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Abstract
Background: With functionally heterogeneous cells, tumors comprise a complex ecosystem to promote tumor adaptability and
evolution under strong selective pressure from the given microenvironment. Diversifying tumor cells or intra-tumor heterogeneity
is essential for tumor growth, invasion, and immune evasion. However, no reliable method to classify tumor cell subtypes is yet
available. In this study, we introduced the single-cell sequencing combinedwith copy number characteristics to identify the types of
tumor cells in microsatellite stable (MSS) colorectal cancer (CRC).
Methods: To characterize the somatic copy number alteration (SCNA) of MSS CRC in a single cell profile, we analyzed 26 tissue
samples from 19 Korean patients (GSE132465, the SamsungMedical Center [SMC] dataset) and then verified our findings with 15
tissue samples from five Belgian patients (GSE144735, the Katholieke Universiteit Leuven 3 [KUL3] dataset). The Cancer Genome
Atlas (TCGA) cohort, GSE39582 cohort, and National Cancer Center (NCC) cohort (24 MSS CRC patients were enrolled in this
study between March 2017 and October 2017) were used to validate the clinical features of prognostic signatures.
Results: We employed single cell RNA-sequencing data to identify three types of tumor cells in MSS CRC by their SCNA
characteristics. Among these three types of tumor cells, C1 and C3 had a higher SCNA burden; C1 had significant chromosome 13
and 20 amplification, whereas C3 was the polar opposite of C1, which exhibited deletion in chromosome 13 and 20. The three
types of tumor cells exhibited various functions in the tumormicroenvironment and harbored different mutations. C1 and C2were
linked to the immune response and hypoxia, respectively, while C3 was critical for cell adhesion activity and tumor angiogenesis.
Additionally, one gene (OLFM4) was identified as epithelium-specific biomarker of better prognosis of CRC (TCGA cohort:
P= 0.0110; GSE39582 cohort: P= 0.0098; NCC cohort: P= 0.0360).
Conclusions: On the basis of copy number characteristics, we illustrated tumor heterogeneity in MSS CRC and identified three
types of tumor cells with distinct roles in tumor microenvironment. By understanding heterogeneity in the intricate tumor
microenvironment, we gained an insight into the mechanisms of tumor evolution, which may support the development of
therapeutic strategies.
Keywords: Somatic copy number alteration; Microsatellite stable; Colorectal cancer; Single cell RNA-sequencing; Intra-tumor
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Introduction

Tumors are complex assemblages of diversiform tumor
cells with remarkable variability in their genome and
phenotype.[1] Genomic instability is a prominent source of
genetic intra-tumor heterogeneity within tumors, generat-
ing a heterogeneous cell population that can be subjected
to Darwinian selection to foster tumor adaptability and
evolution in a given microenvironmental or therapeutic
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context.[2] Therefore, intra-tumor heterogeneity is crucial
for tumor cell proliferation, invasion, immune surveillance
evasion, and therapeutic resistance.[3,4]

Chromosomal instability exacerbates intercellular genetic
heterogeneity and generates somatic copy number
alterations (SCNAs) in >90% of solid tumors and
many hematological cancers.[5] SCNAs affect tumor
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development and the composition of the tumor immune
microenvironment.[6] SCNAs are also linked to the
immune checkpoint therapy response or resistance by
influencing the interferon-g pathway and/or amplifying
and deleting common tumor oncogenes and suppres-
sors.[7] The circumstances by which SCNAs drive
tumorigenesis are determined by the tumor stage, cell
type, genetic makeup, tumor microenvironment, and
immune system interactions.[8] In colorectal cancer
(CRC), SCNAs are pertinent to adenoma–carcinoma
progression (gains of 8q, 13q, and 20q, and losses of
8p, 15q, 17p, and 18q), clinical histological features, and
clinical outcome.[9] This kind of chromosomal instability
pathway is strongly associated with microsatellite stable
(MSS) CRC, which causes 70% to 90% of CRC.[10]

CRC is the second most frequently diagnosed cancer in
female and the third most prevalent cancer in male.[11]

Although immunotherapy has revolutionized the treat-
ment for various cancers, it has been less effective for CRC,
particularly MSS CRC.[12] Consequently, there is a
pressing need to investigate intra-tumor heterogeneity of
MSS CRC and further stratify MSS CRC patients into
subgroups with distinct genetic and clinical characteristics.

In the past few decades, bulk genomic and transcriptomic
analyses have provided valuable insights into tumor
research. However, the averaging of signals from large
numbers of cells rendered by these methods often obscures
specific subpopulations and/or cellular states.[13] Recently,
single cell RNA-sequencing (scRNA-seq), which is a
powerful sequencing technique based on single cells, has
been used to characterize tumor heterogeneity and decipher
the interactions between cancer cells and their microenvi-
ronmental components.[14,15] Dissecting the complexity of
solid tumors is essential to better understand cancer and
devise efficient early detection and therapeutic techniques.

This study aimed to investigate intra-tumor heterogeneity
in MSS CRC by their SCNA characteristics. By analyzing
both scRNA-seq data and bulk RNA sequencing data, we
identified distinct SCNA patterns of tumor cells and
further stratified MSS CRC patients into different
subgroups with SCNA diversity.
Methods

Ethical approval

This study was approved by the Institutional Ethics
Review Board of the Cancer Hospital, Chinese Academy
of Medical Sciences and Peking Union Medical College
(No. NCC2016JZ-06). All patients provided informed
consent.
Public data availability and preprocessing

Processed scRNA-seq count and transcripts per million
(TPM) data of CRC samples were obtained from the
National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus database (http://www.ncbi.
nlm.nih.gov/geo/) under accession codes GSE132465 (the
Samsung Medical Center [SMC] dataset contains 63,689
708
cells from 23 primary CRC tissues and 10matched normal
mucosa tissues of 23 Korean CRC patients) and
GSE144735 (the Katholieke Universiteit Leuven 3
[KUL3] dataset contains 27,414 cells from the core and
border area of tumor regions as well as matched normal
mucosa tissue of the six Belgian CRC patients).[16] These
datasets had been filtered by the following criteria: unique
molecular identifier counts >1000; 200< genes< 6000;
mitochondrial gene expression< 20% in unique molecu-
lar identifier counts; and the filter process took quality
control with multiple canonical correlation analysis
(CCA) and reference component analysis (RCA).[16]

Considering that our MSS CRC analysis was substantial,
we excluded microsatellite instability (MSI)-high patients
and eventually included 19 patients from the SMC dataset
and five patients from the KUL3 dataset [Supplementary
Tables 1, http://links.lww.com/CM9/B309 and 2, http://
links.lww.com/CM9/B310]. The Seurat V4 (version 4.0.3,
https://satijalab.org/seurat/index.html)[17] of R package
(version 4.1.3, https://cran.r-project.org/) was used to
analyze the processed scRNA-seq data. For visualization,
we reduced the dimensionality of each dataset using
uniform manifold approximation and projection (UMAP)
with the Seurat function RunUMAP. Cluster-specific
differentially expressed genes (DEGs) were identified
using the FindAllMarkers function of Seurat.

The TCGA biolinks (version 2.18.0, http://www.biocon
ductor.org/packages/release/bioc/html/TCGAbiolinks.
html)Rpackage[18-20]wasused todownloadbulkRNA-seq
gene expression count and fragments per kilobase million
data, microsatellite status data, copy number data, and
mutation data of The Cancer Genome Atlas (TCGA) colon
adenocarcinoma (TCGA-COAD) and rectum adenocarci-
noma (TCGA-READ) cohorts. University of Cingifornia
Sisha Cruz (UCSC) Xena (http://xena.ucsc.edu/) was used
to download TCGA clinical characteristics data.[21] We
excluded samples with incomplete copy number data and
ultimately included 396MSS CRC tumor samples from the
TCGAcohort. TheMaftools (version 2.6.05)R package[22]

was applied to analyze and visualize mutation data.
Moreover, the GEOquery (version 2.62.2) R package[23]

was implemented to download the GSE39582 dataset with
444 MSS colon cancer samples.
Clinical sample collection and RNA sequencing

Colorectal tumor tissue samples were collected from 24
MSS CRC patients who were not treated with chemother-
apy or radiotherapy prior to therapeutic resection
[Supplementary Table 3, http://links.lww.com/CM9/
B311]. All patients had undergone surgical treatment at
the National Cancer Center (NCC) between March 2017
andOctober 2017. Twenty-two patients were followed up
until death or until April 1, 2022 and the loss rate of
follow-up was 8%. As all of the 24MSS CRC patients had
RNA sequencing data and clinical stage data, we used
whole patient data for the following analysis. Total RNA
was extracted from fresh frozen tissues using TRIzol
(Invitrogen, Carlsbad, CA, USA) and then its integrity and
concentration were measured by an Agilent 2100
Bioanalyzer (Agilent, Palo Alto, CA, USA) and ND-
1000 (NanoDrop, Wilmington, DE, USA), respectively.
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Only samples with RNA integrity number> 7.0 were used
for transcriptome sequencing with the Illumina Nova-
Seq6000 platform (Illumina, San Diego, CA, USA).
Subsequently, 150 bp paired-end reads were aligned to
the human reference genome (GRCh38) by Salmon
(https://combine-lab.github.io/salmon/). TPM was used
to normalize transcript abundances.
Copy number alteration prediction of scRNA-seq data and
subgroup division of tumor cells

To predict SCNA in scRNA-seq data, we used CopyKAT
(https://github.com/navinlabcode/copykat) that is designed
for high-throughput scRNA-seq platform data and is
capable of properly estimating genomic copy number
profiles of single cells and characterization of the clonal
substructure.[24] A total of 42,141 cells in the SMC dataset
and 16,835 cells in the KUL3 dataset were retained after
quality filtering in CopyKAT [Supplementary Table 4,
http://links.lww.com/CM9/B312 and 5, http://links.lww.
com/CM9/B313]. We excluded SMC05 from the subse-
quent analysis because the sample had< 10 filtered tumor
cells. We used CopyKAT-filtered tumor cells to explore
SCNA features, whereas total cells were used for tumor
immune microenvironment analysis [Supplementary Ta-
ble 6, http://links.lww.com/CM9/B314].

To ensure reliability of the copy number alteration
analysis, we removed the sex chromosomes and per-
formed SCNA analysis of tumor cells using the other 22
pairs of chromosomes. On the basis of copy number
discrepancies, we used hierarchical clustering with Ward
linkage and Euclidean distance to divide the tumor cells
into subclusters. Considering the vital roles of chromo-
somes 8, 13, 15, 17, 18, and 20 in the adenoma–
carcinoma progression, we took into account the
pathological mechanism ofMSS CRC and the hierarchical
clustering results in our data, and then divided the
hierarchical clustering tree into three subgroups: C1–C3.

The copy number variation (CNV) burden was estimated
by summing the copy number absolute value. Cells with a
high CNV burden had numerous copy number changes in
a chromosome. Moreover, the CNV score was calculated
by summation of the copy number values provided by
the CopyKAT result. Consequently, a high CNV score
indicated more chromosomal amplification, whereas a
low CNV score indicated more chromosomal loss.

Enrichment analysis of DEGs

We filtered DEGs with Bonferroni-adjusted P-value of
<0.05 and an absolute log2 fold change of>0.7. To further
illustrate the functionofDEGs,weapplied theclusterProfiler
(version 3.18.1, http://mirrors.nju.edu.cn/bioconductor/
3.15/bioc/html/clusterProfiler.html) R package[25] for Gene
Ontology (GO) analysis. Benjamini–Hochberg-adjusted
P values of <0.05 were considered significantly enriched.
Gene set enrichment analysis

We used two types of gene sets for gene set enrichment
analysis: the hallmark gene sets from the Molecular
709
Signature Database[26,27] and the ferroptosis-related gene
set from the FerrDb database.[28] We chose genes with
confidence levels of “validated” or “screened” from the
FerrDb database which is more reliable, and then
eliminated duplicate genes from gene sets. We finally
obtained a 34-gene ferroptosis marker gene set and a 75-
gene ferroptosis driver gene set.

We used log_TPM_matrix data provided by GSE132465
and GSE144735 with the gene set variation analysis
(GSVA) (version 1.38.2, http://www.bioconductor.org/
packages/release/bioc/html/GSVA.html) R package[29] to
perform the gene set enrichment analysis. Differences in
pathway activity scores among the three SCNA patterns
were calculated using the limma (version 3.46.0) R
package. A heatmap was employed to display the results
from limma with the P values< 0.05.

Gene regulatory network analysis

The single cell regulatory network inference and clustering
(SCENIC) (version 1.2.4, https://scenic.aertslab.org/) R
package[30] was applied to identify gene regulatory
networks specificity in SCNA clusters. Species-specific
databases for RcisTarget (motif rankings) were down-
loaded for human datasets: hg19-500bp-upstream-7spe-
cies.mc9nr.feather and hg19-tss-centered-10kb-7species.
mc9nr.featherare. We used both the regulon specificity
score and regulon activity to calculate cluster-specific
regulons. T-Distributed Stochastic Neighbor Embedding
was used for visualization.
Cellular communications analysis

For cell–cell communication analysis, we used the CellChat
(version 1.0.0, https://github.com/sqjin/CellChat) R pack-
age[31] to compare the differential cell interaction and
signaling between SC1 and SC2 as well as SC1 and SC3
(SC1, SC2 and SC3 indicated that the dominate cells
cluster was C1, C2, C3, respectively). Considering the
lower number of cells and complex combinations with
other cells, we deletedmucosal-associated invariant T cells,
gdT cells, and neutrophils. When identifying upregulated
signaling ligand–receptor pairs, we set ligand.logFC= 1 in
the comparison between SC2 and SC1, and ligand.
logFC= 0.5 in the comparison between SC3 and SC1.

Copy number analysis of the TCGA dataset

Masked copy number segment data of TCGA were
downloaded by TCGAbiolinks, and the marker file was
obtained from https://gdc.cancer.gov/about-data/gdc-data-
processing/gdc-reference-files. Then, we applied GIS-
TIC2.0[32] (ftp://ftp.broadinstitute.org/pub/GISTIC2.0/)
to analyze gene- and arm-level copy number alterations.
The following analysis was conducted using arm-level copy
number alterations with “0” indicating a normal copy
number, whereas positive and negative values indicated
amplification and deletion, respectively. We first stratified
MSSCRCsamples intoa loworhighSCNAburdenwith the
criterionofall arm-level copynumberabsolute values<1as
the low SCNA burden. SC2was assigned to samples with a
low SCNA burden. For high SCNA burden samples,
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we further stratified them into SC1 and SC3 by the
chromosome 13 copy number status. Just like the grouping
of the scRNA-seq data, we grouped chromosome 13
amplification samples into SC1 and the others into SC3.
For chromosomes, we employed the following copy
number criteria: amplification (copy number > 0.2),
diploid (copynumber–0.2–0.2), anddeletion (copynumber
< –0.2).
Chemotherapeutic or targeted drug response prediction

On the basis of the Cancer Therapeutics Response Portal
(CTRP), we employed the R package OncoPredict
(version 0.2, https://mirrors.sjtug.sjtu.edu.cn/cran/web/
packages/oncoPredict/index.html)[33] to predict chemo-
therapeutic or targeted drug responses for patients in the
TCGA dataset. The training dataset for OncoPredict was
downloaded from https://osf.io/c6tfx/. For the training
data, we used the CTRP2_Expr (TPM, log2[x+1] Trans-
formed) data and CTRP2_Res data. The test TCGA data
were also transformed into log2 (TPM+1) after removing
20% of the low varying genes. The training and test data
matrices were homogenized with ComBat. Ridge regres-
sion was used to calculate the estimated half maximal
inhibitory concentration (IC50) of each patient for a
specific chemotherapeutic or targeted medication.

Identification of the prognostic signature of chromosomes
13 and 20

We eventually included 377 MSS CRC tumor samples
from the TCGA cohort after excluding samples with
overall survival (OS) time= 0.We applied log2 (TPM+1)-
normalized values for gene expression evaluation in
RNA-sequencing data. With the criteria of adjusted P
values< 0.05 and log2 fold change> 1, we identified 156
upregulated genes in epithelial cells using the SMC
scRNA-seq dataset. Then, we chose 15 of the upregulated
genes on chromosomes 13 and 20, and divided patients
into two groups with the best gene expression cutoff
value of OS. On the basis of log-rank testing, Kaplan–
Meier curves were used to evaluate overall survival
differences between different gene expression level
groups. And then, we validated the prognosis function
of these genes in two independent external datasets (one
from the NCC cohort with 24 MSS CRC patients and the
other from the GSE39582 cohort with 444 MSS colon
cancer patients).

Statistical analysis

All statistical analyses were conducted using R (version
4.1.3). We used the Wilcoxon rank-sum test to evaluate
significant differences between two groups and the
Kruskal–Wallis H test for three groups. A P-value of
<0.05 was considered statistically significant.
Results

Single cell SCNA landscape in MSS CRC

To characterize the copy number alteration of MSS CRC
in a single cell profile, we analyzed 26 tissue samples from
710
19 Korean patients (GSE132465, the SMC dataset). We
next verified the results with 15 tissue samples from five
Belgian patients (GSE144735, the KUL3 dataset). After
excluding the patients with high MSI, 51,482 cells in the
SMC dataset were classified into six major cell types
(epithelial, stromal, myeloid, mast, T/natural killer [NK],
and B cells) by specific gene markers [Supplementary
Figures 1A–1C, http://links.lww.com/CM9/B308]. Simi-
larly, we divided clusters into six major cell types for
21,351 cells in the KUL3 dataset [Supplementary
Figures 2A–2C, http://links.lww.com/CM9/B308]. Nota-
bly, we found that myeloid cells were specifically enriched
in tumor tissues, whereas B cells were predominantly
present in normal tissue, indicating reprogramming of the
tumor-dominated immune microenvironment [Supple-
mentary Figures 1D and 2D, http://links.lww.com/CM9/
B308].

Next, we used CopyKAT to identify copy number
alterations. Cells were annotated into diploid and
aneuploid. The aneuploid cells were primarily tumor
epithelial cells [Supplementary Figures 1E and 2E, http://
links.lww.com/CM9/B308]. Cells were clustered by cell
types in diploid, but by samples in aneuploid, which
suggested individual heterogeneity of the aneuploid cells
in the SCNA profile [Supplementary Figures 1F and 2F,
http://links.lww.com/CM9/B308]. Except for epithelial
cells in tumors, SCNAs were also prevalent in other cell
types, especially stromal cells, which exhibited remarkably
higher SCNA levels than immune cells [Supplementary
Figures 1F and 2F, http://links.lww.com/CM9/B308].
Identification of three distinct SCNA patterns in MSS CRC

Unlike in normal tissue, we observed patient-specific
clustering of tumor cells in tumors [Figures 1A, 1B and
Supplementary Figures 3A, 3B, http://links.lww.com/
CM9/B308]. To further illustrate the variety of tumor
cells, we used SCNA features to classify tumor cells and
identified three distinct SCNA patterns (C1–C3) in MSS
CRC. C1 had considerable amplification of chromosomes
13 and 20 among these three patterns, whereas C3
exhibited deletion in above chromosomes [Figure 1C]
(CNV burden: P< 2.2e–16 [Figure 1D], Chromosome 13
CNV score: P< 2.2e–16 [Figure 1E], Chromosome 20
CNV score: P< 2.2e–16 [Figure 1F]). C2 included mostly
diploid cells and had the lowest SCNA burden compared
with C1 and C3. Additionally, diploid and aneuploid cells
were separated from each other in the UMAP plot, which
was almost the same as the three types of tumor cells
[Figures 1G, 1H and Supplementary Figures 3C, 3H,
http://links.lww.com/CM9/B308]. The proportion of the
three tumor cell clusters in each sample was then used to
classify patients into SC1, SC2, or SC3, in which SC1
indicated that the C1 cluster was dominate in the patient
[Figure 1I]. For the tumor cells were <10 in SMC05, we
could not infer the real fraction of tumor cells in this
sample. Therefore, we eliminated SMC05 from subse-
quent analysis. Finally, SC1 included 12 samples (SMC01,
SMC02, SMC04, SMC07, SMC08, SMC09, SMC11,
SMC14, SMC18, SMC21, SMC23, and SMC25). SC2
had five samples (SMC15, SMC17, SMC19, SMC20, and
SMC22) and SC3 included only SMC16.
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Figure 1: Epithelial cells of normal and tumor tissues in the SMC dataset. (A) UMAP plot depicts the spatial distribution of epithelial cells in normal tissue for various samples. (B) UMAP plot
depicts the spatial distribution of epithelial cells in tumor tissue for different samples. (C) SCNA heatmap of tumor cells in the SMC dataset. (D) Total CNV burden in three tumor cell clusters.
(E) CNV scores of chromosome 13 in three tumor cell clusters. (F) CNV scores of chromosome 20 in three tumor cell clusters. (G) UMAP plot shows the spatial distribution of aneuploid and
diploid cells in tumor tissue. (H) UMAP plot shows the spatial distribution of clusters C1–C3. (I) Comparison of the cell proportions of the three tumor cell clusters in each sample (left);
comparison of the cell numbers of the three tumor cell clusters in each sample (right). CNV: Copy number variation; “N” indicates normal tissue; SCNA: Somatic copy number alteration;
SMC: The Samsung Medical Center; “T” indicates tumor tissue; UMAP: Uniform manifold approximation and projection.
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We used the same strategy to identify these three tumor
cell types in the KUL3 dataset by SCNA features and
found similar chromosome copy number alterations
[Supplementary Figures 3D–G and 3I, http://links.lww.
com/CM9/B308]. Furthermore, cells from the tumor core
had a similar SCNA model as cells from the tumor border
in the same patient [Supplementary Figure 3D, http://
links.lww.com/CM9/B308]. Thus, we chose samples with
more detectable tumor cells in core or border tumor
samples to cluster those patients into SC1, SC2, or SC3.
Finally, SC1 included KUL28, KUL30, and KUL31, and
SC2 and SC3 included KUL19 and KUL21, respectively.
Overall, we identified three types of tumor cells in MSS
CRC by their SCNA characteristics.

Biological features of tumor cells with diverse SCNA
patterns

To explore the biological features of C1–C3, we
performed differentially expressed gene analysis of the
three SCNA patterns. Gene Ontology enrichment analysis
711
revealed that upregulated genes in C1 were enriched in
immune-related pathways, especially antigen processing
and presentation pathways [Supplementary Figure 4A,
http://links.lww.com/CM9/B308]. Compared with the
other clusters, C2 expressed high levels of tissue
homeostasis-related genes, while cell adhesion activity
genes were enriched in C3 [Supplementary Figures 4B and
4C, http://links.lww.com/CM9/B308].

Pathway analysis by GSVA with hallmarker gene sets
revealed that apoptosis, DNA repair, interferon-g re-
sponse, interleukin 2-signal transducer and activator of
transcription 5 (IL2-STAT5) signaling, interleukin 6-
Janus kinase-signal transducer and activator of transcrip-
tion 3 (IL6-JAK-STAT3) signaling and Wntb-catenin
signaling pathways were enriched in C1, while hypoxia
and epithelial–mesenchymal transition were upregulated
in C2 [Figure 2A]. Furthermore, angiogenesis and the
apical junction pathway were enriched in C3. In addition
to the apoptosis pathway, another form of cell death
pathway was enriched in C1, namely the ferroptosis
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Figure 2: GSVA and SCENIC analysis of three SCNA patterns in the SMC dataset. (A) Heatmap shows the different hallmark gene sets and pathway expression of the three SCNA clusters
obtained by GSVA and is colored based on GSVA scores. (B) Heatmap shows different ferroptosis gene set expression of the three SCNA clusters obtained by GSVA and is colored based on
GSVA scores. (C) Different regulon specificity scores of the three SCNA clusters in SCENIC (left), and different regulon activities of the three SCNA clusters in SCENIC (right). (D) tSNE plot of
the spatial distribution of the three SCNA clusters. (E) tSNE plots of the expression levels of three distinctly different regulons (left) and AUC scores (right, the redder color represents the
higher activity of the regulon). (F) Gene expression levels of CCL20 in the three SCNA clusters. AKT: Protein kinase B; AUC: Area under curve; DNA: Deoxyribonucleic acid; GSVA: Gene set
variation analysis; IL-2: Interleukin 2; IL-6: Interleukin 6; JAK: Janus-activated kinase; KRAS: Kirsten rat sarcoma viral oncogene; MTOR: Mammalian target of rapamycin; MYC:
Myelocytomatosis viral oncogene; NF-kB: Nuclear factor kappa-B; PI3K: Phosphoinositide 3-kinase; SCNA: Somatic copy number alteration; SCENIC: The single cell regulatory network
inference and clustering; SMC: The Samsung Medical Center; STAT: Signal transducer and activator of transcription; tSNE: T-distributed stochastic neighbor embedding; TGF:
Transforming growth factor; TNFA: Tumor necrosis factor a.
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pathway [Figure 2B]. In the KUL3 dataset, we found
similar pathway enrichment, suggesting the active immune
environment and ferroptosis reaction, which may restrain
tumorigenesis in C1, and the upregulated angiogenesis
pathway may prompt the formation of a tumor angiogen-
esis environment in C3 [Supplementary Figures 5A and
5B, http://links.lww.com/CM9/B308]. To decipher the
gene regulatory network of the three clusters, we
employed SCENIC. Considering both cell type-specific
and average regulon activities, we found three specific
regulons (CCAAT/enhancer binding protein beta
[CEBPB], sex-determining region Y-box 9 [SOX9] and
GTF2I) among the three clusters [Figure 2C]. Compared
with the other two clusters, the CEBPB motif was highly
active in the C1 cluster [Figures 2D and 2E]. We also
found high expression ofCCL20 in C1 compared with the
other clusters [Figure 2F and Supplementary Figure 5C,
http://links.lww.com/CM9/B308]. The specific regulons in
C2 and C3 were SOX9 and GTF2I motifs, separately.
Diverse SCNA patterns showed disparate biological
features and formed different gene regulatory networks.
SCNA-specific cellular interaction network

To determine cell–cell communication differences in
various SCNA patterns, we further classified cell clusters
in accordance with specific gene markers [Supplementary
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Table 6, http://links.lww.com/CM9/B314] and performed
CellChat analysis to compare SC2 with SC1 [Supplemen-
tary Figures 5D–5F, http://links.lww.com/CM9/B308 and
Supplementary Table 7, http://links.lww.com/CM9/B315]
and SC3 with SC1 [Supplementary Figure 6, http://links.
lww.com/CM9/B308 and Supplementary Table 8, http://
links.lww.com/CM9/B316]. When we compared SC2
with SC1, we found stronger interaction strengths of
cells in SC2 than in SC1 [Supplementary Figure 5D, http://
links.lww.com/CM9/B308]. Anti-inflammatory macro-
phages, cancer-associated fibroblasts (CAFs), and endo-
thelial cells had significantly enhanced communication
with other cells in SC2 [Supplementary Figure 5E, http://
links.lww.com/CM9/B308]. Considering the vital role of
macrophages in the tumor immunemilieu and the enhanced
cell communication of macrophages in SC2, we further
exploredthemacrophage signalingdifferencesbetweenSC2
and SC1. We noticed stronger upregulated signaling of
secreted phosphoprotein 1 (SPP1)-related pathways in SC2
than inSC1, especiallySPP1-CD44,which ispivotal to form
an immunosuppressive microenvironment [Supplementary
Figure 5F, http://links.lww.com/CM9/B308].

Next, we compared cell communication in SC3 and SC1,
and found that SC3 had less cell interaction strength than
SC1, but stronger cell interaction strength in CAFs and
endothelial cells with other cells [Figure 3A]. When
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Figure 3: Cell-cell communication differences between SC3 and SC1. (A) Circle plot shows the differential interaction strengths between SC3 and SC1. (B) Comparison of the overall
signaling pathways between SC3 and SC1. (C) Dot plot shows the upregulated signaling of CAFs in SC3 compared with SC1. CAFs: Cancer-associated fibroblasts; DC: Dendritic cell; Ig:
Immunoglobulin; NK: Natural killer cell; SC1: The dominate cells cluster was C1; SC3: The dominate cells cluster was C3; TEX: Exhausted T cell; Th17: T helper 17 cell; Treg: Regulatory T cell.
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processing the signal analysis data,wenoticed enhancement
of vascular endothelial growth factor (VEGF) and interleu-
kin-17 (IL-17) signals inSC3, indicatinganangiogenic effect
in SC3, and found a series of immune-related pathways,
suggestingabetter active immunemicroenvironment in SC1
[Figures 3B and 3C]. Combined with our GSVA analysis,
these results indicated that CAFs might promote angiogen-
esis via the VEGF pathway together with IL-17 in SC3.

Different patient subgroups have variable mutation features,
immune checkpoint molecule (ICM) expression, and
chemotherapeutic or targeted drug responses

To explore the different molecular features of patients
dominated by the three SCNA patterns, we stratified
TCGA dataset patients into SC1, SC2, or SC3 by their
713
SCNA characteristics. We first stratified MSS CRC
samples into low and high SCNA burden groups, and
classified samples with a low SCNA burden into SC2
[Figure 4A]. For high SCNA burden samples, we stratified
them into SC1 and SC3 by the chromosome 13 copy
number status [Figure 4B]. Similar to the scRNA-seq
dataset, SC1 had a higher CNV score than SC3 in
chromosome 20 (P< 0.0001) [Figure 4C]. Moreover, the
chromosome 13 CNV score correlated positively with
chromosome 20 (R= 0.42, P< 0.0001) [Figure 4D].

We also noticed different mutation models with high
frequencies of mutated TP53 in SC1 (83% in SC1, 42% in
SC2, and 65% in SC3), and mutated KRAS (35% in SC1,
59% in SC2, and 35% in SC3) andBRAF (3% in SC1, 7%
in SC2, and 2% in SC3) in SC2 [Figures 4E and 4F].
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Figure 4: Characteristics of the three SCNA clusters in the TCGA dataset. (A) Total CNV burden in high and low SCNA samples. The Wilcoxon rank-sum test was used for statistical
analysis. (B) Proportion of patients with chromosome SCNA in SC1–SC3. (C) CNV scores of chromosome 20 in SC1–SC3. The Kruskal–Wallis test was used for statistical analysis. (D)
Scatterplot shows the positive correlation between the CNV scores of chromosomes 13 and 20. The Pearson correlation coefficient and P-value are indicated. (E) Co-bar plot displays five
pervasive gene mutations in SC1and SC2. (F) Co-bar plot displays five pervasive gene mutations in SC2 and SC3; (G) The expression levels of ten common immune checkpoint molecule in
SC1–SC3. The Kruskal–Wallis test was used for statistical analysis. (H) Predicted IC50 values of three chemotherapy drugs (oxaliplatin, fluorouracil, and regorafenib) in SC1–SC3. The
Kruskal–Wallis test was used for statistical analysis. CNV: Copy number variation; IC50: Half maximal inhibitory concentration; SCNA: Somatic copy number alteration; TCGA: The Cancer
Genome Atlas.
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As immune checkpoint molecule (ICM) has been linked to
the responsiveness of checkpoint inhibitor treatment, we
compared the expression of certain common ICMs in
various SCNA subgroups. The majority of ICMs were
highly expressed in SC1 and SC2, whereas T cell
immunoglobulin and mucin domain containing 4
(TIMD4) and CD47 were more expressed in SC3,
714
implying thatdifferent individualsmaybenefit fromvarious
immune checkpoint inhibitor immunotherapies
[Figure 4G]. OncoPredict was used to predict the response
to three chemotherapeutic or targeted drugs and we found
that various patients responded differently to the three
medications [Figure 4H]. These findings imply that patients
with distinct SCNA pattern-dominant malignancies will
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Figure 5: Identification of a prognosis-related signature. (A–E) Overall survival analysis of five genes (AHCY, OLFM4, RRBP1, SDC4, and SLPI) in primary CRC of the TCGA dataset. The log-
rank test was used for statistical analysis. (F) Overall survival analysis of OLFM4 in primary CRC of NCC cohort. The log-rank test was used for statistical analysis. (G) Overall survival
analysis of OLFM4 in primary CRC of GSE39582 cohorts. The log-rank test was used for statistical analysis. (H) Dot plot depicts expression of the five genes (AHCY, OLFM4, RRBP1, SDC4,
and SLPI) in different cell types of the SMC dataset. (I) Expression level of OLFM4 in different TNM stages, N stage, and M stage. (J) Expression level of OLFM4 in three tumor clusters of the
SMC cohort. (K) Expression level of OLFM4 in three tumor clusters of the KUL3 cohort. CRC: Colorectal cancer; KUL3: The Katholieke Universiteit Leuven 3; NCC: National Cancer Center;
SMC: The Samsung Medical Center; TCGA: The Cancer Genome Atlas.
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benefit fromdifferent immunotherapies, chemotherapies or
targeted therapy. As a result, it will be critical to identify
SCNA patterns and treat patients with a specific therapy.

Identification and verification of the prognosis-related
signature

After exploring the biological function and molecular
characteristics of the three types of tumor cells with
chromosome 13 and 20 abnormalities, we further
examined the prognosis contributions of distinct tumor
cells to patient survival. To rule out the influence of gene
expression from other cells, we used the SMC scRNA-seq
dataset to identify 156 upregulated genes in epithelial cells
with adjusted P value of <0.05 and a log2 fold change of
>1 [Supplementary Table 9, http://links.lww.com/CM9/
B317]. Next, we chose 15 of the upregulated genes on
chromosomes 13 and 20 [Supplementary Table 10, http://
links.lww.com/CM9/B318], and found that five of them
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were linked to prognosis in the TCGA CRC dataset
(AHCY: P= 0.0270; OLFM4: P= 0.0110; RRBP1:
P= 0.0110; SDC4: P= 0.0310; SLPI: P= 0.0210)
[Figures 5A–5E]. Next, two independent external datasets
(one from the NCC cohort with 24MSS CRC patients and
the other from the GSE39582 cohort with 444 MSS colon
cancer patients) were used to validate the prognostic value
of these five genes. Finally, we identified OLFM4, a gene
expressed primarily in epithelial cells, which was associ-
ated with a better prognosis in the three datasets (TCGA
cohort: P= 0.0110; NCC cohort: P= 0.0360; GSE39582
cohort: P= 0.0098) [Figures 5B, 5F–5H]. Furthermore,
we found that patients with an earlier TNM stage and M
stage showed enhanced expression ofOLFM4, which had
significant statistical differences in both TCGA (TNM
stage: P= 0.0146,M stage: P= 0.0062) and GSE39582
(TNM stage: P= 0.0262, M stage: P= 0.0142) cohorts
[Figure 5I]. In our NCC cohort, we found a similar
tendency of OLFM4 expression without a statistical
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Figure 6: Tumor microenvironment of the three SCNA patterns in MSS CRC. CAF: Cancer associated fibroblasts; Chr: Chromosome; IL 17: Interleukin 17; MSS CRC: Microsatellite stable
colorectal cancer; SCNA: Somatic copy number alteration; VEGF: Vascular endothelial growth factor.
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difference between patients at different TNM stages and
M stages (TNM stage: P= 0.3890; M stage: P= 0.7369),
and a significant dfference between patients at different N
stages (P= 0.0153), which might be due to the small
sample size. Additionally, in the scRNA-seq dataset (SMC
and KUL3 cohorts),OLFM4 expression was the lowest in
theC3 tumor cell cluster, whichwas related to angiogenesis
and cell adhesion activity, and the highest in the C1 tumor
cell, which was associated with immune activity and the
classical pathway in cancer [Figures 5J and 5K].
Discussion

Intra-tumor genetic heterogeneity influences major path-
ways in cancer and drives phenotypic diversity, causing a
huge hindrance to cancer medicine.[2] In this study, we
clustered tumor cells in MSS CRC into three distinct
SCNA patterns by their SCNA characteristics [Figure 6].
The major chromosome SCNA differences in these three
tumor subcluster were on chromosomes 13 and 20.
Chromosome 13, as the largest acrocentric human
chromosome, is a chromosomal feature to distinguish
mutant TP53.[34,35] Amplification of chromosome 13
occurs almost exclusively in CRC.[36] In terms of
chromosome 20, 20q amplification has been linked to
left-sided tumors, microsatellite stability, wild type KRAS
and BRAF, and mutant TP53 in CRC patients.[37]

Furthermore, a recent study has indicated that patients
with chromosome 20q amplification had better recur-
rence-free survival, a higher frequency of mutant TP53,
and a higher level of chromosomal instability than MSS
patients without chromosome 20q amplification, who had
more mutated KRAS and BRAF.[38]

Among the three SCNA patterns, the dominant SCNA
feature of the C1 cluster was significant amplification of
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chromosomes 13 and 20. This subcluster of tumor cells
expressed high levels of immune-related genes, especially
those in antigen processing and presentation-related
pathways. Furthermore, DNA repair, the interferon-g
response, IL-2-STAT5 signaling, IL-6-JAK-STAT3 signal-
ing pathway, apoptosis, and the ferroptosis pathway were
upregulated in C1. Unlike autophagy and apoptosis,
ferroptosis is iron-dependent and reactive oxygen species-
reliant cell death that plays a pivotal role in suppression of
tumorigenesis.[39] Besides, we noticed the highly activa-
tion of CEBPB motif in the C1 cluster compared with the
other two clusters. CRC cell-secreted CCL20 recruits
regulatory T cells (Tregs) to promote chemoresistance via
forkhead box O1 (FOXO1)/CEBPB/nuclear factor kappa
B (NF-kB) signaling.[40] In the C1 dominant tumor, there
was a lower interaction of CAFs and endothelial cells with
other cells. SC1 had a high prevalence of mutated TP53 in
the mutation profile. On the one hand, approximately
85% of the TP53 mutations in CRC are missense defects,
which may positively contribute to the cancer phenotype
via effects on tumor cell proliferation and increased tumor
angiogenesis.[41] On the other hand, TP53 mutation may
facilitate ferroptosis activation and inhibit tumor prolif-
eration.[42] The higher TP53 mutation burden in C1
further confirmed that C1 activated the ferroptosis
process, resulting in a favorable prognosis.

With a lower SCNA burden, the C2 cluster expressed high
levels of genes in hypoxia and epithelial–mesenchymal
transition pathways. Additionally, the highly active
transcription factor SOX9 promotes tumor migration,
invasion, and metastasis in CRC.[43] Notably, we found
stronger SPP1-related signaling expression in SC2 than in
SC1, especially the SPP1–CD44 interaction, which
controls CD8+ T cell activation and promotes tumor
immune evasion.[44] Interestingly, even with a lower
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SCNA burden, SC2 contained the most KRAS and BRAF
mutations among the three clusters. Another study has
also reported this aberrant phenomenon that SCNA levels
positively correlate with the total number of mutations in
most tumors, whereas tumors with activating oncogenic
mutations in the receptor tyrosine kinase-RAS-phospha-
tidylinositol 3-kinase pathway have fewer SCNAs.[6]

Oncogenic KRAS signaling is essential for tumor progres-
sion to invasive and metastatic growth.[45] Moreover,
KRAS mutation promotes an immune-suppressive profile
in CRC and leads to anti-PD1 immune therapy resistance
by promoting myeloid-derived suppressor cell (MDSC)
migration into the tumor microenvironment.[46] Taken
together, we speculated that there was a suppressive
immune microenvironment in SC2 with KRAS or BRAF
mutations.

For C3, the combination of chromosome 13 deletion and
chromosome 20 slight amplification or diploidy was more
common in this cluster. Angiogenesis and cell adhesion
activity were enriched in C3. Moreover, in C3, theGTF2I
motif, which is related to angiogenesis and operates as a
signal-induced transcription factor in response to various
extracellular signaling pathways, was highly active.[47] In
the C3-leading tumor microenvironment, CAFs were
considered critical for tumorigenesis, forming an extra-
cellular matrix structure, and immune reprogramming of
the tumor microenvironment, impacting adaptive resis-
tance to chemotherapy.[48] IL-17, mainly from Th17 cells,
promotes tumor angiogenesis by stimulating fibroblasts to
upregulate VEGF.[49,50] IL-17 also induces expression of
granulocyte colony-stimulating factor through NF-kB and
extracellular-related kinase signaling, leading to immature
myeloid cell mobilization and recruitment into the tumor
microenvironment.[51,52] In SC3, we also found dominant
enhancement of VEGF and IL-17 signals compared with
SC1 when processing the signal analysis data. Overall, in
the presence of CAFs and IL-17, SC3 forms an angiogenic
tumor microenvironment via the VEGF pathway.

The tumor microenvironment includes T, NK, B, myeloid,
and stromal cells as well as tumor cells. The cellular
interactions among them determine the development,
progression, and clinical outcome of the tumor. In the
different SCNA patterns, there were various constituents
of immune and stromal cells. For example, macrophages,
especially SPP1+ macrophages, were enriched in SC2,
which promotes tumor immune evasion. Additionally,
CAFs were vital for tumor angiogenesis in the C3-
dominated tumor.

We also identified OLFM4, which is a prognosis-related
signature with increased expression at an early stage. In
CRC, OLFM4 initiates organoid culture growth and a
differentiation capacity serving as a stem cell marker,[53,54]

which demonstrated the major role of OLFM4+ tumor
cells in the early stage, as we found enrichment of various
important pathways in C1, such as Wnt, transforming
growth factor beta (TGF-b), and Notch pathways.
OLFM4 also inhibits cell adhesion and migration,[55]

which was consistent with the cell adhesion activity of C3
with the lowest OLFM4 expression compared with the
other two tumor clusters.
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By understanding heterogeneity in the intricate tumor
microenvironment, we gained an insight into the
mechanisms of tumor evolution, which may support
the development of therapeutic strategies. However, we
only identified one C3-dominant patient in the SMC
dataset because of the limited data sources. Thus, a
greater scale of scRNA-seq data is needed to further
validate the function of these three SCNA clusters in the
tumor microenvironment.
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