Skip to main content
. 2023 Apr 17;30(2):167–177. doi: 10.5603/CJ.a2021.0154

Table 4.

Multivariable Cox regression analysis for predicting vessel-oriented composite endpoint (n = 20).

HR (95% CI) P
Model a1
Post-procedural μQFR 5.94 (2.33–15.09) < 0.001
Diabetes mellitus 2.64 (1.03–6.78) 0.04
Difference of DCB diameter and RVD (per 0.10-mm increase) 1.34 (1.10–1.62) 0.003
Model a2
Post-procedural μQFR (per 0.10-mm increase) 0.34 (0.23–0.51) < 0.001
Diabetes mellitus 1.61 (0.55–4.66) 0.16
Difference of DCB diameter and RVD (per 0.10-mm increase) 1.25 (1.03–1.50) 0.02
Model b1
μQFR improvement 3.75 (1.31–10.68) 0.01
Diabetes mellitus 3.15 (1.23–8.05) 0.02
Residual lesion after DCB treatment 3.12 (1.21–8.03) 0.02
Difference of DCB diameter and RVD (per 0.10-mm increase) 1.33 (1.11–1.59) 0.002
Model b2
μQFR improvement (per 0.10-mm increase) 1.31 (1.04–1.66) 0.02
Diabetes mellitus 3.10 (1.21–7.92) 0.02
Residual lesion after DCB treatment 3.75 (1.47–9.56) 0.01
Difference of DCB diameter and RVD (per 0.10-mm increase) 1.32 (1.11–1.57) 0.001

Independent predictors of the previous analysis were used in time-to-event analysis fitting Cox regression models with forward likelihood ratio variable selection method; p values less than 0.05 are in bold; CI — confidence interval; HR — hazard ratio; DCB — drug-coated balloon; RVD — reference vessel diameter; μQFR — Murray law-based quantitative flow ratio