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Abstract

Microbial communities are complex living systems that populate the planet with diverse 

functions and are increasingly harnessed for practical human needs. To deepen the fundamental 

understanding of their organization and functioning as well as to facilitate their engineering 

for applications, mathematical modelling has played an increasingly important role. Agent-

based models represent a class of powerful quantitative frameworks for investigating microbial 

communities owing to their individuality nature in describing cells, mechanistic characterization 

of molecular and cellular processes, and the intrinsic ability to produce emergent system 

properties. This article presents a comprehensive review for recent advances on the agent-based 

modeling of microbial communities. It surveys the state-of-the-art algorithms employed to 

simulate intracellular biomolecular events, single-cell behaviors, intercellular interactions, and 

interactions between cells and their environments which collectively serve as the driving forces 

of community behaviors. It also highlights three lines of applications of agent-based modeling, 

including the elucidation of microbial range expansion and colony ecology, design of synthetic 

gene circuits and microbial populations for desired behaviors, and characterization of biofilm 

formation and dispersal. The article concludes with a discussion of existing challenges, including 

the computational cost of the modeling, and potential mitigation strategies.
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Microbial communities are ubiquitous in natural and anthropogenic environments. Examples 

of the former include water, soil and the animal and human bodies.1,2 The latter category 

comprises biotechnological applications, such as wastewater treatment and biocatalysis1, 

and other industrial processes for the production of chemicals3 and biofuels4. While 

microbial communities can be harnessed for the benefit of mankind through rational 

engineering,5–8 they can also be harmful by causing infections that are difficult to treat with 

antibiotics,9 contaminating medical devices and implants1, and causing food spoilage.10 A 

fundamental understanding of how microbial communities colonize and grow in various 

environments is essential for effectively manipulating them so as to maximize their benefits 

while mitigating their adverse effects. Mathematical modelling is playing an increasingly 

important role for this purpose. While modelling has been extensively used to interpret 

and explain experimental results, it can also be used to optimize experimental design11 or 

make predictions about the spatiotemporal dynamics of microbial communities that can be 

tested experimentally. A wide variety of modelling approaches have been applied to study 

microbial communities. They include11 primary, secondary and tertiary models,12 empirical 

equations,13 mechanistic14 models, flux balance analysis,15 reactive transport models,16 

Bayesian network models,17 neural networks,18 cellular automata19 and agent-based models 

(ABMs).20

An important distinguishing characteristic of the various model classes is the spatial and 

temporal scales at which they operate. While metabolic models14,15 are primarily concerned 

with the effect of intracellular processes upon cell physiology, population-level models seek 

to elucidate the effect of variables such as temperature, pH and nutrient concentration upon 

the growth of entire colonies that typically contain over 1010 cells.21 Moreover, models 

that include diffusion and reaction of substrates need to resolve timescales as small as 10−3 

seconds whereas biomass growth and decay typically occurs over several hours or days.19,22 

Recently, there has been much interest in developing hybrid models that integrate several 

sub-models operating at different length and time scales.22–24 Agent-based models (ABMs), 

which are the focus of the present review, constitute one such class of hybrid models.

ABMs represent a microbial colony as a group of discrete agents with predefined attributes 

and whose interactions are governed by a set of rules. Each agent may represent an 

individual cell or a group of cells.11 The objective of an ABM is to explain how macroscopic 

colony properties emerge as a result of microscopic interactions among agents, whose 

individual characteristics may exhibit a significant degree of variability. Their abilities to 

naturally incorporate heterogeneity in microbial colonies make ABMs the natural choice 

of model whenever such variability is known to play a significant role in the phenomenon 

of interest. This can happen for several reasons such as chemical concentration gradients, 

adaptation to local environmental conditions, stochastic gene expression and genotypic 

variation.25 The ease of incorporating any number of physical, chemical and biological 

processes of interest is another tremendous advantage of ABMs that enable such models 

to be readily adapted to study microbial spatiotemporal dynamics in diverse settings and 

to provide mechanistic insights into the origins of system properties. Finally, this class of 

models can be useful for deriving additional insight into dynamics that is unavailable from 

experimental data. For example, detailed comparison of the results of ABMs in the presence 
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and absence of hydrodynamic interactions have been instrumental in understanding their 

effects upon collective oscillations26 and chemotactic cell migration27 in dense bacterial 

suspensions. ABMs also enable one to monitor transient changes of characteristics such 

as growth rate in different population sub-groups,28 which may be difficult to achieve 

experimentally.

This review begins with a survey of the architecture of ABMs and the manner in which 

they are implemented. This is followed by the applications of ABMs for the disciplines 

of microbial range expansion and colony ecology, synthetic biology regarding the design 

and engineering of synthetic populations for spatiotemporal patterns, and biofilm formation 

and dispersal. Finally, challenges in the application of ABMs and corresponding potential 

solutions are explored.

ARCHITECTURE AND IMPLEMENTATION OF ABMS

An ABM typically includes several sub-models of processes occurring at multiple 

dimension and time scales. The components of an ABM can be broadly classified into 

molecular events, single-cell behaviours, intercellular interactions and interactions between 

cells and their environment (Figure 1). A wide variety of modelling approaches have been 

used to incorporate these components into the various ABMs presented in the literature 

to date. The focus of this section is to evaluate the modelling tools available for each 

component and discuss their advantages and disadvantages.

Biomolecular events.

ABMs are capable of incorporating several types of intracellular biomolecular events 

including gene regulation,23 signal transduction,29,30 metabolic reactions and evolutionary 

processes. Gene regulation is the control of gene expression that specifies the production 

of proteins that serves as functional biomolecules, such as enzymes and transporters, 

for various intracellular processes. Signal transduction is the propagation of external 

and internal information through the conformational transition or abundance change of 

biomolecules for cellular decision making or functional realization, such as chemotaxis of 

microbial cells in the presence of chemical gradients.29,30 Metabolic reactions characterize 

the conversion of materials and the production and consumption of energy inside the cell, 

and underlie metabolite synthesis and secretion, cellular growth and division, and other 

phenomena such as bioluminescence.31 Seemingly diverse, these molecular events can all 

be described using a system of coupled ordinary differential equations (ODEs) comprising 

of one equation for each molecular species of interest in each agent.32 The intracellular 

dynamics are coupled to the rest of the simulation by making the rates of change of each 

intracellular variable dependent upon one or more external variables such as the local 

nutrient, metabolite or toxin concentration or forces exerted by neighbouring cells.33 An 

alternative, and possibly more realistic method of simulating intracellular molecular events, 

is to use delay differential equations (DDEs).23 While this method accounts for the influence 

of environmental conditions upon each agent’s physiological state over a period of time, the 

simulation may produce divergent results due to intracellular chemical concentrations being 
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reset during cell division.23 In such cases, the parameter values in the model may need to be 

carefully tuned to ensure that the results are meaningful.

Compared with gene regulation, signal transduction and metabolic reactions that occur over 

relatively short time scales typically, the change in the genetic make-up of cells due to 

natural selection typically occurs much longer.21 Such mode of molecular events can be 

modelled by using random variables to represent agent genotypes and allowing for random 

mutations during the cell division process. The occurrence of mutations may affect one or 

more cellular functions such as the ability to produce public goods34 or toxins35 depending 

upon the modelling objectives.

Single-cell behaviours.

The most characteristic nature of ABMs is the individual-based treatment of cells. Agents 

can represent individual cells in some models22 or a group of cells in others36. In addition, 

agents can be spherical22,24 or rod-shaped37,38 in the former case but they are always 

spherical in the latter. Different ways of modelling can lead to a trade-off between spatial 

resolutions and computation cost. Namely, the coarse-grained approach of representing a 

group of cells with an agent has lower computational cost; meanwhile, it also has a lower 

spatial resolution.

After introducing the definition of agents, it is necessary to identify the properties assigned 

to each agent. Primary properties included in ABMs are the agents’ types, sizes and 

mechanical properties such as their forces, positions and velocities. It is also needed to 

specify the rules governing the temporal evolution of these properties. One prominent trait 

of agents is their movement, which can be broadly classified as passive or active. The 

former is the result of mechanical interactions with other agents and environmental forces 

arising from impenetrable walls. As explained in the next section, mechanical interactions 

may be modelled using rule-based approaches that forbid agent overlap or by solving the 

equations of motion determined by Newton’s Laws. Models employing rod-shaped agents 

typically use the latter approach due to the need to simulate both rotational and translational 

motion. On the other hand, active motion, better known as cellular motility, arises from 

internal propulsive forces. Bacteria such as E. coli bear the ability to actively swim in liquid 

medium, by switching their state between running or tumbling27 to achieve motion in a 

random walk pattern. In the running state, the flagella rotate in counter-clockwise to form 

a bundle, such that a net propelling force is generated. By contrast, in the tumbling state, 

the flagella rotate in clockwise and the cell changes it orientation randomly. The associated 

propelling force and corresponding cell velocity and reorientation may be determined using 

a rule-based approach39 or a random number generator.29,30,40 Chemotaxis is the behaviour 

that a cell actively moves towards a higher concentration of an external attractant such as 

methyl-aspartate or serine for E. coli. In the absence of attractant gradient, the probability 

of the cell in the running state is constant. However, when the cell senses the gradient, the 

running probability is increased according to the level of gradient. Such a cellular movement 

behaviour is governed by an intracellular signalling network, which is typically modelled 

as a set of ordinary differential equations (ODEs). Notably, while most modern ABMs22,24 

simulate agent motion in continuous space, lattice-based models have also been used.32
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In addition to movement, most ABMs incorporate agent growth and reproduction22–24,41 

while some also simulate decay and death.22,24 Agents’ growth rate is typically determined 

by the local concentration of one or more nutrients according to the Monod equation. Each 

agent has a pre-defined maximal size above which it divides into two agents. The positions 

and sizes of the two resulting agents are usually determined stochastically. Agent death is 

simulated by the deletion of agents whose sizes fall below a threshold value.22,24

Cell-cell interactions.

Interactions between agents can be either physical or chemical in nature. Physical 

interactions refer to the excluded-volume interactions between agents as well as between 

agents and simulation boundaries where there are impenetrable walls. Two distinctive 

methods have been adopted to model such interactions. The first involves implementing 

special algorithms that prevent cell overlap.24,28,36 These algorithms typically involve 

computing a displacement vector that accounts for the overlaps of a target agent with its 

neighbours and translating the agent’s position by that vector.24 This process is performed 

for each agent in a simulation and multiple iterations of the entire cycle may be necessary 

to completely resolve overlaps between all pairs of agents.36 In the second approach, one 

evaluates the total force exerted upon each agent by its neighbours and uses this information 

to update the cells’ velocity and position according to Newton’s laws.22,37,38,42,43 Forces 

between cells are typically evaluated using the Hertzian model.22,37,38,42,43 In the case of 

non-spherical agents, it is also necessary to update their angular velocities and orientations 

by evaluating torques.37,38,42,43 While the first method has been widely used for its ease of 

implementation and lower computational cost,24,36,44–46 it is not readily generalizable to the 

case of non-spherical agents.

In addition to physical interactions, agents may also interact among themselves by secreting 

diffusive public goods, metabolites and toxins into the extracellular space.47 Such chemical 

interactions are simulated by solving partial differential equations (PDEs) that describe the 

variation of chemical concentrations over time and across space. Here, the variation typically 

arises as a result of chemical diffusion, production and consumption. In cases with fluid 

flow, the PDE for each chemical would contain additional terms describing transport due to 

convection. A wide variety of methods are available to solve the PDEs including nonlinear 

multigrid,44 Fourier transform,35 marker-and-cell,22 and lattice Boltzmann19 methods. The 

local concentrations of various chemicals at an agent’s location are used to update its 

properties at each time-step.

In microbial communities, chemical interactions may occur over a wide range of spatial 

scales. For example, toxins secreted by a cell only affect neighbouring cells in the case 

of contact-dependent inhibition48,49 but may also result in the death of distant cells in 

the case of long-range inhibition.50,51 Both situations can be modelled in ABMs by 

setting the relevant chemical diffusion coefficients to an appropriate value. In addition 

to chemical interactions, conjugation represents another important class of interactions 

in microbial communities that involves transfer of genetic material between cells.28 It 

is typically simulated by identifying potential recipients in the vicinity of each donor 

and assigning a probability for successful plasmid transfer between agents. Additionally, 
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chemical interactions are shown highly variable over time,52 which can be potentially 

characterized with ABMs.

Microbial communities often develop into biofilms which contain extracellular polymeric 

substances (EPS). EPS fulfils various functions such as maintaining the cohesiveness of 

the biofilm and providing nutrients for cells.47 Special algorithms are used to simulate 

physical and chemical interactions between agents in biofilms. Models using spherical 

agents typically simulate EPS production through the accumulation of an outer EPS shell 

upon each producing agent.22,24 The thickness of the shell affects the strength of excluded 

volume interactions between EPS-containing agents. A portion of the EPS belonging to 

each agent is regularly released to the environment where it exists as an agent of the EPS 

type.22,24,28,38,53,54 These EPS particles can undergo excluded volume interactions with all 

other agents in the simulation. Some studies have also used continuum methods to simulate 

the modification of physical interactions between agents due to EPS.55–57 The presence of 

EPS also modulates chemical interactions by reducing the diffusion coefficients of various 

chemicals by up to 40%.25

Cell-environment interactions.

ABMs of microbial communities typically incorporate several interactions between agents 

and their environment. The most common process in this category is chemical exchange, 

which includes uptake of nutrient and antibiotics and the release of metabolic by-products. 

In cases where the effect of spatiotemporal variation in nutrient concentration is the primary 

objective of investigation,54 it is necessary to solve the necessary PDEs as described above. 

In some studies,24 the concentration of available nutrient was varied periodically with time 

to examine the effect of such variation upon the rate of colony growth. However, if one 

is simulating colony growth in a nutrient rich environment where there are no significant 

substrate concentration gradients, the simulation protocol can be simplified by omitting 

these equations and assuming a constant growth rate for each agent.42,58

In the context of biofilms, erosion and detachment constitute another important class of 

agent-environment interactions that usually arises due to the physical effects of fluid flow 

and is responsible for the removal of biomass. In the case of models that do not explicitly 

include fluid dynamical effects, the rate of biomass removal is usually determined using 

an empirical detachment function.24 Li et al.59 examined the effect of using different 

detachment functions upon the biofilm morphology. In mechanistic models that incorporate 

the effect of fluid dynamics,22,54 biomass detachment arises as a result of the drag force 

experienced by cells due to local velocity gradients. Fluid dynamical effects can be 

simulated using computational fluid dynamics (CFD)22 or lattice Boltzmann19,36 methods. 

Additionally, the interactions between cells and the environment may also be altered by the 

presence of EPS. EPS facilitates the adhesion of cells upon the substratum in the early stages 

of colonization and acts as a scaffolding that maintains the cohesiveness of biofilms and 

limits the ease with which environmental effects such as fluid flow can remove biomass 

from biofilms.47 These functions of EPS can be incorporated into an ABM by modelling its 

effect upon physical interactions using the methods described above. Moreover, EPS may 

improve cells’ tolerance to antimicrobial agents by reducing their diffusion rate in biofilms.

Nagarajan et al. Page 6

ACS Synth Biol. Author manuscript; available in PMC 2023 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The four classes of forementioned processes and interactions occur over a vast range of 

length and time scales. To address the computational cost, a sequential solution procedure 

is often employed that uses timesteps of different orders of magnitude when updating the 

simulation variables associated with the different processes.19,22 This approach assumes 

that all faster processes have reached pseudo-equilibria while all slower processes are 

‘frozen’ in time when simulating a sub-model associated with a particular process. Such 

a multi-timestep algorithm is essential for realizing simulations at experimentally relevant 

length and time scales, especially when modelling biofilms. Mathematical details regarding 

the implementation of ABMs can be found in the Supplementary Information.

Emergent properties of microbial communities.

Microbial communities have a remarkable ability to undergo spontaneous self-organization 

and form distinctive patterns, whose emergence depends upon environmental conditions as 

well as the social interactions between the species comprising the colony.60 ABMs can be 

viewed as in silico experiments that shed insight upon the manner in which population level 

characteristics naturally emerge as a result of microscale interactions within and among 

agents in a heterogeneous population. For example, relating to the spatial segregation of 

mutually inhibiting species through toxin production,37 pattern formation due to engineered 

gene circuits61 and genetic sectoring during range expansion62, ABMs can all be potentially 

applied. Indeed, they have been successfully used to predict the spatial structure of microbial 

colonies at long time intervals as well as to investigate the dynamics of the self-organization 

and pattern formation process61,63. It is also possible to carry out quantitative comparisons 

of the extent of self-organization for different values of model parameters by evaluating 

quantities such as the radial distribution function and static structure factor.38

A wide variety of other population level characteristics can also be examined. Simulations 

of biofilms are typically concerned with the values of morphological parameters such as the 

height, roughness and biomass area density22 as well as the expansion rate in one or more 

directions.64 Parameters describing the population composition such as species fractions, 

diversity and relative fitness of different species are of particular interest in simulations 

involving multiple species24,53. Models that study how selective pressures determine the 

genotypes of agents in spatially structured environments examine the number of species with 

various genotypes at different time points.34,35 In addition to the above variables, examining 

the fluid velocity and nutrient concentration profiles can provide useful insight into the 

biophysical mechanisms responsible for heterogeneity within a population.22

APPLICATIONS OF ABMS

Microbial range expansion and colony ecology.

Microbial social interactions such as competition and cooperation can play an important role 

in shaping the emergent properties of microbial ecosystems. Over the last decades, ABMs 

have been widely used to investigate the emergent ecosystem properties during population 

growth in space as a result of the user-defined interactions at the micro-scale. A set of 

software packages have been developed for this purpose including AgentCell,65 BSim,23,66 

BNSim,67 and gro.68
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Blanchard et al.37 employed an ABM to systematically characterize the six fundamental 

types of social interactions for a simple two-species ecosystem, including neutralism, 

commensalism, amensalism, competition, mutualism, and parasitism.69 Their model 

incorporated various processes occurring at different length and time scales including 

intracellular biomolecular events, cell elongation and division, cell movement and rotation 

due to physical contacts between cells, chemical exchange between cells and environment, 

and diffusion of extracellular molecules. Each cell was modelled as a rigid rod surrounded 

by an elastic cylinder shell with two half-spherical caps. Collision-induced forces between 

cells were simulated using the Hertzian model.

By simulating colony expansion on a 2D plain from a well-mixed, equal relative abundant 

initial colony, the spatial patterns of a series of microbial colonies were analysed 

(Figure 2A). Depending on the type of interactions, colonies showed distinct spatial 

characteristics at growing fronts. Specifically, communities with asymmetrical social 

interactions (commensalism, amensalism and predation) yielded unbalanced structures with 

the species benefiting relatively from interactions dominants the colonies; by contrast, 

communities with symmetrical interactions (neutralism, cooperation and competition) gave 

rise to balanced spatial structures. The authors further analysed the patterns of microbial 

colonies by comparing the surviving lineage and sector number as measurable indicators of 

cellular social interactions. Notably, among the three symmetrical cases, mutualism resulted 

in the most sectors, neutralism had the second most, and competition yielded the least.37

In addition to social interaction between microbial species, motility and chemotaxis play 

critical roles in microbial spatial structuring. To quantitatively understand and characterize 

bacterial motility and chemotaxis, ABMs have been applied for in-silico explorations. 

Kalinin et al.29 and Jiang et al.30 constructed an ODE-based mathematical description of 

bacterial chemotactic sensing in controlled chemical concentration gradients, and showed 

with simulations that the drift velocity–the magnitude of velocity vector along the gradient–

remains constant in fixed exponential gradients but decreases in linear gradients. Based 

on the findings, an ABM was recently developed to enable an individual-based, population-

level modelling of chemotactic microbial populations in space (Figure 2B).70 In another 

effort, Micali et al.40 used a modified version of the ABM, Rapidcell,40 along with 

experiment to characterize the drift velocity in exponential gradient of E. coli, through which 

they uncovered that the drift velocity changes as a function of local chemical concentration. 

With these explorations, the contributions of bacterial motility and chemotaxis on colony 

expansion were subsequently revealed by Cremer et al.71 who employed ABM as a 

validation tool in conjugation with PDE-based modelling and quantitative experiments.

Meanwhile, recent studies have applied ABMs to simulate microbial communities for 

understanding the relationship between cell morphology and spatial colony pattern,72 

thermodynamics and microbial growth73, and the cell density-dependent toxin production 

for spatial expansion.74 These models have the intrinsic ability to incorporate the phenotypic 

heterogeneity of growing microbial populations.75 Moreover, a recent ABM software 

ARCADE was developed to present the emergence of bacteria population in dynamic 

microenvironments, which provides a rule-based, on-lattice framework that involves 

bacteria, immune cells and tissue.32
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Patterns and dynamics of engineered populations.

Another line of ABM applications lies in the design of engineered organisms for synthetic 

biology purposes.76,77 Compared with other tools, ABMs confer a detailed, mechanistic 

description of the molecular and cellular processes from gene expression to chemical 

and mechanical interactions, cell motility and chemotaxis, and cell-environment coupling, 

thereby enabling the generation of emerging spatiotemporal community properties from 

microscopic interactions. Thus, in theory, ABMs allow researchers to quantitatively describe 

gene circuits, their coupling to hosts and environments78 for quantitative and predictive 

analysis of gene circuits.

One great example illustrating such applications is BSim,66 a flexible computational tool 

for agent-based, multiscale simulations of microbial populations. Treating microbes as 

autonomous agents, BSim describes realistic intracellular molecular processes such as 

gene regulation with ODEs and captures dynamic, heterogenous and three-dimensional 

environments with user-defined meshes. It allows to explore the relationship between 

microscopic driving forces of agents and macroscopic collective behaviors of an entire 

population. The tool was used to simulate four spatially structured populations, that were 

engineered to fulfil the EQUAL Boolean function, and a growing engineered population that 

carries a synthetic three-gene circuit with an oscillatory protein production. For the both 

cases, Bsim yielded steady-state outputs that are consistent with experimental results, which 

illustrated the power of the tool in quantitatively modeling engineered strains and enhancing 

system robustness through the integration of circuit dynamics, population statistics and 

spatial organization.

To expand its application regime, BSim was recently upgraded to yield a new version, 

BSim 2.0,23 by allowing the definition of the realistic, three-dimensional morphology 

of individual cells and the specification of physical parameters of realistic environments 

during experimental setups such as microfluidic devices. Compared to other software 

packages, the updated tool addressed the lack of fundamental features that are crucial 

to realistic description of physical interactions among cells and between the cells and 

their environments. To illustrate its utility, the tool was applied it to simulate an 

engineered bacterial consortium which involves coupled positive and negative feedback 

loops and produces oscillatory population dynamics in a microfluidic chip (Figure 3A). 

The simulations successfully reproduced the population-level oscillation of the engineered 

consortium. Additionally, the simulations revealed a high-level sensitivity of system 

dynamics to the parameters associated with signaling chemicals and boundary conditions 

of the environment, and further uncovered the impacts of spatial segregation of the 

populations on the oscillatory dynamics. Together, the consistency of the simulations with 

the corresponding experiments demonstrated BSim 2.0 as a useful tool for the engineering of 

gene regulatory circuits in multi-strain consortia.

To facilitate the advance of synthetic biology, researchers have also explored the potential 

of ABMs for guiding rational gene circuit design. In a recent study,79 Leaman et al. 
experimentally characterized the spatiotemporal onset dynamics and emergent properties of 

an engineered bacterial population that contains quorum-sensing regulated gene expression. 

In parallel, they built an agent-based model that describes quorum sensing and biophysical 
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interactions among cells and between cells and environments (Figure 3B). Impressively, 

the model successfully predicted the activation time of quorum sensing with a remarkable 

degree of accuracy (<7%) for various cell densities and uncovered a power law pattern 

of gene activation time with respect to the initial cell density. In addition, the model was 

successfully utilized to guide the design of ribosome binding site, the nucleotide sequence 

located at the upstream of an mRNA molecule and critical for the initiation of translation, 

which resulted in predictable, controllable tuning of the expression activation time over a 

30-fold range. The study served as a compelling example of ABMs which quantitatively 

recapitulates not only the intracellular temporal modulation of gene expression but also the 

spatiotemporal dynamics of microbial populations. It also illustrated the promise of model-

guided, predictive design of synthetic circuits, a milestone for the design, construction, and 

optimization of synthetic microbial systems.

Biofilm formation and dispersal.

The realistic modelling of biofilms represents one of the most exciting and important 

applications of ABMs (Figure 4). The iDynoMiCS24 software package is a comprehensive 

tool available for biofilm simulation. It was developed based on several previous work over 

the preceding decade.44–46,55,56,80–82 Meanwhile, it contains several novel features such as 

the incorporation of a pressure field to describe the shrinkage of mature biofilms, continuous 

release of EPS into the extracellular domain by individual agents, and metabolic switching 

in response to changes in environmental conditions.

The utility of this tool was illustrated using two case studies, the first of which investigated 

the relative abundance of three different species that took varying amounts of time to 

switch from aerobic to anerobic metabolism or vice versa in response to periodic variations 

of oxygen concentration in the environment.24 It was found that the fastest responding 

species always dominates the biofilm in the absence of a metabolic cost for switching 

pathways, particularly when the frequency of oxygen pulse was high. However, when the 

cost associated with switching was greater for species with a shorter response time, the 

optimal switching strategy was found to depend upon the pulse frequency. While the fastest 

responding species was still favored in cases where the oxygen concentration changed very 

rapidly, the species with an intermediate value of response time had the highest relative 

abundance at low pulse frequencies.

Leveraging iDynoMiCS, Merkey et al. further studied plasmid invasion of biofilms28. By 

performing a sensitivity analysis of model parameters, they found the time delay between 

the points when a cell first receives a plasmid and begins to participate in horizontal gene 

transfer (HGT) of that plasmid to other cells to be the most important parameter that dictates 

the speed of plasmid invasion. Other parameters that significantly affected the invasion 

speed include the probability of successful transfer, scan speed, EPS yield and pilus reach. 

They also found that plasmid invasion is easier for a young biofilm that is growing rapidly 

as compared to a mature biofilm due to the higher rate of cell division in the former 

case. Moreover, a stronger dependence of HGT upon local growth rate reduced the depth 

of penetration of the plasmid into the biofilm. Finally, the propagation of the plasmid 
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throughout the population was favored by the initial placement of the single donor cell in the 

interior of the biofilm where it is surrounded by a greater number of potential recipients.

The first model capable of simulating all scales of processes occurring in a biofilm with a 

purely mechanistic approach was proposed by Li et al.22 Known as NUFEB, this package 

is built upon the large-scale atomic/molecular massively parallel simulator (LAMMPS),83 

an open-source molecular dynamics software. One of its key advantages over other tools 

is that biofilm detachment arises naturally as a result of the drag forces experienced by 

cells near the biofilm surface, which avoids the need of empirical functions for modeling 

the phenomenon. In addition, the tool incorporates realistic fluid dynamics through dynamic 

coupling of the LAMMPS simulation with SediFOAM,84 a computational fluid dynamics 

software. Moreover, the framework has been shown to exhibit a good parallel performance 

and allow to be scaled up for the simulation of large systems containing up to 107 cells.

NUFEB has also been utilized to simulate biofilm growth under varied nutrient conditions54. 

Specifically, the study revealed that the biofilm surface is smooth and compact in the 

rich case but rough and wavy in the poor case, in agreement with previously reported 

results19. It also showed that smooth biofilms were obtained if the nutrient source was 

located at the substratum instead of above the top surface even if the nutrient concentration 

was relatively low. This was due to the fact that the nutrient is more evenly distributed 

throughout the biofilm at the substratum. Additionally, the introduction of shear flow was 

shown to significantly reduce a biofilm’s surface roughness and porosity, which is because 

increasing shear rate reduced the average volume of detached biomass segments although it 

also resulted in a greater frequency of detachment events.

More recently, the utility of NUFEB was demonstrated for the simulation of complex 

biofilms containing nitrifiers, heterotrophs and EPS.22 The study showed that, although 

heterotrophs grew faster than nitrifiers in the early stages of biofilm growth, they were 

eventually outcompeted by nitrifiers due to changes in the chemical environment within the 

reactor as reported by previous experimental efforts.85 In addition, the study revealed that 

biofilms can develop a wavy surface profile due to the non-uniform initial distribution of 

microbes upon the substratum. Moreover, this case study demonstrated the feasibility of 

NUFEB for simulating large biofilm systems containing up to 2.3×107 cells with efficient, 

highly parallelized algorithms without the need for coarse graining.

CONCLUSION

In this article, we reviewed ABMs of microbial communities by outlining the fundamental 

algorithms underlying the individual-based description of diverse molecular and cellular 

processes of microbial populations and highlighting the applications of ABMs for microbial 

range expansion and spatial ecology, patterns and dynamics of engineered populations, and 

biofilm formation and dispersal. Despite tremendous and versatile utilities of ABMs, there 

are several outstanding challenges in the field. One main issue is that the computational cost 

of ABMs is high compared to models that directly study population level characteristics21. 

This is particularly true for simulations that consider three-dimensional space or incorporate 

fluid dynamics. Although state-of-the-art computational algorithms enable the simulation 

Nagarajan et al. Page 11

ACS Synth Biol. Author manuscript; available in PMC 2023 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of systems containing up to 107 cells, the simulated population size is still several order 

of magnitude smaller than many biological systems such as the human microbiome or 

wastewater treatment facilities.86 To address the challenge, alternative techniques are 

being actively pursued with the goal to generate comparable results as ABMs but at a 

significantly lower computational cost. One such approach makes use of statistical emulators 

that reformulate the ABM into a more computationally tractable model, which allows to 

accurately predict the values of metrics such as floc size, biofilm roughness and diversity 

that are essential for the design and operation of bioreactors for wastewater treatment.86 

If the goal is to investigate the spatiotemporal dynamics of microbial range expansion, 

one can also use PDE-based models derived from continuum mechanics principles to 

determine the colony expansion rate.61 This approach was demonstrated to produce results 

equivalent to those obtained from an ABM and to accurately simulate pattern formation 

in a microbial colony containing an engineered gene circuit.61 Notably, in addition to 

reducing computational cost, the relatively simple structures of these models may facilitate 

the development of biophysical insights into system dynamics.

Other challenges of ABMs include the need for prior knowledge of systems being modelled, 

the difficulty of obtaining biophysical insights, and the need to consider the effect of agent 

shape. Before constructing an ABM, it is necessary to have a good understanding of the 

experimental system being modelled to ensure that all relevant processes are included in 

the model21. It is also helpful to identify the qualitative effects of model parameters upon 

the variables of interest.21 However, this may not always be possible. Often, several rounds 

of model redesign and cross-validation with experiment are necessary before satisfactory 

results are obtained. The complexity and high level of microscopic details involved in the 

development of ABMs is another potential challenge. Often, the effects of model input upon 

the output are not clear, which can hinder the extraction of biophysical insights from the 

modelling process.20 Finally, most ABMs have used use spherical or cylindrical agents to 

represent individual cells for computational convenience.22,24,28,53,54 However, microbes in 

nature have diverse shapes and asymmetrical divisions. In addition, it has been shown that 

cells’ shape can affect the organization of microbial communities, such as the structure of 

a growing biofilm in the presence of nutrient concentration gradients.72 Further research is 

thus required to expand the capacity of ABMs for different cellular shapes.

While ABMs have been developed and used in studying microorganisms for over two 

decades, their full potential is only just beginning to be realized. As ABMs become 

increasingly realistic and scalable, their usage is expected to become increasingly popular, 

not only for the purpose of explaining experimental results but also for guiding and 

optimizing experimental design. It is also expected to facilitate the engineering of complex 

ecosystems such as industrial bioreactors and the human microbiome toward diverse 

applications.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: A schematic illustration of the multiscale processes involved in ABMs.
ABMs often contain molecular events, single-cell behaviors, cellular interactions and cell-

environment coupling. Molecular events include gene regulation, metabolic reactions, and 

signal transduction. Single-cell processes include cellular growth, cellular division, and 

chemotactic migration in response to attractant gradients. Cell-cell interactions include 

mechanical interactions from mechanical forces exerted by neighboring cells or chemical 

interactions due to the secretion of toxins or public goods. Cell-environment coupling 

involve nutrient uptake from the surroundings, biomass dispersal due to fluid flow and 

others.
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Figure 2: ABMs for studying microbial range expansion and spatial colony ecology.
(A) Using an ABM, the functional roles of social interactions in driving microbial range 

expansion were uncovered.37 Notably, compared to neutralism, mutualism was shown to 

promote spatial mixing while competition led to spatial segregation. (B) With an ABM, 

the impacts of chemotaxis on spatial colony structures was illustrated.70 Compared to the 

non-chemotactic case, chemotactic populations generated a nutrient gradient that facilitated 

cellular running, instead of tumbling, and hence promoted spatial expansion.
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Figure 3: ABMs for capturing and predicting engineered microbial populations carrying 
synthetic gene circuits.
(A) ABM simulations of a synthetic two-species community that involves an activator and a 

repressor strain87 (top panel) successfully reproduced an experimentally observed oscillatory 

population dynamics in a microfluidic device (bottom panel). (B) ABM simulations of an 

engineered bacterial population that contains quorum-sensing regulated gene expression79 

quantitatively captured the time and pattern of the gene activation and further guided the 

design of ribosome binding site for predictable behavioral modulation.
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Figure 4: ABMs for biofilm formation and dispersal.
The top panel illustrates the layered structure of agents used in ABM-based biofilm models. 

Here, each agent (i.e., cell) excretes EPS, which results in the formation of the associated 

EPS shell as well as individual EPS agents. Each agent can also divide, representing 

cell division. The bottom panel indicates the effect of fluid flow in shaping the biofilm 

morphology.
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