Skip to main content
. 2023 Apr 14;9(4):e15435. doi: 10.1016/j.heliyon.2023.e15435

Table 4.

Baseline regress results.


(1)
(2)
(3)
(4)
(5)
Variables CS CS CS CS CS
RED −7.7830** −1.9938*** −1.4095*** −1.4082*** −1.5979***
(3.5191) (0.3109) (0.2832) (0.2864) (0.3311)
Ind_A×Covid −2.1800 −1.2441 −0.5662 −0.5034 −0.6230
(1.5750) (1.6639) (1.8950) (1.9016) (1.8458)
Ind_B×Covid −0.5644 0.8019 0.3393 0.4117 0.2167
(1.6528) (1.8069) (1.7901) (1.7951) (1.7568)
Ind_C×Covid −2.4315 −2.1316 −2.0238 −1.9528 −2.1398
(1.5209) (1.4911) (1.8077) (1.8030) (1.7717)
Ind_D×Covid −1.4479 −0.7492 −0.0954 −0.0334 −0.3481
(1.4017) (1.6357) (1.8605) (1.8667) (1.8287)
Ind_E×Covid −3.0572** −1.9132 −1.7353 −1.6551 −1.6568
(1.2074) (1.2004) (1.2976) (1.3086) (1.3004)
Ind_F×Covid −2.0665 −1.1350 −1.0586 −1.0064 −1.1539
(1.3949) (1.4577) (1.5848) (1.5928) (1.5660)
Ind_G×Covid −3.7803 −1.5673 −1.2991 −1.2425 −1.5399
(2.9955) (2.5317) (2.5488) (2.5275) (2.5176)
Ind_H×Covid −4.8961* −2.0280 −0.8999 −0.8580 −0.9823
(2.8354) (2.4643) (2.0910) (2.1084) (2.0920)
Ind_I×Covid −4.5282** −5.1026** −4.6338* −4.5393* −4.5266*
(2.2480) (2.1943) (2.4667) (2.4674) (2.4463)
Ind_K×Covid −1.8787 −0.9111 −0.9655 −0.9049 −1.0583
(1.4513) (1.3671) (1.3227) (1.3319) (1.3390)
Ind_L×Covid −2.8491 −3.0237 −2.2454 −2.1676 −2.1254
(1.9288) (2.0737) (2.2249) (2.2142) (2.2072)
Ind_M×Covid −2.3635 −1.5025 −1.8574 −1.8055 −2.0354
(2.4290) (2.4637) (2.6443) (2.6531) (2.6251)
Ind_N×Covid −3.1355** −3.5331** −3.1142* −3.0279* −3.1109*
(1.5084) (1.7278) (1.7579) (1.7655) (1.7425)
Ind_O×Covid −16.4940*** −19.4894*** −20.3734*** −20.5737*** −20.2920***
(4.1370) (4.1172) (4.0958) (4.2187) (4.3025)
Ind_P×Covid −2.0188 −4.0980 −2.4746 −2.3841 −2.2320
(2.7866) (2.7060) (2.5795) (2.5575) (2.4722)
Ind_Q×Covid 0.7891 −0.5960 −0.5514 −0.4082 −0.5683
(1.8137) (1.6223) (1.9452) (1.9649) (1.9703)
Ind_R×Covid −2.6430 −2.8260** −2.8184** −2.7779** −3.0114**
(1.6807) (1.2011) (1.2389) (1.2451) (1.2532)
Covid 0.7593 5.1412** 5.2821** 5.3969** 4.1919**
(1.3079) (2.0872) (2.3058) (2.2915) (2.0701)
Size −1.2134*** −1.3193*** −1.3716*** −1.3905***
(0.3799) (0.3936) (0.3932) (0.3922)
Age −7.6571*** −7.4608*** −7.4933*** −7.4360***
(2.0283) (1.9961) (1.9880) (2.0042)
MB 3.8607*** 2.8672*** 2.8591*** 2.8016***
(0.5800) (0.5908) (0.5935) (0.5891)
Cf 0.2746*** 0.2745*** 0.2750***
(0.0094) (0.0094) (0.0092)
PAY 0.0050 0.0053 0.0051
(0.0226) (0.0227) (0.0227)
Capx −0.0683*** −0.0685*** −0.0679***
(0.0153) (0.0153) (0.0159)
Grow 0.0001 0.0001 0.0000
(0.0021) (0.0021) (0.0021)
Bsize 1.3508** 1.4676**
(0.6217) (0.6217)
Indep 0.0057 0.0040
(0.0185) (0.0184)
PGDP 0.0830***
(0.0262)
FSIZE 0.0109***
(0.0022)
Constant 14.6852*** 46.9066*** 50.3214*** 48.3846*** 46.8732***
(2.1699) (13.4984) (13.6972) (14.2815) (13.9562)
Industry FE YES YES YES YES YES
Year FE YES YES YES YES YES
Observations 33,015 33,015 33,015 33,015 33,015
R-squared 0.0332 0.1454 0.2023 0.2025 0.2026
N 3613 3613 3613 3613 3613

Note: Standard deviations are in parentheses. *,**, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively. According to the China Securities Regulatory Commission classification, listed Chinese companies are divided into 19 industries (see Table 9 for details). We eliminate the financial industry (Ind_J); only 17 industry dummy variables are generated for the remaining 18 industries. A comprehensive industry was used as the benchmark for Sushima.