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Abstract

Fetal motion is unpredictable and rapid on the scale of conventional MR scan times. Therefore, 

dynamic fetal MRI, which aims at capturing fetal motion and dynamics of fetal function, is 

limited to fast imaging techniques with compromises in image quality and resolution. Super-

resolution for dynamic fetal MRI is still a challenge, especially when multi-oriented stacks of 

image slices for oversampling are not available and high temporal resolution for recording the 

dynamics of the fetus or placenta is desired. Further, fetal motion makes it difficult to acquire 

high-resolution images for supervised learning methods. To address this problem, in this work, 

we propose STRESS (Spatio-Temporal Resolution Enhancement with Simulated Scans), a self-

supervised super-resolution framework for dynamic fetal MRI with interleaved slice acquisitions. 

Our proposed method simulates an interleaved slice acquisition along the high-resolution axis 

on the originally acquired data to generate pairs of low- and high-resolution images. Then, it 

trains a super-resolution network by exploiting both spatial and temporal correlations in the MR 

time series, which is used to enhance the resolution of the original data. Evaluations on both 

simulated and in utero data show that our proposed method outperforms other self-supervised 

super-resolution methods and improves image quality, which is beneficial to other downstream 

tasks and evaluations.
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1 Introduction

Fetal magnetic resonance imaging (MRI) is an important approach for studying the 

development of fetal brain in utero [18] and monitoring fetal function [15]. Due to 
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unpredictable and rapid fetal motion, dynamic fetal MRI, which aims at capturing fetal 

motion and dynamics of fetal function, is limited to fast imaging techniques, such as 

single-shot Echo-planar imaging (EPI) [2], with severe compromises in signal-to-noise ratio 

(SNR) and image resolution.

Super-resolution (SR) methods is frequently applied to fetal MRI to improve image quality. 

One well-established category of super-resolution methods for fetal MRI is based on 

slice-to-volume registration (SVR) [12,21,5]. In these methods, multiple stacks of slices 

at different orientations are acquired, which are then registered to reconstruct a static and 

motion-free volume of the chosen region of interest (ROI). However, multi-oriented stacks 

for oversampling the ROI may not available. Besides, in some applications, instead of a 

static ROI, a time series of MR volumes capturing the dynamics of fetal brain, body or 

placenta is of interest [11,23,15,20]. For example, in [23] and [15], interleaved multi-slice 

EPI time series are used for fetal body pose tracking and placental function analysis 

respectively. Thus, it is a still a challenge to enhance the resolution in dynamic fetal MRI.

Although supervised super-resolution methods achieved state-of-the-art results in natural 

images [14,24], the acquisition of HR MRI data with adequate SNR is time consuming 

and prone to motion artifacts, especially in fetal MRI. To avoid the need for HR data in 

supervised leanring, self-supervised super-resolution (SSR) methods have been developed, 

which utilize internal information from LR images for super-resolution. For instance, the 

ZSSR [19] method downsample the LR images to generate lower resolution (LR2) images 

and train a network to learn a mapping from LR2 to LR, which is then applied to the original 

LR images to estimate the HR images. Similar ideas are also explored in the field of MRI 

[9,25]. Zhao et al. extended [9] and proposed SMORE [25] for SSR of MR volume with 

anisotropic resolution where the information along the LR axis are learned from the other 

two HR axes. They blur the volume along the one of the HR axes, extract pairs of training 

samples to train a network and use it to enhance resolution along the LR axis. However, 

these methods only applied to a single slice or a stack of images and cannot utilize the 

temporal information in dynamic imaging.

In this work, we propose a SSR framework for dynamic fetal MRI with interleaved 

acquisition, named STRESS (Spatio-Temporal Resolution Enhancement with Simulated 

Scans). Using the characteristic of interleaved slice acquisition, we perform simulated 

acquisitions on the originally acquired data to generate pairs of low- and high-resolution 

images. We then train a SR network on the extracted data, which exploits both internal 

spatial information within each frame and temporal correlation between adjacent frames. A 

optional self-denoising network is also introduced to this framework, when input images 

are of low SNR. We evaluate the STRESS framework on both simulated and in utero data 

to demonstrate that it can not only enhance resolution of dynamic fetal imaging but also 

improve performance of downstream tasks.
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2 Methods

Fig. 1 shows the workflow of the proposed STRESS method, which can be divided into four 

parts: 1) interleaved slice acquisition, 2) simulated acquisition, 3) self-supervised training, 

and 4) inference. The details of each part are described in the following sections.

2.1 Interleaved acquisition

Interleaved slice acquisition is a widely used technique to avoid cross-excitation artifacts [3]. 

The number of slices skipped between two consecutive slice acquisitions is often referred 

to as the interleave parameter [16], NI. For example, when NI = 2, even slices are acquired 

after odd slices. Each image stack in interleaved acquisition are divided into NI interleaved 

subsets. In dynamic imaging, multiple stacks are acquired. For simplicity, we refer to the i-th 

subset in the j-th stack as time frame Fk, where the index k = NI × (i − 1) + j. The acquisition 

time of each frame is only 1/NI of the whole stack, making inter-slice motion artifacts within 

each frame milder. However, the spatial resolution of each frame along the interleaved axis 

is also reduced by a factor of NI. Therefore the interleave parameter can be considered as a 

trade-off between between spatial and temporal resolutions.

Our goal is to improve the spatial resolution of each frame to generate a HR MR series that 

has enough temporal resolution to capture fetal dynamics. Let Vt(x, y, z) be the 3D dynamic 

object to be scanned, where t is time and (x, y, z) are the spatial variables. The acquisition of 

a slice at time t and location z is Vt(·,·, z) Therefore, the k-th frame can be written as a set of 

slices, Fk = {Vt(·,·, z)|t = t(k, z), z ∈ Ƶk}, where t(k, z) is the time when the slice at location z 
of the k-th frame is acquired, and Ƶk is the set of slice locations in the k-th frame.

2.2 Simulated interleaved acquisition

To generate HR and LR pairs for training a SSR network, we simulate the interleaved MR 

acquisition process with the acquired data. For each frame Fk, we interpolate it to make 

it an isotropic 3D volume denoted by F k(x, y, z). Then we swap the x- and z- axis1 and 

result in a new 3D function F k
T
, i.e., F k

T(x, y, z) = F k(z, y, x). F k
T(x, y, z) is an object of high 

resolution along the z-axis and having motion similar to Vt. Therefore, we can simulate 

interleaved acquisition along the z-axis to produce training pairs. The acquired frame in the 

simulated scan can be written as Sk = F k
T( ⋅ , ⋅ , z) ∣ z ∈ Zk . Let Sk be the volume generated 

by interpolating Sk along the z-axis. We can see that the y-z planes of Sk and F k, i.e., 

Sk + l(x, ⋅ , ⋅ ) and F k
T(x, ⋅ , ⋅ ) are pairs of LR and HR images. Besides, it is worth noting that 

the adjacent time frames provide contexts for estimating the missing slices in the target 

frame (Fig. 1 B). Therefore, it would be easier to learn a mapping from Sk + l(x, ⋅ , ⋅ ) l = − L

L
 to 

F k
T(x, ⋅ , ⋅ ), where L is the number of time frames used from each side.

1We use x-axis here to keep the notation simple. In fact any axis within the x-y plane can be used.
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2.3 Self-supervised training

Super-resolution: We extract image patches with size of P × P from the series of 

images, Sk + l(x, ⋅ , ⋅ ) l = − L

L
, and concatenate them along the channel dimension to form 

input tensors ILR ∈ ℝP × P × (2L + 1). Patches at the same spatial locations are also extracted 

from F k
T(x, ⋅ , ⋅ ) as targets and denoted as IHR ∈ ℝP × P . A network f is trained to learn the 

mapping between ILR and IHR. L1 loss is used to improve the output sharpness, i.e., L = ‖f 
(ILR) − IHR‖1. We adopt the EDSR [14] architecture for the SSR network f, with 16 residual 

blocks [8] and 64 feature channels.

Blind-spot denoising: Many fast imaging techniques for capturing fetal dynamics, e.g., 

EPI, suffer from low SNR [4]. Applying super-resolution algorithms to noisy images tends 

to emphasize image noise and results in images of low quality. To address this problem, 

we introduce an optional denoising network h to our framework, which can be apply when 

the original acquired images are of low SNR. The network h is a blind-spot denoising 

network (BDN) [13], i.e., the receptive field of h doesn’t contain the central pixel. Therefore, 

when we train the network h to recover the input image I by minimizing the mean squared 

error, ∥ ℎ(I) − I ∥2
2, the network will not become the identity function. Instead, h(I) will 

approximate the mean of I, so that h(I) can be considered as the denoised image. If BDN 

is enabled, we first train the denoising network h with images I = F k
T(x, ⋅ , ⋅ ). Then, when 

training the SSR network f, we replace the target IHR with h(IHR) and the loss becomes L = 

‖f (ILR) − h(IHR)‖1.

Training details: We set L = NI/2 and P = 64, if not specifically indicated. All neural 

networks are trained on a Nvidia Tesla V100 GPU using an Adam optimizer [10] with a 

learning rate of 1 × 10−4 for 30000 iterations. We use batch sizes of 64 and 16 for network 

f and h respectively, which depend on GPU memory. Training images are randomly flipped 

along the two axes for data augmentation. Our models are implemented with PyTorch 1.5 

[17].

2.4 Inference

After training the models, we can apply them to the original or newly acquired data. If BDN 

is enabled, we first perform image denoising on each frame by applying h to each slice, 

such that Fk becomes {h(Vt(·,·, z))|t = t(k, z), z ∈ Ƶk}. Then, we interpolate it to generate 

a volume, F k(x, y, z). Finally, the trained super-resolution network f is applied to the y-z 

plane of F k(x, y, z) and its neighboring frames, which yields a super-resolved estimate V k, 

i.e., V k(x, ⋅ , ⋅ ) = f F k + l(x, ⋅ , ⋅ ) l = − L
L

. This process is repeated for all k until we get a HR 

estimation of the whole series, which can be used for other downstream tasks.

3 Experiments and Results

In the experiments, we apply the following methods to fetal MR volume series: 1) cubic 

B-spline interpolation along the interleaved axis; 2) interpolation along the temporal 

direction (TI); 3) spatio-temporal interpolation (STI); 4) SMORE [25] and 5) STRESS. 

In SMORE, we adopt the same super-resolution network architecture and the same training 
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hyperparameters as STRESS for fair comparison. The reference PyTorch implementation for 

STRESS is available on GitHub2

3.1 CRL fetal dataset

The CRL fetal atlas [6] consist of T2-weighted fetal brain MRI with gestational age (GA) 

ranging from 21 to 38 weeks. The images are reconstructed to volume with size of 135 

× 189 × 155 and isotropic resolution of 1 mm. To simulate fetal motion, we use the fetal 

landmark time series in [23]. Specifically, we use two eyes and the midpoint of two shoulder 

to define the fetal pose and apply affine transformation to the MR volume to generate 

motion trajectories. There are 77 time series with length from 20 to 30 minutes in the 

landmark dataset. We randomly sample 10 1-min intervals from each series then apply the 

motion to the volumes, resulting in 18 × 77 × 10 = 13860 data. We use 70% data for 

training and validation, 30% for test, data in the test set have different GAs from training 

and validation sets. We simulate MR scans with NI = 2, 4 and 6, in-plane resolution of 1mm 

× 1mm and slice thickness of 1mm. SR methods are applied to the noise-free data and also 

noisy data corrupted by Rician noise [7] with standard deviation σ = 3% of the maximum 

intensity. BDN is enabled when there is noise.

Table 1 shows the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) 

[22] comparing to the ground truth. PSNR and SSIM are computed within a mask of 

non-background voxels. The proposed STRESS method outperforms the competing methods 

at different interleave parameters, with and without noise. Fig. 2 shows example slices of 

super-resolution results with NI = 4 and Rician noise. Visual results also indicates that the 

outputs of STRESS have better image quality.

In addition, we also evaluate the performance of the STRESS method with and without BDN 

under different noise levels (σ = 1%, 3%, and 5% of the maximum intensity). The results 

are shown in Table 2. We can observe that the BDN makes a larger contribution to the 

performance of STRESS as the noise level increases.

3.2 Fetal EPI dataset

We also evaluate our method with an in utero fetal EPI dataset in [15], which consist of 111 

volumetric MRI time series at a gestational age ranging from 25 to 35 weeks. MRIs were 

acquired on a 3T Skyra scanner (Siemens Healthcare, Erlangen, Germany). Interleaved, 

multislice, single-shot, gradient echo EPI sequence was used for acquisitions with in-plane 

resolution of 3mm × 3mm, slice thickness of 3 mm, average matrix size of 120 × 120 × 80; 

TR=5 − 8s, TE=32 − 38ms, FA=90°, NI = 2. Each subject was scanned for 10 to 30 min. We 

remove half of the slices at each frame to generate data with NI = 4. We use 92 EPI series for 

training and 19 for testing. Due to the large voxel size in acquisition and the relatively high 

SNR, we disable BDN on this dataset. Besides, some volumes have matrix size less than 64, 

so we use P = 32 in this experiment.

2 https://github.com/daviddmc/STRESS 
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Since ground truth is not available for the in utero dataset, we use the removed slices as 

reference to compute PSNR and SSIM. To further evaluate the quality of output images, we 

use fetal keypoint detection as a downstream task, where 15 fetal keypoints (ankles, knees, 

hips, bladder, shoulders, elbows, wrists and eyes) are detected from each time frame. Ground 

truth labels are manually annotated on the original data with NI = 2. We apply a pretrained 

keypoint detection model [23] to the output volumes of each SR method. The percentage of 

correct keypoint (pCK) [1] are computed. PCK(s) = N(s)/N × 100%, where N is the total 

number of keypoints and N(s) is the number of predicted keypoints with error less than 

threshold s.

Fig. 3 shows the evaluation of super-resolution results on the fetal EPI dataset. The proposed 

STRESS method achieves the highest PSNR and SSIM among all competing methods, 

which is also shown by the t-test. Besides, when using the super-resolution results for fetal 

keypoint detection, the results of STRESS also have the best performance in terms of PCK, 

indicating that the STRESS method is able to generate MR time series with high image 

quality which is beneficial to downstream tasks.

Fig. 4 shows example slices of super-resolution results in one frame of the fetal MR series. 

We can see that the results of the proposed STRESS method have the best perceptual 

quality. The output of SI is very blurred, since it only interpolates along the z-axis. The 

TI and STI methods utilize temporal information with simple interpolation and therefore 

introduce severe inter-slice misalignment to the images. Although SMORE achieves better 

image quality than interpolation methods, the boundary of fetal brain is unclear in the 

outputs of SMORE. The reason is that SMORE only take a single frame as input without 

the temporal context, so that it cannot restore the details in the body parts that are corrupted 

by fetal motion, such as the fetal brain. STRESS, however, utilizes both spatial and temporal 

information of the scan data during the self-supervised training process, and therefore 

recovers more image details.

4 Conclusions

This paper presents STRESS, a self-supervised super-resolution framework for dynamic 

fetal imaging with interleaved slice acquisition. STRESS trains a SR network in a self-

supervised manner, where low- and high-resolution training samples are extracted from 

simulated interleaved acquisitions. The SR network utilizes both internal spatial information 

within each frame and temporal correlation between adjacent frames to improve image 

quality and restore details corrupted by fetal motion. Evaluations on both simulated and in 
utero data shows that STRESS outperforms other competing methods. The experiments also 

demonstrate that STRESS is beneficial when serving as a data preprocessing step for further 

downstream analysis.

Acknowledgements

This research was supported by NIH U01HD087211, NIH R01EB01733 and NIH NIBIB NAC P41EB015902.

Xu et al. Page 6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2023 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Andriluka M, Pishchulin L, Gehler P, Schiele B: 2d human pose estimation: New benchmark and 
state of the art analysis. In: Proceedings of the IEEE Conference on computer Vision and Pattern 
Recognition. pp. 3686–3693 (2014)

2. Diogo MC, Prayer D, Gruber GM, Brugger PC, Stuhr F, Weber M, Bettelheim D, Kasprian G: 
Echo-planar flair sequence improves subplate visualization in fetal mri of the brain. Radiology 
292(1), 159–169 (2019) [PubMed: 31084478] 

3. Dowling J, Bourgeat P, Raffelt D, Fripp J, Greer PB, Patterson J, Denham J, Gupta S, Tang C, 
Stanwell P, et al.: Nonrigid correction of interleaving artefacts in pelvic mri. In: Medical Imaging 
2009: Image Processing. vol. 7259, p. 72592P. International Society for Optics and Photonics 
(2009)

4. Gholipour A, Estroff JA, Barnewolt CE, Robertson RL, Grant PE, Gagoski B, Warfield SK, Afacan 
O, Connolly SA, Neil JJ, et al. : Fetal mri: a technical update with educational aspirations. Concepts 
in Magnetic Resonance Part A 43(6), 237–266 (2014)

5. Gholipour A, Estroff JA, Warfield SK: Robust super-resolution volume reconstruction from slice 
acquisitions: application to fetal brain mri. IEEE transactions on medical imaging 29(10), 1739–
1758 (2010) [PubMed: 20529730] 

6. Gholipour A, Rollins CK, Velasco-Annis C, Ouaalam A, Akhondi-Asl A, Afacan O, Ortinau CM, 
Clancy S, Limperopoulos C, Yang E, et al. : A normative spatiotemporal mri atlas of the fetal brain 
for automatic segmentation and analysis of early brain growth. Scientific reports 7(1), 1–13 (2017) 
[PubMed: 28127051] 

7. Gudbjartsson H, Patz S: The rician distribution of noisy mri data. Magnetic resonance in medicine 
34(6), 910–914 (1995) [PubMed: 8598820] 

8. He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. In: Proceedings of the 
IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)

9. Jog A, Carass A, Prince JL: Self super-resolution for magnetic resonance images. In: International 
Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 553–560. 
Springer (2016)

10. Kingma DP, Ba J: Adam: A method for stochastic optimization (2017)

11. Kochunov P, Castro C, Davis DM, Dudley D, Wey HY, Purdy D, Fox PT, Simerly C, Schatten 
G: Fetal brain during a binge drinking episode: a dynamic susceptibility contrast mri fetal brain 
perfusion study. Neuroreport 21(10), 716 (2010) [PubMed: 20505549] 

12. Kuklisova-Murgasova M, Estrin GL, Nunes RG, Malik SJ, Rutherford MA, Rueckert D, Hajnal 
JV: Distortion correction in fetal epi using non-rigid registration with a laplacian constraint. IEEE 
transactions on medical imaging 37(1), 12–19 (2017) [PubMed: 28207387] 

13. Laine S, Karras T, Lehtinen J, Aila T: High-quality self-supervised deep image denoising. arXiv 
preprint arXiv:1901.10277 (2019)

14. Lim B, Son S, Kim H, Nah S, Mu Lee K: Enhanced deep residual networks for single image super-
resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition 
workshops. pp. 136–144 (2017)

15. Luo J, Turk EA, Bibbo C, Gagoski B, Roberts DJ, Vangel M, Tempany-Afdhal CM, Barnewolt 
C, Estroff J, Palanisamy A, et al. : In vivo quantification of placental insufficiency by bold mri: a 
human study. Scientific reports 7(1), 1–10 (2017) [PubMed: 28127051] 

16. Parker D, Rotival G, Laine A, Razlighi QR: Retrospective detection of interleaved slice acquisition 
parameters from fmri data. In: 2014 IEEE 11th International Symposium on Biomedical Imaging 
(ISBI). pp. 37–40. IEEE (2014)

17. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer 
A: Automatic differentiation in pytorch (2017)

18. Saleem N,S: Fetal mri: An approach to practice: A review. Journal of Advanced Research 5(5), 
507–523 (2014) [PubMed: 25685519] 

19. Shocher A, Cohen N, Irani M: “zero-shot” super-resolution using deep internal learning. In: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3118–3126 
(2018)

Xu et al. Page 7

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2023 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20. Turk EA, Abulnaga SM, Luo J, Stout JN, Feldman HA, Turk A, Gagoski B, Wald LL, 
Adalsteinsson E, Roberts DJ, et al. : Placental mri: effect of maternal position and uterine 
contractions on placental bold mri measurements. Placenta 95, 69–77 (2020) [PubMed: 32452404] 

21. Uus A, Zhang T, Jackson LH, Roberts TA, Rutherford MA, Hajnal JV, Deprez M: Deformable 
slice-to-volume registration for motion correction of fetal body and placenta mri. IEEE 
transactions on medical imaging 39(9), 2750–2759 (2020) [PubMed: 32086200] 

22. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP: Image quality assessment: from error visibility 
to structural similarity. IEEE transactions on image processing 13(4), 600–612 (2004) [PubMed: 
15376593] 

23. Xu J, Zhang M, Turk EA, Zhang L, Grant PE, Ying K, Golland P, Adalsteinsson E: Fetal pose 
estimation in volumetric mri using a 3d convolution neural network. In: International Conference 
on Medical Image Computing and Computer-Assisted Intervention. pp. 403–410. Springer (2019)

24. Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y: Residual dense network for image super-resolution. In: 
Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2472–2481 
(2018)

25. Zhao C, Dewey BE, Pham DL, Calabresi PA, Reich DS, Prince JL: Smore: A self-supervised 
anti-aliasing and super-resolution algorithm for mri using deep learning. IEEE transactions on 
medical imaging (2020)

Xu et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2023 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The proposed STRESS workflow. A: Interleaved MRI acquisitions, e.g., NI = 3. B: Acquired 

MR data are binned into different time frames. These frames are interpolated and transposed 

to produce a simulated object with motion. Then, we simulate a interleaved MR scan on 

this object and extract low- and high-resolution pairs from them C: We train the denoising 

network (optional) and super-resolution network in self-supervised manners. D: We apply 

the trained models to the originally or newly acquired data to generate a high-resolution MR 

volume series, which can be further used for other downstream tasks.
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Fig. 2. 
Visual results from CRL fetal dataset (NI = 4, Rician noise σ = 3% of the maximum 

intensity), numbers in the parentheses are PNSR with ground truth data as reference.
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Fig. 3. 
Evaluation of super-resolution results from fetal EPI data with NI = 4. Left: PSNR and SSIM 

comparing to the reference in the NI = 2 data. Error bars show the corresponding standard 

deviations. **: p-value < 10−2, * * *: p-value < 10−3. Right: PCK curves for fetal landmark 

detection using a pretrained model.
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Fig. 4. 
Visual results from in utero fetal EPI dataset.
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Table 1.

PSNR and SSIM of the super-resolution results on the CRL dataset, where ‘w/ noise’ means adding Rician 

noise with σ = 3% of the maximum intensity. The best results are underlined.

Models

NI = 2 NI = 4 NI = 6

w/o noise w/ noise w/o noise w/ noise w/o noise w/ noise

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SI 32.69 .9883 28.42 .8849 23.90 .9049 22.98 .8114 19.71 .7422 19.39 .6686

TI 29.01 .9111 25.31 .8258 29.21 .9076 25.48 .8273 28.60 .9084 25.52 .8288

STI 31.29 .9682 27.94 .8846 26.87 .9390 25.75 .8711 23.89 .8769 23.37 .8182

SMORE 36.19 .9895 30.38 .9006 31.36 .9687 28.57 .8916 25.29 .8703 24.27 .8093

STRESS 36.77 .9921 33.51 .9702 34.56 .9873 32.81 .9655 28.98 .9480 28.24 .9213
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Table 2.

Evaluations of STRESS with and without BDN under different noise levels (NI = 4).

Models
σ = 1% σ = 3% σ = 3%

PSNR SSIM PSNR SSIM PSNR SSIM

STRESS w/o BDN 33.96 .9764 30.69 .9219 28.29 .8559

STRESS w/ BDN 33.99 .9826 32.81 .9655 31.09 .9425
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