recent study transplanting gut microbiota 
from human donors with ASD to germ-free (GF) 
mice showed that ASD microbiota was sufficient to 
induce hallmark autistic behaviors, accompanied 
by discrete metabolome profiles50. Intriguingly, 
treatment of the BTBR ASD mouse model with 

key differential microbial metabolites improved 
behavioral abnormalities and modulated neuronal 
excitability–inhibition balance in the brain, provid
ing further causal evidence for microbial factors. 
Interestingly, treatment with Lactobacillus reuteri 
(L. reuteri) was shown to generally rescue social 
deficits in Shank3bKO and other environmental and 
idiopathic ASD models35. Also, of interest is the 

Table 2. Preclinical studies exploring gut microbial alteration and its role in genetic-associated behavioral changes.
Genetic 
variant Behavioral phenotype

Microbial 
changes

Functional 
validation method Role of microbial remodeling Refs

Chd8+/− ASD-like 
anxiety, impaired social 

interaction, learning and 
memory deficits

Bacteroides 
uniformis ↓

Co-housing, mono-colonization Increased excitory/Inhibitory (E/I) ratio 34

Shank3B−/− ASD-like social deficits Lactobacillus 
reuteri ↓

Mono-colonization Increased level of oxytocin 35

Shank3−/− ASD-like social deficits, 
repetitive behaviors

Lactobacillus 
reuteri ↓

Mono-colonization GABA receptor subunits, oxytocin 
signaling

36

Cntnap2−/− ASD-like social deficits Lactobacillus 
reuteri ↓

Co-housing, fecal microbiota 
transplantation, mono-colonization

Increased tetrahydrobiopterin (BH4) 
metabolism pathway

21

EphB6−/− Stereotyped behavior and 
social deficits, accompanied by 

anxiety-like behavior

Mucispirillum ↓ Fecal microbiota transplantation Vitamin B6 homeostasis, decrease in 
dopamine

37

Nlrp3−/− Depression and anxiety-like 
behavior

uncharacterized Fecal microbiota transplantation Astrocyte dysfunction, expression of 
circHIPK2

38

Ephx2−/− Depressive-resilient 
phenotypes

Faecalibaculum 
rodentium ↓

Fecal microbiota transplantation, 
mono-colonization

Systemic inflammation, and synaptic 
proteins in the prefrontal cortex

39

Chrna7−/− Depression-like behavior uncharacterized Fecal microbiota transplantation synaptic proteins in the prefrontal cortex 40

Figure 1. A triangular connection exists among host genetic variants, gut microbiome and neurobehavioral phenotype.
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finding that L. reuteri6475 intervention selectively 
rescued the social deficits but not the hyperactivity 
phenotype in Cntnap2KO mice by bolstering the 
oxytocinergic system21. Together, these studies 
provide strong evidence that the gut ecosystem 
plays an important regulatory role in many aspects 
of ASD symptomatology.

MDD

MDD is a polygenic disease, and a most recent GWAS 
covering over 1.2 million participants identified 178 
genetic risk loci and 223 independently significant sin
gle-nucleotide polymorphisms (SNPs) that were asso
ciated with the disorder at genome-wide significance2. 
However, the heritability estimates for MDD (40%) are 
lower than those for other neuropsychiatric illnesses 
(between 75% and 80%), implying that additional fac
tors are involved. Several preclinical studies have 
shown that genetic manipulation can effectively mod
ulate depression-like behavior, with the mechanism 
being partially attributed to the gut microbiota. For 
example, a recent study showed that the relative abun
dance of Firmicutes, Proteobacteria, and Bacteroidetes 
in the gut microbiota of Nlrp3KO and WT mice was 
substantially different38. Notably, fecal microbiome 
transplantation (FMT) from the Nlrp3KO mice alle
viated stress-induced depressive-like behaviors in reci
pient mice. Chrna7KO mice, which have a deficiency in 
α7 subtype of nicotinic acetylcholine receptors (α7 
nAChR), exhibited depression-like behavior and gut 
microbial changes (increased Lactobacillus animalis, 
Helicobacter ganmani, and decreased Muribaculum 
intestinale). In a following study, FMT proved success
ful to transmit the depressive behavior to recipient mice 
via vagal nerve signaling40.

BD and schizophrenia

GWAS reveals a genetic connection between schi
zophrenia and BD, and many of the risk genes have 
been linked to immunological response and 
inflammation51. Ample data point to poor- 
diversity and dysbiosis with respect to the abun
dance of Faecalibacterium and Bacteroides as pos
sible traits and state-dependent characteristics of 
BD. Reduced butyrate production and richness also 
drives inflammation, which may be a previously 
unappreciated component of the pathophysiology 

driving BD52. Association also exists between gut 
microbial dysbiosis and the hypothalamic-pituitary 
-adrenal (HPA) axis dysregulation in BD, as 
a significant negative correlation between the 
count of Bifidobacterium and cortisol levels was 
recently found53. Notably, HPA axis dysfunction 
in BD may worsen intestinal permeability and gut 
microbial dysbiosis in turn. Supporting the role of 
gut dysbiosis in schizophrenia patients, coloniza
tion of Streptococcus vestibularis, a bacterium 
enriched in treatment naïve schizophrenia patients, 
causes social behavior abnormalities, and alters 
neurotransmitter levels in peripheral tissues in 
antibiotics-treated recipient mice54.

Fragile X syndrome (FXS)

FXS is an inheritable neurodevelopmental disease char
acterized by autistic traits, such as mental retardation 
and impaired social communication or interaction. 
Recently, there is accumulating evidence that FXS 
caused by Fmr1 deficiency is likely to be caused by 
alterations in gut microbiota. More recently, gut micro
biome changes involving Akkermansia, Allobaculum, 
Bifidobacterium, Odoribacter, Flexispira, Bacteroides, 
and Oscillospira have been profiled in Fmr1KO mice, 
and, of note, FMT from normal mice proved effective 
to mitigate autistic-like behaviors55,56.

Amyotrophic lateral sclerosis (ALS)

ALS is a fatal neurodegenerative disease that causes 
progressive motor neuron loss. ALS patients often 
show behavioral symptoms such as depression and 
anxiety57. ALS is thought to have a substantial genetic 
component with a high heritability, and many of the 
gene variations (e.g., Sod1, Tardbp, Fus, C9orf72) that 
cause or predispose an individual to ALS have been 
identified58. In 2017, gut dysbiosis with a reduced 
population of butyrate-producing bacteria was 
reported in Sod1 (G93A) mice, which was rescued 
by butyrate treatment59. Indeed, novel evidence indi
cating a disease-modifying role for the gut micro
biome has recently emerged, with certain gut 
microbial strains being causally linked to the beha
vioral symptoms in Sod1 and C9orf72 model 
mice60,61. Therefore, it is reasonable to dissect neu
ropsychiatric disorders from the perspective of reci
procal host gene-microbiome interactions.

6 L. CHENG ET AL.



Strategies for identifying psychoactive 
microbes

Microbe-wide association analysis, including 
16S rRNA/18S rRNA/ITS and metagenomic 
sequencing, produce long lists of differential 
microbes. Due to the inherent complexity, 
diversity, and flexibility of the microbiome, 
standard correlative microbiome study is lar
gely insufficient to elucidate the causal 
microbes. In further consideration of the com
plex routes of gut-brain communication20, 
unbiased identification of causal microbes in 
shaping neuropsychological diseases due to 
genetic variation is undoubtedly challenging. 
Here, we describe ongoing efforts and strategies 

seeking to answer this basic open question in 
microbiome study (Figure 2), which may serve 
as a framework for further mechanistic studies 
in neuropsychiatric disease.

Microbe-phenotype triangulation

Early pioneering studies by Gordon et al. describe 
the transplantation of combinatorial bacterial com
munities from human donors to gnotobiotic mice 
followed by mono-colonization validation62. This 
strategy features random fractionation of bacterial 
communities into subsets that are gavaged to reci
pient mice to identify the strains whose presence or 
absence best explain the observed phenotypic 

Figure 2. A tentative framework to disentangle gene-microbiome-phenotype interaction in complex neurobehavioral disease 
network. (a) Assessment of behavioral phenotypic changes after genetic manipulations. The commonly used behavioral tests used 
were open field test (OFT), social interaction (SI), forced swimming test (FST), elevated plus maze (EPM), light/dark test (LDT), Morris 
water maze (MWM), Y-maze (YM), marble-burying test (MB) and radial arm maze (RAM). (b) Causal role validation of gut microbial 
remodeling induced by genetic changes. The causal link between microbiome and behavioral phenotypes can be verified by 
antibiotics (ABX) treatment, co-housing, fecal microbiota transplantation (FMT) experiment with germ free (GF) mice. (c) Integrative 
strategies for the identification of causal microbes and metabolites. Combined analysis of microbiome and metabolomics, and 
a microbe-phenotype strategy to refine the catalog of differentially abundant microbes to most probably causal members followed 
by mono-colonization validation. Candidate metabolites identified by metabolomics are then assayed for the impacts on behavioral 
changes.
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variation in metabolic and immune responses. 
Notably, by showing metabolite-microbe interac
tions under complex logics, this approach offers 
initial clues for deciphering the single and collec
tive impact of different strains on the host meta
bolic phenotype. Therefore, this approach should 
facilitate mechanistic studies of how bacterial 
strains influence host behavioral phenotypes 
through metabolic and immune signals. 
A seminal work in recent years is the proposal of 
a microbe-phenotype triangulation strategy by 
Surana et al., which nicely refines the catalog of 
differentially abundant microbes to most probably 
causal members63. This strategy is based on the 
premise that co-housing mice with different micro
bial background can allow their flora to be recom
bined to form the ‘intermediate microbiome’ that 
blends the characteristics of the original flora. If the 
microbial effect on disease was dominant, mapping 
of microbe-phenotype relationships in parental 
and hybrid-microbiota mice would efficiently nar
row down of the inherent noise in sequencing data 
and sort out key candidates. Of interest, this 
microbe-phenotype triangulation strategy is 
observed in the study of Regen et al., which proved 
useful to elucidate the microbial basis of the central 
nervous system autoimmunity shaped by interleu
kin17 (Il17) genetic variant64. When healthy con
trol and patients are carefully selected, such 
a microbe-phenotype triangulation strategy can 
be more generally applicable to human micro
biome studies. However, this strategy has several 
caveats that may compromise the scalability. As 
a major concern, co-housing does not always result 
in intermediate phenotypes, and, instead, mono- 
directional transmission of one dominant pheno
type could be observed65. Also, for rare species that 
may mediate a host phenotype, causal bacteria may 
be masked due to their relative low abundance66.

In essence, the microbe-phenotype triangula
tion strategy relies on the spatial transmission 
of causal microbes to enable comprehensive 
microbial analyses from microbially related 
mice63. For studies where co-housing is imprac
tical, an alternative strategy would be dirty cage 
sharing, as recently shown by Guo et al.67. 
Specifically, in the search for key protective 
microbe in elite-survivors which were old 
male mice, a traditional cohousing approach 

with young male recipients might lead to fight
ing and injury to the older mice. By analyzing 
bacterial 16S rRNA genes in feces from donors 
and recipients after sharing dirty cages, it was 
shown that dirty cage sharing was effective in 
exchanging gut microbiota from donors to 
recipients.

Select antibiotic disentanglement

Antibiotic cocktail comprising ampicillin, vanco
mycin, neomycin, and metronidazole is commonly 
used for assessing the role of gut microbiota in the 
host phenotype, although each antibiotic modu
lated the microbiota composition in a distinct 
way. Recent studies have also shown that the use 
of single antibiotics could also provide useful clues 
for identifying causal microbes. As an illustrative 
example, Miyauchi et al. showed that both deple
tion of the gut microbiota by antibiotic cocktail and 
oral treatment with ampicillin alone limited the 
development of experimental allergy encephalo
myelitis (EAE)68. In consistence, ampicillin- 
treated mice showed a unique microbiota structure 
in the small intestine, and a novel strain named 
operational taxonomic unit (OTU)0002 was the 
sole sequence that was almost completely depleted 
only from the small intestine of ampicillin-treated 
mice. Notably, mono-colonization with OTU0002 
resulted in an increased severity of EAE symptoms 
and frequency of T helper 17 (Th17) cells, both in 
the small-intestinal lamina propria and spleen. In 
another study seeking to identify gut bacterial spe
cies that affect social activity69, mice were treated 
with different combinations of antibiotics, which 
showed that a microorganism exclusively sensitive 
to neomycin appeared to be responsible for mod
ulating social activity and corticosterone levels after 
social stress. Further study identified Enterococcus 
faecalis (ATCC 19,433) that promoted social activ
ity and reduced activation of the HPA axis.

Spatiotemporal microbial mapping

Gut microbial structure shows inherent plasticity 
and dynamics. To strengthen the confidence of 
causal microbe identification, temporal patterns 
of the gut microbiota could be mapped for integra
tion with spatial profiling. In the study by Blacher 
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et al., for example, several important time points 
were selected for bacterial sequencing along with 
the disease progression, and then the results were 
further integrated with spatial transmission 
features60. Eleven distinct commensal bacteria 
that would increase or decrease within the disease 
process were subsequently identified, and the role 
of each strain was verified by single bacterial colo
nization into antibiotic pre-treated model group. 
This strategy is of special value for causal microbe 
identification from human microbiome samples, 
which is complicated with high interindividual 
variance70. For example, in the search for irritable 
bowel syndrome (IBS) subtype-specific microbial 
composition and metabolites, longitudinal sam
pling effectively limited heterogeneity seen in 
cross-sectional microbiome studies71. The results 
showed that stool microbiota composition exhib
ited greater variability over time in patients with 
constipation-type IBS (IBS-C) compared to diar
rhea-type (IBS-D) cohorts. In another clinical 
study involving hematopoietic cell transplantation 
patients, daily changes in circulating neutrophil, 
lymphocyte, and monocyte counts and more than 
10,000 longitudinal microbiota samples were pro
filed to reveal consistent associations between gut 
bacteria and immune cell dynamics overtime72. 
These strategies are readily applicable to screen 
causal microbes underlying behavioral disorders.

Computational algorithm and machine learning

Computational algorithm is also finding a wide 
application on identifying causal microbes or bio
markers from clinical large-scale databases of 
microbial community. Batch inconsistence of 
multi-population metagenomic data presents 
a challenge in identifying robust microbial mar
kers. Addressing this issue, recently an algorithm 
called Network Module Structure Shift (NetMoss) 
has been devised, which proved useful to identify 
shared and unique microbial biomarkers from 
a network perspective73. This method is expected 
to enable reliable meta-analysis of metagenomic 
dataset from neuropsychiatry disease cohorts. 
Also, of note is the recent report of a machine 
learning-based framework that could jointly ana
lyze paired host transcriptomic and gut micro
biome data for deciphering host gene and gut 

microbiome interactions in disease74. This compu
tational method can be applied to neuropsychiatric 
diseases for the identification of host gene- 
microbiome associations and key microbes that 
may influence behavioral outcomes.

It should be noted that current microbial map
ping techniques have limitations in providing high- 
resolution and functional information, especially 
given the difficulties associated with assigning 
gene-based labels and gene-function correlation. 
The commonly used 16S rRNA sequencing techni
que reveals the bacterial genes they carry and the 
compounds they produce or consume. Thus, 
a better approach might be identifying not just 
the taxonomy, but the metagenomic signature, 
a matrix describing which genes are stored in 
which bacteria, and what is their abundance. This 
fact suggests that the screening and validation of 
potential causal microbes should consider strain 
and host origin differences and the sequencing 
depth. Moreover, even in the same model, intest
inal site, and mucosal region-dependent changes of 
gut microbial composition should receive due 
attention in sampling and data interpretation75.

Deciphering gut microbial signals in behavioral 
control

Current research in neurogenetics mostly seeks to 
answer how genetic variants regulate neuronal 
activity and circuit function in key brain regions 
using sophisticated cell-specific imaging, electro
physiology, and genetic manipulation techniques. 
Understanding how gut microbes communicate 
with the brain therefore holds another key to ther
apeutic target discovery. The past decade has wit
nessed huge advances in decoding the signaling 
mechanisms along the microbiota-gut-brain axis, 
which provide snapshots into the network connect
ing microbiome, brain and behavior including 
anxiety, cognition, nociception, and social 
interaction20,76. Concerning the neural transmis
sion pathway, the message could be transmitted 
via the vagal or the sympathetic nervous 
system77,78. The effects of L. reuteri on social beha
vior were no longer present in vagotomized ani
mals in a Shank3BKO mouse model of autism35. 
Also, via direct synapsing with vagal nodose neu
rons, enteroendocrine cells (EEC) have emerged as 
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a new sensory mechanism for rapid transmission of 
gut signals79. More recently, in zebrafish, micro
bial, pharmacological, or optogenetic activation of 
Trpa1+ EECs proved successful to directly stimu
late vagal sensory ganglia and activate cholinergic 
enteric neurons by secreting the neurotransmitter 
5-hydroxytryptamine (5-HT)80. Microbial signals 
can also transmit through the sympathetic nerve. 
A gut-brain-gut neural circuit, which regulates 
efferent sympathetic tone and gastrointestinal tran
sit has been recently identified78. This effect was 
mainly attributed to microbial metabolites, such as 
short-chain fatty acids and bile acids, as well as 
microorganism-modulated GLP-1 release.

Bidirectional gut-brain signaling can also occur 
via circulating hormones, metabolites, cytokines, 
and other neuromodulatory molecules69,75, which 
appear to affect the brain in a direct or indirect 
manner. Elevated level of a microbial metabolite 
4-ethylphenyl sulfate was previously reported in 
mice with social impairment47. A follow-up study 
showed that this gut-derived metabolite can enter 
the brain to affect oligodendrocyte function and 
neuronal myelin sheath pattern and promotes anxi
ety-like behavior in mice81. More recently, it is also 
reported that direct sensing of bacterial cell wall 
components (peptidoglycan) by hypothalamic 
Nod2+ neurons regulate appetite and body tempera
ture in mice82. However, for those messengers that 
could not directly enter the brain, much more work 
is needed to fully address the exact mechanisms by 
which gut microbiota could distally impact on the 
brain and behavior. One common route is the sen
sing and transmission by neural pathway. For exam
ple, Lactobacillus brevis Bb14 (ATCC14869)-derived 
trehalose from sugar metabolism by the bacterial 
enzyme xylose isomerase activates peripheral octo
paminergic neurons to regulate locomotor behavior 
in the fruit fly Drosophila melanogaster, while germ- 
free status or antibiotic treatment results in hyper
active locomotor behavior83. Recently, an inter- 
organ neural circuit for appetite suppression has 
been mapped, which conveys gut local GLP-1 signal 
to induce satiety84. Since gut microbes are intimately 
involved in the regulation of GLP-1 release, and 
GLP-1 has behavioral effects more than appetite 
control85, it would be of interest to further explore 
the involvement of this pathway in gut microbial 
regulation of behavior.

The involvement of immunologic signal path
ways in microbiota-brain interaction has also been 
reported. For example, gut microbiome members 
such as segmented filamentous bacteria (SFB), 
Bifidobacterium adolescentis, and Odoribacter 
splanchnicus are well known to induce IL-17 pro
duction. Notably, SFB-induced susceptibility to 
stress-induced depressive-like behaviors in mice 
were causally linked to the expansion of Th17 
cells, which accumulated in the hippocampus86. 
Context-dependent (during embryonic brain 
development or in the adult brain) effects of IL-17 
in social behavior has been previously reported87– 

89, and, more recently, mucosa-associated fungi 
was shown to promote social behavior in mice via 
sensory neuron IL-17 receptor86.

Generally, the integration of ‘omics’ datasets, 
such as transcriptomics, metagenomics, proteo
mics, and metabolomics can be useful to pinpoint 
the regulatory microbes and signaling molecules 
underpinning host behavioral phenotype. This 
strategy is nicely depicted by the study of Sharon 
et al., which transplanted gut microbiota from 
human ASD donors into GF mice for mechanistic 
interrogation50. Through the inter-correlative ana
lysis of species, metabolites, and behaviors of mice 
harboring human microbiota, candidate microbes, 
and metabolite that may mediate ASD behaviors 
were picked out for further validation. This strategy 
is also observed in profiling microbiota-host inter
action in a Chd8± mouse model with ASD-like 
behavior, in which increased expression of amino 
acid transporters in the intestines of ASD mouse 
and high level of serum glutamine offer clues to 
understand the increased excitation/inhibition 
ratio in the brain34.

Given the inherent noise in the omics data, ‘trial 
and error’ screening is necessary, and several more 
criteria are worthy of consideration. This is elegantly 
demonstrated by the study of Blacher et al. to iden
tify causal microbial metabolites in ALS from nico
tinamide (NAM) and phenol sulfate, which had the 
highest metagenomic probability. By showing that 
phenol sulfate administration to mice did not relieve 
the symptoms of ALS mice, they focused on NAM 
for the following reasons: the marked differences in 
the metagenomic NAM biosynthetic pathway; the 
enrichment of NAM biosynthetic intermediates in 
serum upon supplementation with Akkermansia 
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muciniphila (ATCC BAA-835); reduced abundance 
of genes from the gut-microbiome-derived trypto
phan metabolizing pathway, which may be involved 
in NAM production; and the alteration of metabo
lites in the tryptophan pathway upon treatment with 
antibiotics or upon Akkermansia muciniphila 
supplementation60. Functional validation with 
NAM supplementation finally identified NAM as 
a key protective metabolite in ALS.

Mechanisms underlying host genetics-induced 
gut microbial remodeling

Although host genetic variation is known to shape 
the gut microbial ecology90,91, there is still limited 
insights into how the composition and function of 
gut microbial community are altered. In essence, this 
reflects the interaction between the host’s mutated 
genes and microbial genes that shape their fitness 
and survival in the gut, as shown by recent studies in 
mice. A balanced gut microbial configuration is 
characterized by the dominance of obligate anaero
bic members of the phyla Firmicutes and 
Bacteroidetes, which prevents dysbiotic expansion 
of facultative anaerobic microbes, such as 
Enterobacteriaceae in part by limiting the generation 
of host-derived nitrate and oxygen. Epithelial mito
chondrial bioenergetics and metabolism has there
fore proven to be a canonical pathway by which host 
genetic signals remodel the gut microbial configura
tion. A typical sensor/mediator is epithelial peroxi
some proliferator-activated receptor γ (PPAR-γ), 
which drives the energy metabolism of colonic 
epithelial cells toward β-oxidation and limits both 
the luminal bioavailability of oxygen and nitrate to 
prevent a dysbiotic expansion of potentially patho
genic Escherichia and Salmonella92. Mice lacking 
epithelial PPAR-γ signaling exhibited significantly 
elevated nitrate availability in the lumen and dysbio
tic expansion of Escherichia coli that carries the 
genetic machinery for nitrate respiration93. 
Moreover, treatment with 5-amino salicylic acid, 
a PPAR-γ agonist, restored mitochondrial bioener
getics in the colonic epithelium, which alleviated 
dysbiosis triggered by high-fat diet and 
antibiotics92. A recent study has also established 
that intestinal hypoxia-inducible factor-2α (Hif2α) 
deficiency altered the balance of intestinal 
Bacteroides vulgatus to Ruminococcus torques to 

affect bile acid signaling and obesity-related insulin 
resistance94. Mechanistically, ablation of intestinal 
Hif2α reduced the level of epithelial-derived lactate, 
which enriched the polysaccharide utilization genes 
to promote the growth of Bacteroides vulgatus.

Host genetics can also shape the commensal 
microorganisms by regulating the secretion of 
defense signals, such as antimicrobial peptides 
and immunoglobulin A (IgA)95. Typically, secre
tory IgA directed against bacterial antigens has 
been proposed to shape intestinal microbial com
position by multiple mechanisms, including inhi
bition of bacterial motility and reduction in 
bacterial fitness. As has been recently reported, 
activation of mechanistic target of rapamycin 
complex 1 (mTORC1) signal in CD11c cells alters 
IgA secretion at the mucosal site96. Reduced IgA 
production results in decreased gastrointestinal 
colonization of Lactobacillus johnsonii Q1–7, 
which in turn leads to lower food intake and 
body mass. In addition, another investigation has 
shown that mice with T cell-specific ablation of 
Myd88, an innate adaptor molecule, have defec
tive development of T follicular helper cells in the 
gut, contributing to inappropriate IgA targeting of 
Clostridia and altered microbial balance97. This 
results in imbalanced expansion of Desulfovibrio 
at the expense of the loss of Clostridia, which 
contributes to increased lipid absorption and obe
sity susceptibility.

Goblet cell secretion of mucin represents 
another way by which host genetics influence the 
symbiotic microbes98. A recent study shows that 
loss of forkhead box O 1(Foxo1) in intestinal 
epithelial cells results in defects in goblet cell 
autophagy and mucus secretion, which induces 
gut dysbiosis, disruption of gut barrier integrity, 
and increased susceptibility to intestinal 
inflammation99. Deficiency G protein-coupled 
receptor 35 (Gpr35), previously known to regulate 
the activity of Na/K-ATPase and mitochondrial 
oxidative phosphorylation (OXPHOS) of epithe
lial cells100, was recently shown to induce goblet 
cell depletion and dysbiosis101,102. Interestingly, 
ablation of Calcitonin gene-related peptide 
(Cgrp) in nociceptor neurons or epithelial 
Ramp1 is also shown to reduce goblet cell mucus 
secretion, which induces dysbiosis and suscept
ibility to colitis103.
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Practical considerations in gene-microbe- 
behavior study

The interwoven gene-microbiota connection in neu
robehavioral changes, as well as the limitations in 
current techniques, suggests some practical issues 
deserving attention in the effort to better understand 
the etiology and treatment strategy for neuropsy
chiatric disease. Firstly, given the strong impact of 
environmental factors on microbial composition, 
diet composition, and housing condition variance 
should be carefully considered in screening differ
ential bacteria104. Conclusive evidence that 
a genomic mutation is responsible for a specific 
behavioral phenotype can be obtained when litter
mate controls are used21. If wild-type control mice 
were provided from other animal facility, the influ
ence of environment factors on gut flora was diffi
cult to exclude. Of note, the fact that mice from 
different suppliers showed markedly variance in 
microbial background and biologic responses pro
vides excellent clues for identifying key causal 
microbe, as demonstrated previously61,105.

Secondly, in mono-colonization studies, it 
would be necessary to profile whether the global 
microbial community would be affected to under
stand whether the host impact may derive from 
microbe interactions. Indeed, studies have shown 
that colonization of a single strain may elicit micro
biome-wide changes35. It is reasonable that host 
impacts of gut microbial change could be attribu
ted to the interactions among different microbes. 
Indeed, in the study of Miyauchi et al., mice mono- 
colonized with OTU0002 exhibited EAE symptoms 
that were less severe than those of specific- 
pathogen-free (SPF) mice, which indicated that 
other bacterial members of the microbiota could 
also be participating in the pathogenesis of EAE. In 
the search for potential microbial interactions, they 
further showed that two distinct signals from 
OTU0002 and a L. reuteri strain (H4 and LMG 
18,238) coordinately activate autoreactive T cells 
in the small intestine to drive autoimmune 
responses. In practice, to better mimic microbial 
interaction network in host regulation, a simplified 
microbial community consisting of representative 
high-abundance bacterial species would provide 
more physiologically similar, while structurally 
defined microbial models for the validation of key 

causal microbes. This strategy is readily found in 
the study of Lobel et al.106 and Kasahara et al.107, 
which support that the colonization of the structu
rally defined consortium of bacteria could provide 
physiologically relevant and therefore more strong 
insights into microbe-host interactions.

Thirdly, although we largely focus on data from 
mice models, non-mouse model organisms, such as 
zebrafish, Drosophila melanogaster, and 
Caenorhabditis elegans are useful for gut-brain- 
microbiota studies related to neuropsychiatric 
diseases108. The accumulated expertise in genetic 
and microbial manipulation and human-relevant 
neurobehavioral parameters could become advan
tages for gaining holistic insights into gene- 
microbiota-behavior interplay and the signaling 
basis. Some elegant studies are available in relation 
to the dissection of microbial connection to sen
sory and locomotive behavior83,109.

Lastly, in the clinical setting, age, sex, dietary 
habits, co-morbid diseases, and drug exposure are 
common confounding factors for identifying cau
sal links. Addressing these inter-individual varia
bility factors is crucial to elucidating the genetic 
and microbial factors that causally shape human 
neuropsychiatry diseases. A recent prospective 
large-population study dissecting the influence of 
the gut microbiome, diet, and genetics on plasma 
metabolome variation presents a useful workflow 
to tackle this issue110. In particular, through 
Mendelian randomization and mediation analyses, 
this study uncovered putative causal relationships 
between the gut microbiome and plasma metabo
lites. Application to neuropsychiatric disorders 
would be expected to clarify robust microbial fea
tures to clinical diagnostic and preventive 
purposes.

Conclusions

Current therapeutic approaches for neuropsychia
tric disorders aim to target the brain directly. The 
accumulating findings on host genetic-gut micro
bial interplay in neuropsychiatric diseases broaden 
our views on the factors shaping individual’s sus
ceptibility to mental illnesses and underscore the 
bidirectional gut-brain crosstalk in behavioral con
trol. An emerging picture is that microbial and host 
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genetic factors may control different aspects of 
brain diseases, which provide the rationale for 
combinatorial targeting of genetic factors and 
microbial signaling for comprehensive interven
tion of complex behavioral diseases. Deciphering 
gene-microbiome-phenotype trialogue in complex 
neuropsychiatric diseases may therefore inspire 
novel therapeutic strategies and precision interven
tion. However, since most of the causal data are 
from animal studies, the results still should be 
approximated to humans with caution.

The field of microbiome research is experiencing 
a progression from associative linking to causal and 
mechanistic insights, which presents new opportu
nities to decipher how this dynamic community is 
functionally implicated in the genetic predisposition 
to neuropsychiatric diseases in concert with other 
environmental factors such as diet and lifestyle. In 
future studies, the causal relationship between 
genetic variance, key microorganisms, and beha
vioral changes remains to be fully elucidated in the 
clinical setting in order to provide novel diagnostic 
biomarkers and therapeutic targets. Another key 
question is how the microbes achieve central relays 
of local signals to specify the behavioral changes. 
Research insights into the communication pathways 
between the gut and the brain is critical to drive this 
frontier forward. Meanwhile, elucidation of the key 
biologic synthetic pathways of microbes and the 
sensors for the signaling molecules could provide 
potential drug targets. Recently, the devise of novel 
techniques for genetic manipulation of gut microbes 
and targeted protein degradation in bacteria could 
enable efficient clues to answer these key 
questions111,112. Neural circuitry allowing gut 
microbial control over behaviors remains to be 
fully unmapped, under both physiological and 
pathological conditions. Advances in this field 
increasingly benefit from the technical advances in 
optogenetics, chemogenetics, and virally delivered 
molecular tools for neural manipulation in an 
organ-specific and inter-organ manner71,113. 
Progress in this field could be integrated with genetic 
manipulation studies to offer combinatory targets 
for future drug discovery. Specifically, the microbial 
signals or microbe-responsive pathways promoting 
inner homeostasis or resilience to stressful events 
could be strengthened as a preventive or therapeutic 
strategy.
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