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Abstract

Volumetric reconstruction of fetal brains from multiple stacks of MR slices, acquired in the 

presence of almost unpredictable and often severe subject motion, is a challenging task that 

is highly sensitive to the initialization of slice-to-volume transformations. We propose a novel 

slice-to-volume registration method using Transformers trained on synthetically transformed data, 

which model multiple stacks of MR slices as a sequence. With the attention mechanism, our 

model automatically detects the relevance between slices and predicts the transformation of one 

slice using information from other slices. We also estimate the underlying 3D volume to assist 

slice-to-volume registration and update the volume and transformations alternately to improve 

accuracy. Results on synthetic data show that our method achieves lower registration error and 

better reconstruction quality compared with existing state-of-the-art methods. Experiments with 

real-world MRI data are also performed to demonstrate the ability of the proposed model to 

improve the quality of 3D reconstruction under severe fetal motion.
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1 Introduction

Volumetric reconstruction of fetal brain from multiple motion-corrupted stacks of MR 

slices is an important tool in studying fetal brain development [8,2,27]. Due to rapid and 

random fetal motion, fetal MRI are limited to fast acquisition techniques, such as the 

single-shot T2 weighted (SST2W) imaging that freezes in-plane motion. Even with such 

fast 2D sequences, fetal MRI is still vulnerable to inter-slice motion artifacts [19], leading 

to misalignment of slices in a stack. Moreover, the delay between slices due to safety 

constraints on specific absorption rate (SAR) [17] further worsen the situation. Therefore, 

Slice-to-Volume Registration (SVR) prior to 3D reconstruction of fetal brain is necessary. 

Manual SVR is usually infeasible in practice due to the magnitude of data involved. 

Although optimization-based SVR methods have successfully applied to 3D reconstruction 

of fetal brain [14,18,7], coarse alignment of slices is required to initialize the algorithm and 

the quality of reconstructed volume is highly dependent on the initial alignment. Hence, 

an automatic and accurate method for estimating slice transformations is crucial to 3D 

reconstruction of fetal brain.

In an attempt to speed up SVR of fetal MRI and improve its capture range, deep 

learning methods [11,23] have been proposed to predict rigid transformations of MR slices 

using Convolution Neural Networks (CNNs), which share similarity with camera pose 

prediction in computer vision [12,15]. Pei et al. [22] proposed a multi-task network to 

exploit semantic information in fetal brain anatomy which, however, requires annotations of 

segmentation maps. Moreover, these approaches process each slice independently, ignoring 

the dependencies between slices. Singh et al. [25] proposed a recurrent network to predict 

inter-slice motion in fetal MRI. In SVR of fetal ultrasound, Yeung et al. [31] tried to predict 

the 3D location of multiple slices simultaneously with an attention CNN.

Recently, Transformer models [28] and their variants have achieved astounding results 

in various fields [4,3]. The concept behind Transformers is to dynamically highlight the 

relevant features in input sequences with the self-attention mechanism, which demonstrates 

great capability of modeling long-distance dependencies and capturing global context. In 

SVR of fetal MRI, multiple stacks of slices are provided as inputs, which can also be 

modeled as a sequence of images. Multi-view information from stacks of slices with 

different orientations can be processed jointly to assist the SVR task.

Here, we propose a Slice-to-Volume Registration Transformer (SVoRT) to map multiple 

stacks of fetal MR slices into a canonical 3D space and to further initialize SVR and 

3D reconstruction. As such, we present the following contributions: 1) We propose a 

Transformer-based network that models multiple stacks of slices acquired in one scan as 

a sequence of images and predicts rigid transformations of all the slices simultaneously 

by sharing information across the slices. 2) The model also estimates the underlying 3D 

volume to provide context for localizing slices in 3D space. 3) In the proposed model, slice 

transformations are updated in an iterative manner to progressively improve accuracy.
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2 Methods

Given n acquired slices of a scan, y = [y1, …, yn], the goal of SVoRT is to estimate the 

corresponding transformations T = [T1, …, Tn], i.e., rotations and translations of acquisition 

planes, in a 3D canonical atlas space. However, unlike SVR problems [5,9] where a 3D 

volume exists as a reference for matching 2D slices, high quality 3D references are usually 

unavailable in SVR of fetal MR due to fetal motion. Therefore, instead of predicting the 

transformations alone, we also estimate the underlying volume x from the input slices, so 

that the estimated volume x can provide 3D context to improve the accuracy of predicted 

transformations. In SVoRT, the estimated transformation T  and the estimated volume x are 

updated alternately, generating a series of estimates, T 0, x0 , …, T K, xK , where T 0 and x0

are the initial guesses, and K is the number of iterations. The estimated transformations of 

the last iteration T K is used as the output of the model. Fig. 1 (a) shows the k-th iteration 

of SVoRT, which consists of two steps: 1) computing the new transformation T k given 

T k − 1 and xk − 1 from the previous iteration, and 2) estimating volume xk based on the new 

transformation T k.

2.1 Transformation Update

At the k-th iteration, the transformations are updated by T k = T k − 1 + ΔT k. We propose a 

submodule named Slice-Volume Transformer (SVT) to regress the residual ΔT k given the 

set of input slice and the estimates from the previous iteration, ΔT k = SVTT
k y, T k − 1, xk − 1 . 

SVT, whose architecture is shown in Fig. 1 (b), aims to jointly extract features from stacks 

of slices and a 3D volume.

To relate the volume xk − 1 to the set of slices y with estimated transformations T k − 1, SVT 

simulates slices from the volume following the forward model, y i = DBT i
k − 1xk − 1, i = 1, …, 

n, where D and B are the operators for slice sampling and Point-Spread-Function (PSF) 

blurring respectively. The simulated slices y provide views of the estimated volume x at the 

estimated slice locations T k − 1. The difference between y and the original slices y can be 

used as a proxy indicator of registration accuracy and guide models to update the estimated 

transformations. To this end, we concatenate y and y, and use a ResNet [10] to extract 

features Xslice  ∈ ℝn × d from slices, where d is the number of features.

In addition to the image content, information about the position of the slice in the sequence 

and the estimated location in 3D space is injected for Transformers to encode spatial 

correlation of the input sequence, e.g., adjacent slices in the same stacks are usually highly 

correlated, while stacks with different orientations provide complementary information. 

Each slice in the input sequence is associated with two indices, the index of the stack that the 

slice belongs to, and the index of the slice in the stack. Positional embeddings Xpos ∈ ℝn × d

are generated from the current estimated transformation T k − 1, the stack indexes, and the 

slice indexes using sinusoidal functions [28].
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The slice features and the corresponding positional embeddings are added and provided 

to a Transformer with four encoders [28]. Each Transformer encoder consists of a multi-

head attention module, a feed forward network, and two layer normalization [1]. Let X 
= Xslices + Xpos be the input matrix. The multi-head attention module first projects X 
into three different spaces, Qj = XW j

Q, Ki = XW j
K, V j = XW j

V , j = 1, …, h, where weights 

W j
Q, W j

K, W j
V ∈ ℝd × (d/ℎ) and h is the number of heads. Then, each head computes the output 

as Y j = softmax QjKj
T / d V j, where the softmax function is applied to each row. The outputs 

from all heads are aggregated and projected with a matrix W O ∈ ℝd × d, i.e., Y = [Y1, …, 

Yh]WO. The feed forward network is a fully connected network used to extract deeper 

features. At the end, a linear layer is applied to regress the residual transformations from the 

output of Transformer.

2.2 Volume Estimation

The next step is to compute the new estimate of volume xk based on the updated 

transformations T k. One of the available methods is the PSF reconstruction [14], which 

aligns the slices in 3D space based on transformations T k and interpolates the volume 

with the PSF kernel. However, there are two disadvantages of this approach. First, it over 

smooths the reconstructed volume and leads to a loss of image detail. Second, it fails to 

exclude slices with large transformation error during reconstruction, resulting in artifacts in 

the reconstructed volume.

To address these problems, we use another SVT in the volume estimation step to predict 

weights of slices, w = [w1, …, wn], where wi ∈ [0, 1] represents the image quality of the 

i-th slice. The SVT here shares the same architecture as the one in the transformation update 

step, but has different inputs. Specifically, in the inputs to SVT, T k − 1 and xk − 1 are replaced 

with the updated transformations T k and the PSF reconstruction result xPSF respectively, 

wk = SVTx
k T k, xPSF

k , y , where we denote the SVT in volume estimation as SVTx
k. To compute 

the new estimated volume xk, we solve an inverse problem,

xk = argmin
x

∑
i = 1

n
wi

k DBT i
kx − yi 2

2
, (1)

where the weights help exclude outliers during volume estimation. Since the closed form 

solution involves inverting a very large matrix, we instead employ a conjugate gradient (CG) 

method to compute xk. Note that all operations (matrix multiplication, addition and scalar 

division) in CG are differentiable, so the gradient with respect to w can be computed via 

automatic differentiation.

2.3 Training

Data: Supervised learning of SVoRT requires the ground truth transformation of each slice. 

However, annotating the 3D location of a 2D MR slice is very challenging. Instead, we 

artificially sample 2D slices as training data from high quality MR volumes of fetal brain 
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reconstructed from data with little fetal motion. The orientations of stack, i.e., the normal 

vector and in-plane rotation, are randomly sampled as in [11] so that the dataset captures a 

wide range of rigid transformations. To Bridge the gap between the synthetic data and real 

MR scans and improve the generalization capability of networks, we also adopt various data 

augmentation and MR artifact simulation techniques [13], including image noise, bias field, 

signal void artifacts, and contrast jitter.

Representations of transformations: Various representations are available for the 

describing the location of a plane in 3D space. For example, the Euler angles, the affine 

matrix, or the Cartesian coordinates of 3 points, called anchor points, within the plane. 

Previous works have demonstrated that the anchor point representation yields the highest 

accuracy for deep learning based SVR methods. Following [11], we use the center, 

the bottom right and left corners of a plane as the anchor points to define the rigid 

transformation.

Loss functions: During training, we apply the L2 loss between the predicted and target 

anchor points for transformation prediction,

LT
k = P 1

k − P1 2
2

+ P 2
k − P2 2

2
+ P 3

k − P3 2
2
,

where P 1
k
, P 2

k
, P 3

k
 are the predicted coordinates of the three anchor points in the k-th iteration, 

and P1, P2, P3 are the ground truth locations. As for volume estimation, the L1 loss between 

the k-th estimated volume and the target volume is used, Lx
k = xk − x 1. The total loss L 

is the sum of the losses in all iterations, L = ∑k = 1
K LT

k + λ∑k = 1
K Lx

k, where λ is a weight 

determining the relative contribution of the L1 loss.

3 Experiments and Results

3.1 Experiment Setup

We evaluate the models on the FeTA dataset [21], which consists of 80 T2-weighted fetal 

brain volumes with gestational age between 20 and 35 weeks. The dataset is split into 

training (68 volumes) and test (12 volumes) sets. The volumes are registered to a fetal brain 

atlas [8], and resampled to 0.8 mm isotropic. We simulate 2D slices with resolution of 1 

mm × 1 mm, slice thickness between 2.5 and 3.5 mm, and size of 128 × 128. Each training 

sample consists of 3 image stacks in random orientations and each stack has 15 to 30 slices. 

Fetal brain motion is simulated as in [30] to perturb the transformations of slices. In the 

process of training, random samples are generated on the fly, while for testing, 4 different 

samples are generated for each test subject, resulting in 48 test cases.

To demonstrate SVoRT can generalize well to real-world data and help initialize SVR for 

cases with severe fetal motion, we test the trained models with data acquired in real fetal 

MRI scans. Scans were conducted at Boston Children’s Hospital. MRI data were acquired 

using the HASTE sequence [6] with slice thickness of 2 mm, resolution of 1 mm × 1 

mm, size of 256 × 256, TE = 119 ms, and TR = 1.6 s. The real MR dataset not only 

has different contrast, but also undergoes more realistic artifacts and fetal motion compared 
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to the synthetic data. In the experiments, SVRnet [11] and PlaneInVol [31] ared used as 

baselines. SVRnet predicts the transformation of each slice independently with a VGGNet 

[24], while PlaneInVol uses an attention CNN which compares pairs of slices, and learns to 

map a set of slices to 3D space. For SVoRT, we set the initial estimates T 0 and x0 to identity 

transformation and zero respectively and set λ = 103 and K = 3. All neural networks are 

implemented with PyTorch [20] and trained on a Nvidia Tesla V100 GPU with an Adam 

optimizer [16] for 2 × 105 iterations. We used an initial learning rate of 2 × 10−4 which 

linearly decayed to zero. The reference implementation for SVoRT is available on GitHub8.

3.2 Simulated Data

To evaluate the accuracy of the predicted transformation for different models, we use 

the Euclidean Distance (ED) of anchor points, and the Geodesic Distance (GD) in 

SO(3):ED = 1
3 ∑j = 1

3 P j − P j 2 and GD = arccos Tr(R) − 1
2 , where R is the rotation matrix from 

the predicted plane to the target, representing the rotation error. We also extract slices from 

the ground truth volume x according to the estimated transformations T  and compare them 

to the original slices y. Comparison is performed via Peak Signal-to-Noise Ratio (PSNR) 

and Structural Similarity (SSIM) [29]. To further examine the model, we use the predicted 

transformations to initialize a 3D reconstruction algorithm [14] and compute PSNR and 

SSIM between the reconstructed volumes and the targets.

Table 1 reports the mean and standard deviations of quantitative metrics for different models 

on the test set of the simulated data. Our proposed method outperforms both SVRnet and 

PlaneInVol, which only leverage the intensity information of slices. As shown in Fig. 2 (a), 

the transformation errors for SVRnet and PlaneInVol increase with the distance to the center 

of 3D space, since the slices near the boundary of fetal brain contain little content and can be 

ambiguous. However, by exploiting the positional information of slice in the input sequence, 

SVoRT is able to register such cases better and lead to lower errors.

Ablation studies are also performed by removing the positional embedding (w/o PE) and 

the volume estimation (w/o Vol), and using fewer iterations (K = 1, 2) in SVoRT. Results 

indicate that the positional embedding serves as a prior for the relative locations of slices in 

a stack, which facilitates the registration process. The auxiliary volume estimation improves 

the accuracy of transformation prediction by providing 3D context. Moreover, the iterative 

update enable the model to progressively refine the predictions. We test SVoRT with 

different numbers of input stacks (Fig. 2 (b)). With more input stacks, SVoRT receives 

more different views of the 3D volume, and therefore achieves lower registration error. 

We also compare different volume estimation methods: i) the proposed estimate x, ii) the 

solution to the inverse problem in Eq. (1) with equal weight, x(w = 1), and iii) the PSF 

reconstruction, xPSF. As shown in Fig. 2 (c), the proposed method achieves the highest PSNR. 

Fig. 2 (d) visualizes an example attention matrix generated by the last Transformer encoder. 

The 3D reconstruction results in Fig. 3 show that SVoRT also yields better perceptual quality 

8 https://github.com/daviddmc/SVoRT 
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compared with other state-of-the-art methods, in consequence of fewer slice misalignment in 

the initialization of SVR.

3.3 Real Fetal MR Data

We collect 3 orthogonal motion-corrupted stacks of MR slices from two subjects 

respectively. For preprocessing, bias fields are corrected [26], and the brain ROI is manually 

segmented from each slice. SVRnet, PlaneInVol and SVoRT are used to predict the 

transformations and initialize the SVR algorithm. For comparison, we also apply the SVR 

algorithm to the input stacks directly without deep learning based initialization (SVR only). 

Note that the results of “SVR only” are reconstructed in the subject space. We further 

register them to the atlas space for visualization. Fig. 4 shows that volumes reconstructed by 

SVR alone suffer from severe image artifacts due to slice misalignment caused by drastic 

fetal motion. SVRnet and PlaneInVol are incapable of generalizing to real MR data and 

fail to provide a useful initialization for SVR. In comparison, the estimated transformations 

of SVoRT are more accurate and the corresponding reconstructed volume presents better 

perceptual quality. Results indicate that SVoRT learns more robust features from synthetic 

data, and therefore generalizes well in the presence of real-world noise and artifacts. 

Moreover, the average inference time of SVoRT for each subject is 0.8 s, which is negligible 

compared with SVR algorithms that usually take minutes even on GPUs. SVoRT potentially 

enables high quality 3D reconstruction of fetal MRI in the case of severe fetal motion.

4 Conclusion

In this work, we propose a novel method for slice-to-volume registration in fetal brain 

MRI using Transformers. By jointly processing the stacks of slices as a sequence, SVoRT 

registers each slice by utilizing context from other slices, resulting in lower registration error 

and better reconstruction quality. In addition, we introduce an auxiliary task of volume 

estimation and update the transformation iteratively to improve registration accuracy. 

Evaluations show that SVoRT learns more robust features so that, by training on simulated 

data, it generalizes well to data acquired in real scans. SVoRT provides a robust and accurate 

solution to the initialization of 3D fetal brain reconstruction.
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Fig. 1. 
(a) The k-th iteration of SVoRT. (b) The architecture of SVT.
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Fig. 2. 
(a) Medians of ED for slices sampled at different locations at the atlas space. Error bands 

indicate 25 and 75 percentiles. (b) Mean values of ED for SVoRT models with different 

numbers of input stacks. Error bars indicate standard deviations (c) PSNRs of different 

volume estimation methods. (d) An example heatmap of the self-attention weight matrix 

averaged over all the heads.
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Fig. 3. 
Example reconstructed volumes and reference volumes of the test set.
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Fig. 4. 
Reconstructed volumes for different methods of real MR data.
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Table 1.

Mean values of quantitative metrics for different models (standard deviation in parentheses). ↓ indicates lower 

values being more accurate, vice versa. The best results are highlighted in bold.

Method
Transformation Slice Volume

ED(mm)↓ GD(rad)↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑

SVRnet 12.82 (5.69) .256 (.150) 20.53 (1.62) .823 (.061) 19.54 (1.52) .669 (.116)

PlaneInVol 12.49 (6.73) .244 (.213) 19.96 (1.73) .808 (.069) 18.98 (1.62) .615 (.139)

SVoRT 4.35 (0.90) .074 (.017) 25.26 (1.86) .916 (.034) 23.32 (1.42) .858 (.037)

w/o PE 9.97 (6.28) .194 (.179) 21.44 (2.08) .841 (.064) 20.74 (1.49) .742 (.096)

w/o Vol 5.09 (1.05) .088 (.020) 23.97 (1.68) .894 (.040) 22.89 (1.37) .844 (.043)

K = 1 5.99 (1.16) .103 (.024) 23.02 (1.67) .876 (.047) 22.57 (1.21) .836 (.041)

K = 2 5.65 (1.07) .097 (.022) 23.25 (1.84) .878 (.048) 22.64 (1.50) .837 (.043)
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