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Abstract

In some supervised learning settings, the practitioner might have additional information on 

the features used for prediction. We propose a new method which leverages this additional 

information for better prediction. The method, which we call the feature-weighted elastic net 
(“fwelnet”), uses these “features of features” to adapt the relative penalties on the feature 

coefficients in the elastic net penalty. In our simulations, fwelnet outperforms the lasso in terms of 

test mean squared error and usually gives an improvement in true positive rate or false positive rate 

for feature selection. We also apply this method to early prediction of preeclampsia, where fwelnet 

outperforms the lasso in terms of 10-fold cross-validated area under the curve (0.86 vs. 0.80). We 

also provide a connection between fwelnet and the group lasso and suggest how fwelnet might be 

used for multi-task learning.

1 Introduction

We consider the usual linear regression model: given n realizations of p predictors X = {xij} 

for i = 1,2, …, n and j = 1,2, …, p, the response y = (y1, …, yn) is modeled as

yi = β0 + ∑
j = 1

p
xijβj + ϵi, (1)

with ϵ having mean 0 and variance σ2. The ordinary least squares (OLS) estimates of βj 

are obtained by minimizing the residual sum of squares (RSS). There has been much work 

on regularized estimators that offer an advantage over the OLS estimates, both in terms of 

accuracy of prediction on future data and interpretation of the fitted model. One popular 

regularized estimator is the elastic net (Zou & Hastie 2005) which minimizes the sum of the 

RSS and a combination of the ℓ1 and ℓ2-squared penalties. More precisely, letting β = (β1, …, 

βp)T, the elastic net minimizes the objective function

J β0, β = 1
2 y − β01 − Xβ 2

2 + λ α β
1
+ 1 − α

2 β
2

2

(2)
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= 1
2 y − β01 − Xβ 2

2 + λ ∑
j = 1

p
α βj + 1 − α

2 βj
2 . (3)

The elastic net has two tuning parameters: λ ≥ 0 which controls the overall sparsity of 

the solution, and α ∈ [0, 1] which determines the relative weight of the ℓ1 and ℓ2-squared 

penalties. α = 0 corresponds to ridge regression (Hoerl & Kennard 1970), while α = 1 

corresponds to the lasso (Tibshirani 1996). These two tuning parameters are often chosen 

via cross-validation (CV). One reason for the elastic net’s popularity is its computational 

efficiency: J is convex in its parameters, which means that solutions can be found efficiently 

even for very large n and p. In addition, the solution for a whole path of λ values can be 

computed quickly using warm starts (Friedman et al. 2010).

In some supervised learning settings, we often have some information about the features 

themselves. For example, in genomics, we know that each gene belongs to one or more 

genetic pathways, and we may expect genes in the same pathway to have correlated effects 

on the response of interest. Another example is in image data, where each pixel has a 

specific position (row and column) in the image. We would expect methods which leverage 

such information on the features to perform better prediction and inference than methods 

which ignore it. However, many popular supervised learning methods, including the elastic 

net, do not use such information about the features in the model-fitting process.

In this paper, we develop a framework for organizing such feature information as well as 

a variant of the elastic net which uses this information in model-fitting. We assume the 

information we have for each feature is quantitative. This allows us to think of each source 

as a “feature” of the features. For example, in the genomics setting, the kth source of 

information could be the indicator variable for whether the jth feature belongs to the kth 

genetic pathway.

We organize these “features of features” into an auxiliary matrix Z ∈ ℝp × K, where p is the 

number of features and K is the number of sources of feature information. Each column of Z 
represents the values for each feature information source, while each row of Z represents the 

values that a particular feature takes on for the K different sources. We let zj ∈ ℝK denote the 

jth row of Z as a column vector.

To make use of the information in Z, we propose assigning each feature a score zj
Tθ, which 

is simply a linear combination of its “features of features”. We then use these scores to 

influence the weight given to each feature in the model-fitting procedure. Concretely, we 

give each feature a different penalty weight in the elastic net objective function based on its 

score:

Jλ, α, θ β0, β = 1
2 y − β01 − Xβ 2

2 + λ ∑
j = 1

p
wj θ α βj + 1 − α

2 βj
2 , (4)
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where wj(θ) = f zj
Tθ  for some function f. θ is a hyperparameter in ℝK which the algorithm 

needs to select. In the final model, zj
Tθ can be thought of as an indication of how influential 

feature j is on the response, while θk represents how important the kth source of feature 

information is in identifying which features are important for the prediction problem.

The rest of this paper is organized as follows. In Section 2, we survey past work on 

incorporating “features of features” in supervised learning. In Section 3, we propose a 

method, the feature-weighted elastic net (“fwelnet”), which uses the scores in model-fitting. 

We then illustrate its performance on simulated data in Section 4 and on a real data example 

in Section 5. In Section 6, we present a connection between fwelnet and the group lasso, 

and in Section 7, we show how fwelnet can be used in multi-task learning. We end with a 

discussion and ideas for future work. The appendix contains further details and proofs.

2 Related work

The idea of assigning different penalty weights for different features in the lasso or elastic 

net objective is not new. For example, the adaptive lasso (Zou 2006) assigns feature j a 

penalty weight wj = 1/ β j
OLS γ

, where β j
OLS

 is the estimated coefficent for feature j in the OLS 

model and γ > 0 is some hyperparameter. However, the OLS solution only depends on X 
and y and does not incorporate any external information on the features. In the work closest 

to ours, Bergersen et al. (2011) propose using weights wj = 1
ηj(y, X, Z) q , where ηj is some 

function (possibly varying for j) and q is a hyperparameter controlling the shape of the 

weight function. While the authors present two ideas for what the ηj’s could be, they do not 

give general guidance on how to choose these functions which could drastically influence 

the model-fitting algorithm.

There is a correspondence between penalized regression estimates and Bayesian maximum 

a posteriori (MAP) estimates with a particular choice of prior for the coefficients. (For 

example, ridge regression and lasso regression are MAP estimates when the coefficient 

vector β is given a normal and Laplace prior respectively.) Within this Bayesian framework, 

some methods have been developed to use external feature information to guide the choice 

of prior. For example, van de Wiel et al. (2016) take an empirical Bayes approach to estimate 

the prior for ridge regression, while Velten & Huber (2018) use variational Bayes to do so 

for general convex penalties.

We also note that most previous approaches for penalized regression with external 

information on the features only work with specific types of such information. A large 

number of methods have been developed to make use of feature grouping information. 

Popular methods for using grouping information in penalized regression include the group 

lasso (Yuan & Lin 2006) and the overlap group lasso (Jacob et al. 2009). IPF-LASSO 

(integrative lasso with penalty factors) (Boulesteix et al. 2017) gives features in each group 

its own penalty parameter, to be chosen via cross-validation. Tai & Pan (2007) modify 

the penalized partial least squares (PLS) and nearest shrunken centroids methods to have 

group-specific penalties.
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Other methods have been developed to incorporate “network-like” or feature similarity 

information, where the user has information on how the features themselves are related to 

each other. For example, the fused lasso (Tibshirani et al. 2005) adds an ℓ1 penalty on the 

successive differences of the coefficients to impose smoothness on the coefficient profile. 

Structured elastic net (Slawski et al. 2010) generalizes the fused lasso by replacing the 

ℓ2-squared penalty in elastic net with βTΛβ, where Λ is a symmetric, positive semi-definite 

matrix chosen to reflect some a priori known structure between the features. Mollaysa et al. 

(2017) use the feature information matrix Z to compute a feature similarity matrix, which is 

used to construct a regularization term in the loss criterion to be minimized. The regularizer 

encourages the model to give the same output as long as the total contribution of similar 

features is the same. We note that this approach implicitly assumes that the sources of 

feature information are equally relevant, which may or may not be the case.

It is not clear how most of the methods in the previous two paragraphs can be generalized 

to more general sources of feature information. Our method has the distinction of being able 

to work directly with real-valued feature information and to integrate multiple sources of 

feature information. We note that while van de Wiel et al. (2016) claim to be able to handle 

binary, nominal, ordinal and continuous feature information, the method actually ranks and 

groups features based on such information and only uses this grouping information in the 

estimation of the group-specific penalties. Nevertheless, it is able to incorporate more than 

one source of feature information.

3 Feature-weighted elastic net (“fwelnet”)

As mentioned in the introduction, one direct way to utilize the scores zj
Tθ in model-fitting is 

to give each feature a different penalty weight in the elastic net objective function based on 

its score:

Jλ, α, θ β0, β = 1
2 y − β01 − Xβ 2

2 + λ ∑
j = 1

p
wj(θ) α βj + 1 − α

2 βj
2 , (5)

where wj(θ) = f zj
Tθ  for some function f. Our proposed method, which we call the feature-

weighted elastic net (“fwelnet”), specifies f:

wj(θ) = ∑ℓ = 1
p exp zℓ

Tθ
pexp zj

Tθ . (6)

The fwelnet algorithm seeks the minimizer of this objective function over β0 and β:

β 0, β = argmin
β0, β

Jλ, α, θ β0, β

= argmin
β0, β

1
2 y − β01 − Xβ 2

2 + λ ∑
j = 1

p
wj(θ) α βj + 1 − α

2 βj
2 .

(7)
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There are a number of reasons for this choice of penalty factors. First, when θ = 0, we have 

wj(θ) = 1 for all j, reducing fwelnet to the original elastic net algorithm. Second, wj(θ) ≥ 1/p 
for all j and θ, ensuring that we do not end up with features having negligible penalty. This 

allows the fwelnet solution to have a wider range of sparsity as we go down the path of λ 
values. Third, this formulation provides a connection between fwelnet and the group lasso 

(Yuan & Lin 2006) which we detail in Section 6. Finally, we have a natural interpretation of 

a feature’s score: if zj
Tθ is relatively large, then wj is relatively small, meaning that feature j is 

more important for the response and hence should have smaller regularization penalty.

We illustrate the last property via a simulated example. In this simulation, we have n = 200 

observations and p = 100 features which come in groups of 10. The response is a linear 

combination of the first two groups with additive Gaussian noise. The coefficient for the 

first group is 4 while the coefficient for the second group is −2 so that the features in the 

first group exhibit stronger correlation to the response compared to the second group. The 

“features of features” matrix Z ∈ ℝ100 × 10 is grouping information, i.e. zjk = 1 if feature j 
belongs to group k, and is 0 otherwise. Figure 1 shows the penalty factors wj that fwelnet 

assigns the features. As one would expect, the features in the first group have the smallest 

penalty factor followed by features in the second group. In contrast, the original elastic net 

algorithm would assign penalty factors wj = 1 for all j.

3.1 Computing the fwelnet solution

It can be easily shown that β 0 = y − ∑j = 1
p β jx ⋅ j. Henceforth, we assume that y and the 

columns of X are centered so that β 0 = 0 and we can ignore the intercept term in the rest of 

the discussion.

For given values of λ, α and θ, it is easy to solve (7): the objective function is convex in 

β (in fact it is piecewise-quadratic in β) and β  can be found efficiently using algorithms 

such as coordinate descent. However, to deploy fwelnet in practice we need to determine the 

hyperparameter values λ ∈ ℝ, α ∈ ℝ and θ ∈ ℝK that give good performance. When K, the 

number of sources of feature information, is small, one could run the algorithm for a grid 

of θ values, then pick the value which gives the smallest cross-validated loss. Unfortunately, 

this approach is computationally infeasible for even moderate values of K.

To avoid this computational bottleneck, we propose Algorithm 1 as a method to find β  and 

θ  at the same time. If we think of θ as an argument of the objective function J, Step 3 can 

be thought of as alternating minimization over θ and β. Notice that in Step 3(c), we allow 

the algorithm to have a different value of β  for each λ value. However, we force θ  to be 
the same across all λ values: Steps (a) and (b) can be thought of as a heuristic to perform 

gradient descent for θ under this constraint.

We have developed an R package, fwelnet, which implements Algorithm 1. We note that 

Step 3(c) of Algorithm 1 can be done easily by using the glmnet function in the glmnet R 

package and specifying the penalty.factor option. In practice, we use the lambda sequence 

λ1 > ⋯ > λm provided by glmnet’s implementation of the elastic net as this range of λ 
values covers a sufficiently wide range of models. With this choice of λ sequence, we find 
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that fwelnet’s performance does not change much whether we use the component-wise mean 

or median in Step 3(a), or the mean or median in Step 3(b). Also, instead of running Step 3 

until convergence, we recommend running it for a small fixed number of iterations N. Step 

3(c) is the bottleneck of the algorithm, and so the runtime for fwelnet is approximately N + 

1 times that of glmnet. In our simulation studies, we often find that one pass of Step 3 gives 

a sufficiently good solution. We suggest treating N as a hyperparameter and running fwelnet 

for N = 1, 2 and 5.

(We also considered an approach where we did not constrain the value of θ to be equal 

across λ values. While conceptually straightforward, the algorithm was computationally 

slow and did not perform as well as Algorithm 1 in prediction. A sketch of this approach can 

be found in Appendix A.)

3.2 Extending fwelnet to generalized linear models (GLMs)

In the exposition above, the elastic net is described as a regularized version of the ordinary 

least squares model. It is easy to extend elastic net regularization to generalized linear 

models (GLMs) by replacing the RSS term with the negative log-likelihood of the data:

β 0, β = argmin
β0, β

∑
i = 1

n
ℓ yi, β0 + ∑

j = 1

p
xijβj + λ ∑

j = 1

p
α βj + 1 − α

2 βj
2 , (8)

where ℓ(yi,β0 + Σj xijβj) is the negative log-likelihood contribution of observation i. Fwelnet 

can be extended to GLMs in a similar fashion:

β 0, β , θ = argmin
β0, β, θ

∑
i = 1

n
ℓ yi, β0 + ∑

j = 1

p
xijβj + λ ∑

j = 1

p
wj(θ) α βj + 1 − α

2 βj
2 , (9)

with wj(θ) as defined in (6). Theoretically Algorithm 1 can be used as-is to solve (9). 

Because θ only appears in the penalty term and not in the negative log-likelihood, this 

extension is not hard to implement in code. The biggest hurdle to this extension is a solver 

for (8) which is needed for Steps 2 and 3(c). Step 3(a) is the same as before, while Step 3(b) 

simply requires a function that allows us to compute the negative log-likelihood ℓ.

4 A simulation study

We tested the performance of fwelnet against other methods in a simulation study. In the 

three settings studied, the true signal is a linear combination of the columns of X, with the 

true coefficient vector β being sparse. The response y is the signal corrupted by additive 

Gaussian noise. In each setting, we gave different types of feature information to fwelnet to 

determine the method’s effectiveness.
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For all methods, we used cross-validation (CV) to select the tuning parameter λ. Unless 

otherwise stated, the α hyperparameter was set to 1 (i.e. no ℓ2 squared penalty) and Step 

3 of Algorithm 1 was run for one iteration, with the mean used for Steps 3(a) and 3(b). 

To compare methods, we considered the mean squared error (MSE) MSE = E (y − μ)2

achieved on 10,000 test points, as well as the true positive rate (TPR) and false positive rate 

(FPR) of the fitted models. (The oracle model which knows the true coefficient vector β has 

a test MSE of 0.) We ran each simulation 30 times to get estimates for these quantities. (See 

Appendix A for details of the simulations.)

4.1 Setting 1: Noisy version of the true |β|

In this setting, we have n = 100 observations and p = 50 features, with the true signal being 

a linear combination of just the first 10 features. The feature information matrix Z has two 

columns: a noisy version of |β| and a column of ones.

We compared fwelnet against the lasso (using the glmnet package) across a range of 

signal-to-noise ratios (SNR) in both the response y and the feature information matrix Z 
(see details in Appendix A.1). The results are shown in Figure 2. As we would expect, the 

test MSE figures for both methods decreased as the SNR in the response increased. The 

improvement of fwelnet over the lasso increased as the SNR in Z increased. In terms of 

feature selection, fwelnet appeared to have similar TPR as the lasso but had smaller FPR.

4.2 Setting 2: Grouped data setting

In this setting, we have n = 100 observations and p = 150 features, with the features 

coming in 15 groups of size 10. The feature information matrix Z ∈ ℝ150 × 15 contains 

group membership information for the features: zjk = 1{feature j ∈ group k}. We compared 

fwelnet against the lasso and the group lasso (using the grpreg package) across a range of 

signal-to-noise ratios (SNR) in the response y.

We considered two different responses in this setting. The first response we considered 

was a linear combination of the features in the first group only, with additive Gaussian 

noise. The results are depicted in Figure 3. In terms of test MSE, fwelnet was competitive 

with the group lasso in the low SNR scenario and came out on top for the higher SNR 

settings. In terms of feature selection, fwelnet had comparable TPR as the group lasso but 

drastically smaller FPR. Fwelnet had better TPR and FPR than the lasso in this case. We 

believe that fwelnet’s improvement over the group lasso could be because the true signal 

was sparse: fwelnet’s connection to the ℓ1 version of the group lasso (see Section 6 for 

details) encourages greater sparsity than the usual group lasso penalty based on ℓ2 norms.

The second response we considered in this setting was not as sparse in the features: the true 

signal was a linear combination of the first 4 feature groups. The results are shown in Figure 

4. In this case, the group lasso performed better than fwelnet when the hyperparameter α 
was fixed at 1, which is in line with our earlier intuition that fwelnet would perform better in 

sparser settings. It is worth noting that fwelnet with α = 1 performs appreciably better than 

the lasso when the SNR is higher. Selecting α via cross-validation improved the test MSE 
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performance of fwelnet, but not enough to outperform the group lasso. The improvement in 

test MSE also came at the expense of very high FPR.

4.3 Setting 3: Noise variables

In this setting, we have n = 100 observations and p = 100 features, with the true signal being 

a linear combination of just the first 10 features. The feature information matrix Z consists 

of 10 noise variables that have nothing to do with the response. Since fwelnet is adapting to 

these features, we expect it to perform worse than comparable methods.

We compare fwelnet against the lasso across a range of signal-to-noise ratios (SNR) in the 

response y. The results are depicted in Figure 5. As expected, fwelnet has higher test MSE 

than the lasso, but the decrease in performance is not drastic. Fwelnet attained similar FPR 

and TPR to the lasso.

5 Application: Early prediction of preeclampsia

Preeclampsia is a leading cause of maternal and neonatal morbidity and mortality, affecting 

5 to 10 percent of all pregnancies. The biological and phenotypical signals associated 

with late-onset preeclampsia strengthen during the course of pregnancy, often resulting in 

a clinical diagnosis after 20 weeks of gestation (Zeisler et al. 2016). An earlier test for 

prediction of late-onset preeclampsia will enable timely interventions for improvement of 

maternal and neonatal outcomes (Jabeen et al. 2011). In this example, we seek to leverage 

data collected in late pregnancy to guide the optimization of a predictive model for early 

diagnosis of late-onset preeclampsia.

We used a dataset of plasma proteins measured during various gestational ages of pregnancy 

(Erez et al. 2017). For this example, we considered time points ≤ 20 weeks “early” and 

time points > 20 weeks as “late”. We had measurements for between 2 to 6 time points for 

each of the 166 patients for a total of 666 time point observations. Protein measurements 

were log-transformed to reduce skew. We first split the patients equally into two buckets. 

For patients in the first bucket, we used only their late time points (83 patients with 219 

time points) to train an elastic net model with α = 0.5 to predict whether the patient would 

have preeclampsia. From this late time point model, we extracted model coefficients at the 

λ hyperparameter value which gave the highest 10-fold cross-validated (CV) area under 

the curve (AUC). For patients in the second bucket, we used only their early time points 

(83 patients with 116 time points) to train a fwelnet model with the absolute values of 

the late time point model coefficients as feature information. When performing CV, we 

made sure that observations from one patient all belonged to the same CV fold to avoid 

“contamination” of the held-out fold. One can also run the fwelnet model with additional 

sources of feature information for each of the proteins.

We compare the 10-fold CV AUC for fwelnet run with 1, 2 and 5 minimization iterations 

(i.e. Step 3 in Algorithm 1) against the lasso as a baseline. Figure 6 shows a plot of 10-fold 

CV AUC for these methods against the number of features with non-zero coefficients in the 

model. The lasso obtains a maximum CV AUC of 0.80, while fwelnet with 2 minimization 

iterations obtains the largest CV AUC of 0.86 among all methods.

Tay et al. Page 8

Stat Sin. Author manuscript; available in PMC 2023 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We note that the results were somewhat dependent on (i) how the patients were split into 

the early and late time point models, and (ii) how patients were split into CV folds when 

training each of these models. We found that if the late time point model had few non-zero 

coefficients, then the fwelnet model for the early time point data was very similar to that 

for the lasso. This matches our intuition: if there are few non-zero coefficients, then we are 

injecting very little additional information through the relative penalty factors in fwelnet, 

and so it will give a very similar model to elastic net. Nevertheless, we did not encounter 

cases where running fwelnet gave worse CV AUC than the lasso.

6 Connection to the group lasso

One common setting where “features of features” arise naturally is when the features come 

in non-overlapping groups. Assume that the features in X come in K non-overlapping 

groups. Let pk denote the number of features in group k, and let β(k) denote the subvector of 

β which belongs to group k. Assume also that y and the columns of X are centered so that 

β 0 = 0. In this setting, Yuan & Lin (2006) introduced the group lasso estimate as the solution 

to the optimization problem

minimize
β

1
2 y − Xβ

2

2

+ λ ∑
k = 1

K
β(k)

2 . (10)

The ℓ2 penalty on features at the group level ensures that features belonging to the same 

group are either all included in the model or all excluded from it. Often, the penalty given to 

group k is modified by a factor of pk to take into account the varying group sizes:

β gl, 2(λ) = argmin
β

1
2 y − Xβ

2

2

+ λ ∑
k = 1

K
pk β(k)

2 . (11)

Theorem 1 below establishes a connection between fwelnet and the group lasso. For the 

moment, consider the more general penalty factor wj(θ) = ∑ℓ = 1
p f zℓ

Tθ
pf zj

Tθ , where f is some 

function with range [0,+∞). (Fwelnet makes the choice f(x) = ex.)

Theorem 1. If the “features of features” matrix Z ∈ ℝp × K is given by zjk = 1{feature j ∈ 
group k}, then minimizing the fwelnet objective function (7) jointly over β0, β and θ reduces 
to
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argmin
β

1
2 y − Xβ

2

2

+ λ′ ∑
k = 1

K
pk α β(k)

1 + 1 − α
2 β(k)

2
2

=
argmin

β
1
2 y − Xβ

2

2
+ λ′∑k = 1

K pk β(k)
2  if α = 0,

argmin
β

1
2 y − Xβ

2

2
+ λ′∑k = 1

K pk β(k)
1  if α = 1,

for some λ′ ≥ 0.

We recognize the α = 0 case as minimizing the residual sum of squares (RSS) and the group 

lasso penalty, while the α = 1 case is minimizing the RSS and the ℓ1 version of the group 

lasso penalty. The proof of Theorem 1 can be found in Appendix B.

7 Using fwelnet for multi-task learning

We turn now to an application of fwelnet to multi-task learning. In some applications, we 

have a single model matrix X but are interested in multiple responses y1, …yB. If there is 

some common structure between the signals in the B responses, it can be advantageous to fit 

models for them simultaneously. This is especially the case if the signal-to-noise ratios in the 

responses are low.

We demonstrate how fwelnet can be used to learn better models in the setting with two 

responses, y1 and y2. The idea is to use the absolute value of coefficients of one response 

as the external information for the other response. That way, a feature which has larger 

influence on one response is likely to be given a correspondingly lower penalty weight when 

fitting the other response. Algorithm 2 presents one possible way of doing so.

We tested the effectiveness of Algorithm 2 (with step 2 run for 3 iterations) on simulated 

data. We generate 150 observations with 50 independent features. The signal in response 

1 is a linear combination of features 1 to 10, while the signal in response 2 is a linear 

combination of features 1 to 5 and 11 to 15. The coefficients are set such that those for the 

common features (i.e. features 1 to 5) have larger absolute value than those for the features 

specific to one response. The signal-to-noise ratios (SNRs) in response 1 and response 2 are 

0.5 and 1.5 respectively. (See Appendix C for more details of the simulation.)

We compared Algorithm 2 against: (i) the individual lasso (ind_lasso), where the lasso is 

run separately for y1 and y2; and (ii) the multi-response lasso (mt_lasso), where coefficients 

belonging to the same feature across the responses are given a joint ℓ2 penalty. Because of 

the ℓ2 penalty, a feature is either included or excluded in the model for all the responses at 

the same time.

The results are shown in Figure 7 for 50 simulation runs. Fwelnet outpeforms the other 

two methods in test MSE as evaluated on 10,000 test points. As expected, the lasso run 

individually for each response performs well in the response with higher SNR but poorly 
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in the response with lower SNR. The multi-response lasso is able to borrow strength from 

the higher SNR response to obtain good performance on the lower SNR response. However, 

because the models for both responses are forced to consist of the same set of features, 

performance suffers on the higher SNR response. Fwelnet has the ability to borrow strength 

across responses without being hampered by this restriction.

8 Discussion

In this paper, we have proposed organizing information about predictor variables, which we 

call “features of features”, as a matrix Z ∈ ℝp × K, and modifying model-fitting algorithms 

by assigning each feature a score, zj
Tθ, based on this auxiliary information. We have proposed 

one such method, the feature-weighted elastic net (“fwelnet”), which imposes a penalty 

modification factor wj(θ) = ∑ℓ = 1
p exp zℓ

Tθ
p exp zj

Tθ  for the elastic net algorithm.

There is much scope for future work:

• Choice of penalty modification factor. While the penalty modification factors 

pj(θ) we have proposed works well in practice and has several desirable 

properties, we make no claim about its optimality. We also do not have well-

developed theory for the current choice penalty factor.

• Extending the use of scores beyond the elastic net. The use of feature scores zj
Tθ

in modifying the weight given to each feature in the model-fitting process is a 

general idea that could apply to any supervised learning algorithm. More work 

needs to be done on how such scores can be incorporated, with particular focus 

on how θ can be learned through the algorithm.

• Whether θ should be treated as a parameter or a hyperparameter, and how to 
determine its value. In this paper, we introduced θ as a hyperparameter for (7). 

This formulation gives us a clear interpretation for θ: θk is a proxy for how 

important the kth source of feature information is for identifying which features 

are important. With this interpretation, we do not expect θ to change across λ 
values.

When θ is treated as a hyperparameter, we noted that the time needed for a 

grid search to find its optimal value grows exponentially with the number of 

sources of feature information. To avoid this computational burden, we suggested 

a descent algorithm for θ based on its gradient with respect to the fwelnet 

objective function (Step 3(a) and 3(b) in Algorithm 1). There are other methods 

for hyperparameter optimization such as random search (e.g. Bergstra & Bengio 

(2012)) or Bayesian optimization (e.g. Snoek et al. (2012)) that could be applied 

to this problem.
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One could consider θ as an argument of the fwelnet objective function to be 

minimized over jointly with β. One benefit of this approach is that it gives us 

a theoretical connection to the group lasso (Section 6). However, we will obtain 

different estimates of θ for each value of the hyperparameter λ, which may be 

undesirable for interpretation. The objective function is also not jointly convex in 

θ and β, meaning that different minimization algorithms could end up at different 

local minima. In our attempts to make this approach work (see Appendix A), 

it did not fare as well in prediction performance and was computationally 

expensive. It remains to be seen if there is a computationally efficient algorithm 

which treats θ as a parameter to be optimized for each λ value.

An R language package fwelnet which implements our method is available at https://

www.github.com/kjytay/fwelnet.
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Appendix

Appendix

A Alternative algorithm with θ as a parameter

Assume that y and the columns of X are centered so that β 0 = 0 and we can ignore the 

intercept term in the rest of the discussion. If we consider θ as an argument of the objective 

function, then we wish to solve

(β , θ ) = argmin
β, θ

Jλ, α(β, θ)

= argmin
β, θ

1
2 y − Xβ

2

2

+ λ ∑
j = 1

p
wj(θ) α βj + 1 − α

2 βj
2 .

J is not jointly convex β and θ, so reaching a global minimum is a difficult task. Instead, we 

content ourselves with reaching a local minimum. A reasonable approach for doing so is to 

alternate between optimizing β and θ: the steps are outlined in Algorithm 3.
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Unfortunately, Algorithm 3 is slow due to repeated solving of the elastic net problem in Step 

2(b)ii for each λi. The algorithm does not take advantage of the fact that once α and θ are 

fixed, the elastic net problem can be solved quickly for an entire path of λ values. We have 

also found that Algorithm 3 does not predict as well as Algorithm 1 in our simulations.

A Details on simulation study in Section 4

A.1 Setting 1: Noisy version of the true β

1. Set n = 100, p = 50, β ∈ ℝ50 with βj = 2 for j = 1, …, 5, βj = −1 for j = 6, …, 10, 

and βj = 0 otherwise.

2. Generate xij
i . i . d .N(0, 1) for i = 1, …, n and j = 1, …, p.

3. For each SNRy ∈ {0.5, 1, 2} and SNRZ ∈ {0.5, 2, 10}:

a. Compute σy
2 = ∑j = 1

p βj
2 /SNRy.

b. Generate yi = ∑j = 1
p xijβj + εi, where εi

i . i . d .N 0, σy
2  for i = 1, …, n.

c. Compute σZ
2 = Var( β )/SNRZ.

d. Generate zj = |βj| + ηj, where ηj
i . i . d .N 0, σZ

2 . Append a column of ones 

to get Z ∈ ℝp × 2.

A.2 Setting 2: Grouped data setting

1. Set n = 100, p = 150.

2. For j = 1, …, p and k = 1, …15, set zjk = 1 if 10(k − 1) < j ≤ 10k, zjk = 0 

otherwise.

3. Generate β ∈ ℝ150 with βj = 3 or βj = −3 with equal probability for j = 1, …, 10, 

βj = 0 otherwise.

4. Generate xij
i . i . d .N 0, 1  for i = 1, …, n and j = 1, …, p.

5. For each SNRy ∈ {0.5, 1, 2}:

a. Compute σy
2 = ∑j = 1

p βj
2 /SNRy.

b. Generate yi = ∑j = 1
p xijβj + εi, where εi

i . i . d .N 0, σy
2  for i = 1, …, n.

A.3 Setting 3: Noise variables

1. Set n = 100, p = 100, β ∈ ℝ100 with βj = 2 for j = 1, …, 10, and βj = 0 otherwise.

2. Generate xij
i . i . d .N 0, 1  for i = 1, …, n and j = 1, …, p.

3. For each SNRy ∈ {0.5, 1, 2}:

a. Compute σy
2 = ∑j = 1

p βj
2 /SNRy.

b. Generate yi = ∑j = 1
p xijβj + εi, where εi

i . i . d .N 0, σy
2  for i = 1, …, n.
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c. Generate zjk
i . i . d .N 0, 1  for j = 1, …, p and k = 1, …10. Append a 

column of ones to get Z ∈ ℝp × 11.

B Proof of Theorem 1

First note that if feature j belongs to group k, then zj
Tθ = θk, and its penalty factor is

wj(θ) = ∑ℓ = 1
p f zℓ

Tθ
pf zj

Tθ = ∑ℓ = 1
p f θℓ
pf θk

= ∑ℓ = 1
K pℓf θℓ

pf θk
,

where pℓ denotes the number of features in group ℓ. Letting vk = f θk

∑ℓ = 1
K pℓf θℓ

 for k = 1, …, K, 

minimizing the fwelnet objective function (7) over β and θ reduces to

minimize
β, θ

1
2 y − Xβ

2

2

+ λ
p ∑

k = 1

K 1
vk

α β(k)
1 + 1 − α

2 β(k)
2
2

.

For fixed β, we can explicitly determine the vk values which minimize the expression above. 

By the Cauchy-Schwarz inequality,

λ
p ∑

k = 1

K 1
vk

α β(k)
1 + 1 − α

2 β(k)
2

2
= λ

p ∑
k = 1

K 1
vk

α β(k)
1 + 1 − α

2 β(k)
2

2

∑
k = 1

K
pkvk ≥ λ

p ∑
k = 1

K
pk α β(k)

1
+ 1 − α

2 β(k)
2

2 2
.

(12)

Note that equality is attainable for (12): letting ak =
α β(k)

1 + 1 − α
2 β(k)

2
2

pk
, equality occurs 

when there is some c ∈ ℝ such that

c ⋅ 1
vk

α β(k)
1 + 1 − α

2 β(k)
2
2

= pkvk for all k,

vk = cak for all k.

Since ∑k = 1
K pkvk = 1, we have c = 1

∑k = 1
K pkak

, giving vk = ak

∑k = 1
K pkak

 for all k. A solution for 

this is f(θk) = ak for all k, which is feasible for f having range [0, ∞). (Note that if f only 

has range (0, ∞), the connection still holds if limx→−∞ f(x) = 0 or limx→+∞ f(x) = 0: the 

solution will just have θ = +∞ or θ = −∞.)

Thus, the fwelnet solution is

argmin
β

1
2 y − Xβ

2

2

+ λ
p ∑

k = 1

K
pk α β(k)

1 + 1 − α
2 β(k)

2

2
2

. (13)
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Writing in constrained form, (13) becomes minimizing 1
2 y − Xβ

2

2
 subject to

∑
k = 1

K
pk α β(k)

1 + 1 − α
2 β(k)

2
2

2
≤ C for some constant C,

∑
k = 1

K
pk α β(k)

1 + 1 − α
2 β(k)

2
2

≤ C .

Converting back to Lagrange form again, there is some λ′ ≥ 0 such that the fwelnet solution 

is

argmin
β

1
2 y − Xβ

2

2

+ λ′ ∑
k = 1

K
pk α β(k)

1 + 1 − α
2 β(k)

2
2

.

Setting α = 0 and α = 1 in the expression above gives the desired result.

C Details on simulation study in Section 7

1. Set n = 150, p = 50.

2. Generate β1 ∈ ℝ50 with

β1, j =
5 or  − 5 with equal probability   for j = 1, …, 5,
2 or  − 2 with equal probability   for j = 6, …, 10,
0 otherwise.

3. Generate β2 ∈ ℝ50 with

β2, j =
5 or  − 5 with equal probability   for j = 1, …, 5,
2 or  − 2 with equal probability   for j = 11, …, 15
0 otherwise.

,

4. Generate Xij
i . i . d .N 0, 1  for i = 1, …, n and j = 1, …, p.

5. Generate response 1, y1 ∈ ℝ150, in the following way:

a. Compute σ1
2 = ∑j = 1

p β1, j
2 /0.5.

b. Generate y1, i = ∑j = 1
p xijβ1, j + ε1, i where ε1, i

i . i . d .N 0, σ1
2  for i = 1, …, n.

6. Generate response 2, y2 ∈ ℝ150, in the following way:

a. Compute σ2
2 = ∑j = 1

p β2, j
2 /1.5.

b. Generate y2, i = ∑j = 1
p xijβ2, j + ε2, i, where ε2, i

i . i . dN 0, σ2
2  for i = 1, …, n.
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Figure 1: 
Penalty factors which fwelnet assigns to each feature. n = 200, p = 100 with features in 

groups of size 10. The response is a noisy linear combination of the first two groups, with 

signal in the first group being stronger than that in the second. As expected, fwelnet’s 

penalty weights for the true features (left of blue dotted line) are lower than that for null 

features. In elastic net, all features would be assigned a penalty factor of 1 (horizontal red 

line).
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Figure 2: 
“Feature of features”: noisy version of the true |β|. n = 100, p = 50. The response is a linear 

combination of the first 10 features. As we go from left to right, the signal-to-noise ratio 

(SNR) for y increases; as we go from top to bottom, the SNR in Z increases. The panel 

on the left shows the raw test mean squared error (MSE) figures with the red dotted line 

indicating the median null test MSE. In the figure on the right, each point depicts the true 

positive rate (TPR) and false positive rate (FPR) of the fitted model for one of 30 simulation 

runs. Fwelnet outperforms the lasso in test MSE, with the improvement getting larger as the 

SNR in Z increases. Fwelnet appears to have similar TPR to the lasso but has significantly 

smaller FPR.
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Figure 3: 
“Feature of features”: grouping data. n = 100, p = 150. The features come in groups of 

10, with the response being a linear combination of the features in the first group. As we 

go from left to right, the signal-to-noise ratio (SNR) for y increases. The figure on the 

left shows the test mean squared error (MSE) results with the red dotted line indicating 

the median null test MSE. In the figure on the right, each point depicts the true positive 

rate (TPR) and false positive rate (FPR) of the fitted model for one of 30 simulation runs. 

Fwelnet outperforms the group lasso in terms of test MSE at higher SNR levels. Fwelnet has 

higher TPR than the lasso, and lower FPR than the group lasso.
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Figure 4: 
“Feature of features”: grouping data. n = 100, p = 150. The features come in groups of 10, 

with the response being a linear combination of the first 4 groups. As we go from left to 

right, the signal-to-noise ratio (SNR) for y increases. The figure on the left shows the test 

mean squared error (MSE) results with the red dotted line indicating the median null test 

MSE. Fwelnet sets α = 1 while fwelnet CVa selects α via cross-validation. In the figure on 

the right, each point depicts the true positive rate (TPR) and false positive rate (FPR) of the 

fitted model for one of 30 simulation runs. Group lasso performs best here. Cross-validation 

for α improves test MSE performance but at the expense of having very high FPR.
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Figure 5: 
“Feature of features”: 10 noise variables. n = 100, p = 100. The response is a linear 

combination of the first 10 features. As we go from left to right, the signal-to-noise ratio 

(SNR) for y increases. The figure on the left shows the test mean squared error (MSE) 

results, with the red dotted line indicating the median null test MSE. In the figure on the 

right, each point depicts the true positive rate (TPR) and false positive rate (FPR) of the 

fitted model for one of 30 simulation runs. Fwelnet only performs slightly worse than the 

lasso in test MSE, and has similar TPR and FPR as the lasso.
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Figure 6: 
Early prediction of pre-eclampsia: Plot of 10-fold cross-validated (CV) area under the curve 

(AUC). 10-fold CV AUC is plotted against the number of non-zero coefficients for each 

model trained on just early time point data. The baseline method is the lasso; we run fwelnet 

for 1, 2 and 5 minimization iterations. For each method/algorithm, the model with highest 

CV AUC is marked by a dot. To reduce clutter in the figure, the ±1 standard error bars 

are drawn for just these models. Fwelnet with 2 minimization iterations has the largest CV 

AUC.
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Figure 7: 
Application of fwelnet to multi-task learning. n = 150, p = 50. Response 1 is a linear 

combination of features 1 to 10, while response 2 is a linear combination of features 1 to 

5 and 11 to 15. The signal-to-noise ratios (SNR) for responses 1 and 2 are 0.5 and 1.5 

respectively. The figure on the left shows the raw test mean squared error (MSE) figures 

with the red dotted line indicating the median null test MSE. The figure on the right 

shows the true positive rate (TPR) and false positive rate (FPR) of the fitted model (each 

point being one of 50 simulation runs). Fwelnet outperforms the individual lasso and the 

multi-response lasso in test MSE for both responses. Fwelnet also has better TPR and FPR 

than the other methods.
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(12)Note that equality is attainable for (12): letting , equality occurs when there is some  such that


Since , we have , giving  for all k. A solution for this is f(θk) = ak for all k, which is feasible for f having range [0, ∞). (Note that if f only has range (0, ∞), the connection still holds if limx→−∞
f(x) = 0 or limx→+∞
f(x) = 0: the solution will just have θ = +∞ or θ = −∞.)Thus, the fwelnet solution is


(13)Writing in constrained form, (13) becomes minimizing  subject to





Converting back to Lagrange form again, there is some λ′ ≥ 0 such that the fwelnet solution is



Setting α = 0 and α = 1 in the expression above gives the desired result.C Details on simulation study in Section 71.Set n = 150, p = 50.2.Generate  with


3.Generate  with


4.Generate  for i = 1, …, n and j = 1, …, p.5.Generate response 1, , in the following way:
a.Compute .b.Generate  where  for i = 1, …, n.6.Generate response 2, , in the following way:
a.Compute .b.Generate , where  for i = 1, …, n.
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