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Abstract
The rapid evolution of wearable technology in healthcare sectors has created the opportunity for people to measure their 
blood pressure (BP) using a smartwatch at any time during their daily activities. Several commercially-available wearable 
devices have recently been equipped with a BP monitoring feature. However, concerns about recalibration remain. Pulse 
transit time (PTT)-based estimation is required for initial calibration, followed by periodic recalibration. Recalibration using 
arm-cuff BP monitors is not practical during everyday activities. In this study, we investigated recalibration using PTT-based 
BP monitoring aided by a deep neural network (DNN) and validated the performance achieved with more practical wrist-
cuff BP monitors. The PTT-based prediction produced a mean absolute error (MAE) of 4.746 ± 1.529 mmHg for systolic 
blood pressure (SBP) and 3.448 ± 0.608 mmHg for diastolic blood pressure (DBP) when tested with an arm-cuff monitor 
employing recalibration. Recalibration clearly improved the performance of both DNN and conventional linear regression 
approaches. We established that the periodic recalibration performed by a wrist-worn BP monitor could be as accurate as 
that obtained with an arm-worn monitor, confirming the suitability of wrist-worn devices for everyday use. This is the first 
study to establish the potential of wrist-cuff BP monitors as a means to calibrate BP monitoring devices that can reliably 
substitute for arm-cuff BP monitors. With the use of wrist-cuff BP monitoring devices, continuous BP estimation, as well 
as frequent calibrations to ensure accurate BP monitoring, are now feasible.

Keywords Blood pressure · Recalibration · Attention mechanism · Electrocardiogram · Photoplethysmogram · MAE · 
DNN · Signal processing

1 Introduction

Blood pressure (BP) is critically important for the diagnosis 
and prevention of cardiovascular diseases [1]. BP is affected 
by the physical and environmental conditions that are able Youjung Seo, Saehim Kwon and Unang Sunarya have contributed 
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to cause fluctuations in BP levels throughout the day. There-
fore, it is essential that BP is tracked through continuous 
measurement [2]. The most accurate and direct method for 
assessing BP is through the measurement of arterial blood 
pressure (ABP) using arterial catheters [3]. However, this 
is an invasive method that increases the risk of infections; 
therefore, it is not suitable for daily monitoring. A more 
convenient and non-invasive BP monitoring method that 
has been suggested employs an oscillometric cuff-based 
approach using a sphygmomanometer to indirectly measure 
the BP via the Korotkoff sounds of the arteries as the cuff 
wrapped around the arm is deflated [4]. A disadvantage of 
this method is that users could feel discomfort due to the 
pressures exerted from the cuff while measuring the BP [5]; 
furthermore, the substantial bulk of the cuff could be viewed 
as inappropriate for daily monitoring. As a consequence, 
numerous studies have suggested a cuffless approach that 
indirectly estimates BP on a continuous basis using the 
pulse transit time (PTT), which is defined as the time delay 
between the pulse from an electrocardiograph (ECG) and 
the pulse from a photoplethysmogram (PPG) [5]. The PTT 
is usually calculated as the time interval between the ECG’s 
R wave and the peak of the PPG. The PTT has been shown 
to have a strong correlation with BP [6, 7]. Therefore, it has 
played a prominent role in the development of cuffless tech-
niques to measure BP on a continuous basis [8–11]

Although the PTT-based estimation of BP has contributed 
substantially to cuffless wearable technology for monitor-
ing BP, the majority of studies have indicated the neces-
sity for calibrating this method [12–16]. Subsequent studies 
have demonstrated the superior performance of BP estima-
tion methodologies that are based on deep neural networks 
(DNNs) using different biomedical signals. Schlesinger 
et al. [17] proposed a Siamese convolutional neural net-
work (CNN) method in which recalibration was performed 
by retraining the activation layer with the calibrated feature 
vectors that are repeatedly updated by subtracting the output 
feature vector of the pre-trained model from the calibrated 
feature vectors. Their calibration-free model exhibited a 
mean absolute difference (MAD) of 7.34 ± 8.65 mmHg 
for systolic BP (SBP) and 3.91 ± 4.48 for diastolic BP 
(DBP), whereas the calibrated model exhibited an MAD of 
5.95 ± 6.69 mmHg for SBP and 3.41 ± 3.97 mmHg for DBP. 
Song et al. [18] also proposed a recalibration system called 
“stacked DNN”, that relearns the model. In their method, 
the BP estimated from the model is concatenated with the 
subsequent features in order to recalibrate the current BP 
value. Kauchee et al. [19] proposed various machine learn-
ing models such as linear regression, decision trees, and sup-
port vector machines (SVM) for BP estimation and validated 
the improvement of accuracy using the calibration approach. 
However, all of these calibration approaches were executed 
with invasive arterial BP or from a sphygmomanometer, 

rendering them impractical in an outdoors environment. Fol-
lowing the development of wearable devices, smartwatch 
manufacturers are adopting wearable blood pressure moni-
toring systems using ECG and PPG sensors embedded in 
the smartwatches. Examples include the Samsung Galaxy 
Watch, the Apple Watch, and the Google Fitbit [20, 21]. 
However, it remains mandatory to recalibrate these smart-
watches on a regular basis, using traditional arm-cuff BP 
monitors [22]. Moreover, there is no consensus on how often 
calibration needs to be performed to ensure accurate BP 
monitoring. McCarthy et al. [23] assessed the duration for 
which blood pressure estimation remained accurate, using 
the PTT-based approach proposed by Chen et al. [24] and 
Poon et al. [9]. They concluded that Chen’s algorithm pro-
duced an accurate BP estimation for 5 min, whereas Poon’s 
algorithm sustained accurate measurements for only 2 min 
before recalibration was required.

In the present study, we propose a more practical recali-
bration approach using wearable wrist-cuff BP monitors. 
These wrist-cuff BP monitors have been proven to meas-
ure relatively accurate BPs by comparing their output with 
BPs measured by arm-cuff sphygmomanometers [25, 26]. 
The method proposed in this study consists of two steps: (1) 
BP estimation through the attention mechanism of DNNs 
presented by Eom et al. [27]; (2) a recalibration step that 
updates the model parameters based on the mean absolute 
error (MAE) between the estimation and the ground truth. 
The error trend associated with prediction pre- and post-
recalibration serves as a prerequisite for investigating the 
time interval of recalibration. The main contribution of this 
study is the demonstration that the methodology is substan-
tially more accurate and accessible in terms of practicality. 
The study validates that regular recalibration by a wrist-
mounted BP monitor is accurately performed and can serve 
as a substitute for the conventional arm-cuff BP measure-
ment and also establishes an appropriate calibration interval. 
The purpose of the study was fourfold: (1) to demonstrate 
the performance of the BP prediction model throughout the 
testing sessions; (2) to confirm that the recalibration could 
improve the accuracy of the prediction; (3) to verify how 
long the estimation remained accurate before recalibration 
was required; (4) to verify whether the wrist-cuff BP moni-
tor could replace the conventional arm-cuff BP monitor for 
the recalibration.

2  Related work

The recalibration of PTT-based BP estimation has been the 
subject of several studies [12–16]. After the initial calibra-
tion of the device, a BP estimation only remains reliable for 
a certain period, and periodic recalibration is required to 
sustain reliability in the long term [28, 29].
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A longer calibration interval reduces the accuracy of an 
estimation [30]. There is no consensus on how often a PTT-
based BP monitor should be recalibrated. Mukkamala et al. 
[31] proposed a maximum calibration period for PTT-based 
BP monitoring, suggesting different calibration intervals for 
different age groups and genders. As an example, they rec-
ommended an interval of one year for persons of age 30 and 
six months for persons of age 70. However, their predic-
tions were specifically applicable to a PTT-based estimation 
of the BP in the aorta based on measurements on the feet; 
therefore, the suggested intervals might not be suitable for 
wearable devices. Choi et al. [28] suggested predicting a 
PTT-based BP by using the Hilbert-Huang transform and 
verified that the initial calibration should be based on forty 
measurements of DBP and SBP. They obtained this result 
by testing their algorithm on carefully selected samples 
from the MIMIC database [32] which is approximately 0.32 
seconds of BP data that experimenting with time intervals 
of 30, 60, and 90 minutes for recalibrating a cuff-type BP 
monitor. Yoon et al. [33] explored how often calibration is 
required for accurate BP monitoring using the pulse arrival 
time (PAT) method and suggested that at least four recalibra-
tions of 60 s duration each are required to maintain monitor-
ing for a period of 12 h, implying a recalibration once every 
3 h on average. El-Hajj et al. [30] suggested that the use 
of PTT parameters to predict the BP would only be valid 
for one day following a calibration. However, these calibra-
tion intervals were proposed on the basis of measuring the 
ambulatory blood pressure (ABP) either by catheters or by 
using an arm-cuff BP monitor. Both of these methods could 
be detrimental to the adoption of wearable BP monitoring 
devices owing to their inconvenience while performing daily 
life tasks. In addition, feature extraction could be costly, and 
the methods require manual adjustment in order to gener-
ate accurate predictions [34]. Recently, several studies have 
suggested calibration-free BP estimation based on the recur-
rent neural networks (RNN). Maher et al. [35] proposed an 
RNN-based approach for predicting continuous BP using the 
ECG and PPG signals. However, like the other PPG-based 
algorithms, the RNN-based method is also subject to decay-
ing accuracy over time. Predictions of time-series data using 
RNNs have indicated a decrease in accuracy with an increase 
in the elapsed time from the start of the prediction [36–39]. 
Therefore, model updates require new data to maintain their 
accuracy as the time-step increases. The validity of meas-
urements produced by wrist-worn BP monitors has been 
questioned. Certain studies have claimed that such monitors 
overestimate the actual BP values because of incorrect posi-
tioning [40, 41]. Other studies were conducted to validate 
the reliability of wrist-worn sphygmomanometers. Ali et al. 
[42] observed the performance of wrist-type sphygmoma-
nometers compared with standard mercury sphygmomanom-
eters and concluded that wrist-type BP monitors produced 

highly valid measurements in obese people [42]. Kario et al. 
[43] found that wrist-type BP devices were reliable com-
pared to ABP monitoring [43]. Melvile et al. [44] examined 
the accuracy of BP measurements obtained by wrist-cuff 
monitors compared with those obtained with central intra-
arterial catheters and demonstrated that the mean errors of 
the wrist-cuff BPs post-calibration were 7.2 ± 5.1 mmHg 
for systolic BP and 4.3 ± 3.3 mmHg for diastolic BP. These 
values constituted improvements of 33% and 73% in the 
precision for SBP and DBP, respectively. The present study 
observed the prediction accuracy of PTT-based BP under 
periodic recalibration conditions and verified the accuracy 
of a wrist-based BP monitor compared with the conventional 
arm-cuff BP monitor.

3  Material and methods

3.1  Data acquisition

3.1.1  Experiment setup

The experimental setup is illustrated in Fig. 1. Twelve sub-
jects were recruited for the study at Kwangwoon University 
(eleven males and one female with ages 27.2 ± 4.1 years). 
All the participating subjects were in good health. Consent 
was obtained from all participants. They were informed 
of the purpose of the study, the methodology, the experi-
mental equipment, and the possible side effects associated 
with the experiment. Subjects with any medical conditions 
were excluded from the experiment. This experiment was 

Fig. 1  Experiment Setup. ECG and PPG signals were measured 
simultaneously. At the same time, the blood pressure was measured 
at the interval of 2 minute, alternating between the wrist cuff monitor 
and the arm cuff monitor
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approved by the Institutional Review Board of Kwangwoon 
University (IRB No.7001546-20200823-HR(SB)-008-07).

3.1.2  Experiment systems

ECG and PPG signals were measured simultaneously. 
Concomitantly, the BP was measured at intervals of 2 min, 
alternating between the wrist-cuff monitor and the arm-cuff 
monitor. A bio-potential acquisition system was utilized to 
measure the ECG and PPG signals. The system consisted 
of a bio-signal amplifier for data acquisition; ground, ref-
erence, and recording electrodes for the ECG; and wrist-
cuff and arm-cuff BP monitors. For the acquisition of lead I 
ECG signals, Ag/AgCl gold-plated cups (EL 160 Gold Cup, 
Biopac Systems inc., Goleta, CA, USA) were attached to the 
inner sides of the subject’s left and right wrists and to the 
left limb of the subject. A PPG sensor (SS4LA, Biopac Sys-
tems inc., Goleta, CA, USA) was worn on the subject’s right 
index finger. The ECG and PPG signal data were measured 
simultaneously using a BIOPAC MP36 (Biopac Systems 
inc., Goleta, CA, USA). The sampling frequency of the ECG 
and PPG signals was set to 250 Hz. Two automatic digital 
BP monitors were used to measure the blood pressure, one 
as an arm-cuff monitor and the other as a wrist-cuff monitor. 
The arm-cuff BP monitor (HEM7121, OMRON Healthcare, 
Inc. Japan) was worn on the left arm [45–47], and the wrist-
cuff BP monitor (HEM6232T, OMRON, Japan) was worn 
on the subject’s right wrist, measuring the SBP and DBP 
values. When measuring the wrist BP, the wrist-cuff moni-
tor was positioned at the same level as the heart for correct 
measurement. The blood pressure was measured at intervals 
of two minutes, alternating between the wrist- and arm-cuff 
monitors. The duration of the experiment was set to 3 h to 
ensure that a sufficient number of data were acquired to train 
and test the model. Additionally, seven sessions of physical 
exercise were included during the experiment to increase 
the variability of the BP [48–50]. All subjects were asked to 
avoid the intake of alcohol, smoking, and taking food for 30 
min prior to the experiment [51]. The experimental protocol 
is illustrated in Fig. 2. The experimental design included 
two sessions.

In the first session, the subject was in a relaxed state and 
measurements by the ECG and PPG were conducted while 
the subject sat in an armchair for twenty minutes. Arm 
and wrist BPs were measured simultaneously at intervals 
of 2 min. To ensure that the two different BP monitors did 
not affect each other, and taking into consideration that a 
single BP measurement took approximately 45 s, the first 
measurement taken by the wrist BP monitor was made 30 
s after the onset. This was followed by the second meas-
urement taken by the arm BP monitor once the wrist BP 
monitor was completely deflated. In the second session, 
subjects moved to the ergometer cycle with the sensors 
unplugged and started cycling for 4 min to elevate their BP 
[52]. After completion of the exercise, the subject returned 
to the chair to resume the measurements. The histograms 
of the measured wrist and arm BPs are depicted in Fig. 3b.

3.1.3  Data pre‑processing

The total duration of the experiment was 3 h, including 
exercise. Consequently, the datasets were 2 h 20 min long. 
Since the BP values were measured once every 2 min, 
providing 70 data labels in a dataset, a large number of 
datasets were required to train and test the DNN model 
effectively.

In order to augment the data, a window of 10 s duration 
with 1 s overlap was applied to segment the dataset. The 
BP labels were assigned as follows: for the first half of the 
2 min interval, the data were labeled with the previous 
BP, whereas for the last half of the interval, the data were 
labeled with the subsequent BP. The input segment to the 
BP estimation included 10 s ECG and PPG recordings in 
a dimension of ( 2500 × 2 ). Once the raw data had been 
collected, a second-order Butterworth band-pass filter was 
applied to remove the baseline drift and the noise of the 
data. The cut-off frequency of the ECG was between 0.5 
and 35 Hz, and that of the PPG was between 0.5 and 15 
Hz [27]. The input data before and after the Butterworth 
band-pass filtering are presented in Fig. 3a.

Fig. 2  Experiment protocol
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3.2  Proposed method

3.2.1  Deep learning algorithm

Recently, there have been several studies suggesting the use 
of a CNN-based long short-term memory (LSTM) model 
for various tasks [53]. One such task is estimation, where 
the attention mechanism has been shown to produce good 
results [54]. In this study used a deep neural network (DNN) 
inspired by Eom et al. [27], which comprises a series of 
CNN-based bi-directional gated recurrent unit (GRU) atten-
tion steps to predict the SBP and DBP. The DNN architec-
ture was implemented in Python 3.7.1 and Tensorflow 2.3.1 
environments. First, two-channel PPG and ECG data were 
fed into the CNN model as input, and spatial features were 
extracted. The CNN model consisted of ten 1D - CNN mod-
els in which batch normalization was added after each layer; 
the max pooling layer was placed after every two or three 
CNN layers to reduce the size of the data. The output size of 
the data became smaller as the number of feature maps was 
increased up to 512, with ( 31 × 512 ) features at the end of 
the CNN. Second, the spatial features of the data were fed 
into the bi-directional GRU layers to extract the temporal 
information of the data. The bidirectional GRU model used 
in this study considered a sequential relationship within the 
given time steps that learned both past information and the 
information going forward. In this study, the data contained 
thirty-one time steps, each consisting of a 512-dimensional 
vector input and 64 hidden units that output ( 31 × 128 ) 
features. Finally, an attention mechanism was applied to 

establish which vector input had been used most frequently 
to predict the output and to assign a weighted attention to 
that vector. Input vectors with a sequence of thirty-one time 
steps were trained to calculate attention score vectors, sub-
sequently calculating the attention vector by multiplying it 
with the original hidden state vectors.

3.2.2  Recalibration process

As stated earlier, periodic calibrations were necessary to 
prevent the model’s accuracy from degrading. Recalibra-
tion was performed by calibrating the training model with 
new data. The recalibration proceeded as follows: (1) the 
model predicted the BP using the test signals, and moni-
tored the MAE expressed in Eq. (1); (2) if the error of the 
predicted BP was larger than a predetermined threshold, the 
previously-trained model was retrained with the new dataset 
to predict the subsequent BP.

In this process, the initially-trained model was continu-
ally reused and updated with new information, allowing an 
accurate prediction over the long term. For recalibration, 100 
min datasets were used to estimate the BP at an interval of 
2 min; if the MAE was higher than 5 mmHg, the model was 
subjected to the training process to learn the current data 
and retain the estimation. The threshold for model retrain-
ing was set at 5 mmHg of absolute difference, in accordance 

(1)MAE =

(
1

N

) N∑

i=1

‖‖yi − ŷi
‖‖

Fig. 3  The data used for estimation of the BP. a the pre-processing 
of the input data. The top one denotes the raw signals and the bot-
tom one denotes after band-pass filtering to remove baseline drift and 

noise. b the blood pressure distribution. The left one is the distribu-
tion of the arm BP and the right one is wrist BP
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with the Association for the Advancement of the Medical 
Instrumentation (AAMI) standard 81060-2:2013 [55]. The 
overflow of the recalibration process is displayed in Fig. 5.

4  Results

After 40 min of model training using wrist-cuff BP, a test 
was conducted with the model architecture illustrated in 
Fig. 4 to predict the BP every 2 min for a total period of 
100 min. The accuracy was evaluated in terms of the MAE 
and SD, compared with the reference BP. The performance 

was evaluated under either calibrated or uncalibrated con-
ditions, using wrist-cuff BP. The test was also conducted 
using conventional arm-cuff BP to compare the accuracy 
with that of wrist-cuff BP. Finally, the test was conducted 
using the linear regression method to compare the perfor-
mance with that of the DNN approach. The overall MAE 
values associated with the BP predictions for the two cuff-
based methods, with and without recalibration, are listed 
in Tables 1 and 2. For all conditions except the arm-cuff 
DBP with the calibrated linear regression model which 
had an MAE of 4.216 ± 2.193 mmHg, the DNN model 
with the attention mechanism outperformed the PTT-based 

Fig. 4  Model architecture. The left figure shows the overall architec-
ture in training step. After training is finished, the model estimates 
SBP and DBP and monitors the MAE. If the MAE is 5 or above, the 

pre-trained model is recalled and new data set are fed in to the model 
to relearn and calibrate

Fig. 5  Overview of the process
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linear regression model. For DBP, the calibrated models for 
arm-cuff BP had MAE values of 4.233 ± 2.510 mmHg and 
4.216 ± 2.193 mmHg, which exhibited superior performance 
in comparison with the calibrated models of the wrist-cuff 
BP (the associated MAE values for the wrist-cuff BP were 
4.413 ± 2.585 mmHg and 4.516 ± 2.886 mmHg). The con-
tinuous variations as functions of time of the MAE and SD, 
for calibrated and uncalibrated conditions, are illustrated in 
Figs. 6 and 7. The blue dotted line and the shaded area rep-
resent the average MAE and standard deviation, respectively 

across the twelve experimental subjects obtained with the 
recalibration procedure, whereas the yellow line and area 
indicate the results obtained without the recalibration pro-
cedure. The results obtained for the SBP using the arm-
cuff-based predictions of the DNN model are displayed in 
Fig. 7a. First, the MAE was 3.82 mmHg at 2 min. However, 
at 12 min, it reached 5.20 mmHg, requiring the model to be 
recalibrated. The calibration was performed for 4 min from 
16 to 20 min, during which the MAE gradually dropped 
and declined to 3.06 mmHg at 20 min. The uncalibrated 
model displayed a similar pattern, generating an MAE of 
3.06 mmHg at 2 min, rising to 7.56 mmHg at 12 min before 
gradually declining to a level not much below 5 mmHg. This 
pattern of a rise and subsequent gradual decline in the error 
continued throughout the test, clarifying the effect of recali-
bration. Under the recalibration of wrist-cuff measurements, 
the accuracy improved to better than 5 mmHg, which is the 
validation standard. An MAE threshold of 5 mmHg was set 
as the maximum allowed error during the BP prediction; if 
the MAE exceeded that threshold, the recalibration proce-
dure would be conducted, using either the arm-cuff or the 
wrist-cuff BP monitor. The process of consecutive recali-
brations was restricted to five iterations. The iteration size 
was determined experimentally. The prediction performance 
of the DNN model was 4.745 ± 2.611 mmHg for SBP and 
4.233 ± 2.510 mmHg for DBP when tested with the arm-
cuff BP labels under the recalibration condition. When the 
model was tested with the wrist-cuff BP labels under the 
recalibration condition, the MAE was 4.852 ± 2.427 mmHg 

Table 1  BP prediction results in average MAE depending on two dif-
ferent cuff-based without the recalibration

Arm BP without recalibration Wrist BP without recalibra-
tion

DNN PTT DNN PTT

SBP 6.200 ±3.263 7.606 ±5.554 7.657 ±4.162 9.480 ±4.496
DBP 4.964 ±3.027 5.381 ±2.930 6.219 ±4.125 7.956 ±5.251

Table 2  BP prediction results in average MAE depending on two dif-
ferent cuff-based with the recalibration

Arm BP with recalibration Wrist BP with recalibration

DNN PTT DNN PTT

SBP 4.745 ±2.611 5.102 ±3.447 4.852 ±2.427 5.044 ±3.128
DBP 4.233 ±2.510 4.216 ±2.193 4.413 ±2.585 4.516 ±2.886

Fig. 6  Testing results of Linear regression BP prediction with and without the recalibration. a tested with arm-cuff SBP b tested with arm-cuff 
DBP c tested with wrist-cuff SBP d tested with wrist-cuff DBP
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for SBP and 4.413 ± 2.585 mmHg for DBP. These results 
demonstrated the high level of performance of the wrist-cuff 
BP monitor for the recalibration of the BP estimation model, 
whose accuracy was already reported in a previous study 
[56]. The results demonstrated that the wrist-cuff BP moni-
tor could be as accurate as the arm-cuff BP monitor. Accord-
ingly, the wrist-cuff BP monitor has the potential to be used 
to calibrate the cuffless continuous BP monitoring device, as 
a substitute for an arm-cuff BP monitor. Such a substitution 
could be convenient for BP monitoring because of its greater 
ease of wearing, compared with the arm-cuff BP monitor. 
Under the uncalibrated condition, the performance achieved 
with the arm-cuff and wrist-cuff BP monitors deteriorated 
over time. We inferred that the error might have accumulated 
as testing progressed, causing the observed deterioration. As 
a benchmarking test, we conducted a PTT-based BP estima-
tion using linear regression and compared the result with 
that of the DNN method.

The performance of the BP prediction models is illus-
trated in Figs. 6 and 7, where the MAEs associated with 
the PTT-based linear regression and the DNN are pre-
sented. The models were trained and calibrated with the 
upper arm-cuff-based BP monitors, as these are known to 
generate accurate BP readings [57]. Overall, the model in 
the recalibration condition exhibited a lower MAE than 
the model in the uncalibrated condition. The trend clearly 
shows the effect of the recalibration, as the error improved 
four times within a 100 min period. In Fig. 7, we indicate 
the error trends of SBP and DBP, respectively, estimated 

using the DNN model. In Fig. 7a, the MAE keeps increas-
ing up to a level of 5.20 ± 2.770 mmHg at 12 min, at 
which point calibration is introduced to lower the error. 
After the recalibration, the error gradually decreases to 
2.632 ± 1.474 mmHg at 24 min before increasing again, 
displaying a fluctuating pattern. In Fig. 7b, we display the 
variation in the MAE of the DBP, which is more erratic 
than that of the SBP throughout the measuring period. In 
Fig. 6a and b, we illustrate the MAEs of the SBP and DBP, 
estimated by the linear regression model using the PTT 
calculated from the ECG and PPG signals. We display the 
negative correlation between PTT and BP [7] in Fig. 8. 
The PTT was calculated from the interval between the R 
peak of the ECG and the peak of the PPG detected by the 
Pan-Tompkins algorithm [58]. We considered the trend 
despite a few automated detection errors. Due to the pos-
sibility of the errors, the proposed method does not depend 
on the peak detection, but the raw data itself using the 
data-driven neural network architecture. However, A linear 
regression model that requires the extraction of features 
from ECG and PPG signals is more difficult to implement 
in order to calculate PTT. Furthermore, the linear regres-
sion yields higher values of the MAE and STD compared 
with the DNN, for both SBP and DBP, with and without 
recalibration. The performance was inferior to the DNN. 
Overall, the recalibration procedure improved the perfor-
mance under all conditions. The DNN model performed 
better than linear regression except for one condition, 
shown in Fig. 6b and Fig. 7b, where the linear regression 

Fig. 7  Testing results of DNN BP prediction with and without the recalibration. a tested with arm-cuff SBP b tested with arm-cuff DBP c tested 
with wrist-cuff SBP d tested with wrist-cuff DBP
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model achieved a value of 4.216 ± 2.193 mmHg, compared 
with 4.233 ± 2.510 for the DNN model.

Generally there is a significant difference between the 
results achieved by the linear regression model with and 
without recalibration, compared with the DNN model. We 
present a comparison of wrist-cuff-based BP estimation 
under calibrated and uncalibrated conditions, respectively, 
throughout the 100 min test, in Fig. 9. The reference BP 
was accurately predicted under the calibrated condition, 
whereas an accurate prediction reflecting the trend change 
of the target BP was not achieved under the uncalibrated 
condition. The prediction under the calibrated condition cor-
responded to the reference value, especially in the variation 
of the elevation and decline of the BP. Specifically, the SBP 
presented a pattern consisting of a sharp rise followed by a 
gradual decline. This behavior resulted from the multiple 
exercise sessions included in the experiment with the aim 
of increasing the participant’s BP. The estimated DBP also 

accurately tracked the reference BP. The DBP displayed a 
tendency to remain at constant levels regardless of physical 
activity, showing no clear elevation after exercise. The DBP 
did not display the same degree of periodic behavior as the 
SBP [59, 60]. In Table 3, The T-test was performed to assess 
the statistical significance of MAE changes with or without 
recalibration. The p-values of the DNN-based approach were 
under 0.05 on both arm and wrist cuff monitors, giving a sig-
nificant difference in recalibration. The p-values of the lin-
ear regression-based approach were also significant, though 
wrist DBP was shown to exceed its significance level. How-
ever, studies have shown that PTT-based prediction could 
be unreliable [61, 62], and not a good reference for blood 
pressure measurement.

4.1  Benchmarking results compared 
with the related works

The results obtained with the models used in related stud-
ies are listed in Table 4. Whereas [63–66] utilized datasets 
recorded during the resting states of the subjects, the sub-
jects in [67] and [68] exercised during the experiment to 
cause a variation of BP. Simjanoska et al.[63] and Kachuee 
et al.[64] used features with conventional machine learn-
ing classifiers. Notwithstanding the sophisticated feature-
engineering procedures for the BP estimation, the proposed 
approach based on raw data to reduce the effort demanded 
for the feature extraction yielded improved results. The 
deep learning architectures proposed by Aguirre et al.[65] 
and Slapničar et al.[66] using the raw data did not generate 
results superior to those of the proposed model. Dastjerdi 
et al.[67] and José M et al.[68] demonstrated that BP estima-
tion using the linear regression model could generate results 
superior to those of our linear regression model without 
recalibration; however, with the inclusion of recalibration, 
our linear regression generated superior results.

5  Discussion

The purpose of this study was to demonstrate the perfor-
mance of a cuffless BP monitoring device using wrist-
cuff calibration for continuous BP monitoring during 
daily life tasks, taking advantage of the convenience of 
the wrist-cuff BP monitor. The recalibration was con-
firmed as a necessary procedure to ensure accurate BP 
readings by the cuffless BP monitoring system. In par-
ticular, regular calibration with an arm-cuff BP monitor 
is highly recommended for the continuous cuffless BP 
monitoring functions embedded in recent off-the-shelf 
smart devices. However, there is no universal standard 
for the recalibration interval. A continuous recalibration 

Fig. 8  Scatter plots between PTT and BP (a SBP, b DBP). note the 
negative correlation between PTT and BP
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using a wrist-cuff BP could be feasible due to the recent 
development of wearable wrist-cuff-based BP monitors 
(for example, the Omron wearable blood pressure moni-
tor [69]) [70]. However, these wrist-cuff BP monitors 
only generate results intermittently, leading to a time 

delay between BP estimates. The approach proposed in 
this study could overcome this drawback and provide 
more reliable continuous BP estimation compared with 
previous methods.

Fig. 9  Comparison of the wrist-cuff-based BP estimation in the recal-
ibrated and uncalibrated conditions for 100 minutes. a tested using 
the wrist-cuff SBP with the recalibration b tested using the wrist-cuff 

DBP with the recalibration c tested using the wrist-cuff SBP without 
the recalibration d tested using the wrist-cuff DBP without the recali-
bration

Table 3  T test was conducted 
to verify if the MAE of the 
recalibration is statistically 
different from that of 
uncalibrated condition, and to 
argue that the recalibrated wrist 
monitor can effectively predict 
the BP. It was tested for both 
arm and wrist BP

Deep Neural Networks Linear regression

t p value lower CI upper CI t p value lower CI upper CI

Arm calibration(Systolic) 2.817 0.024 − 6.657 −0.073 2.912 0.016 − 9.179 7.647
Arm calibration(Diastolic) 2.332 0.031 − 5.657 −0.577 1.985 0.06 − 5.299 0.889
Wrist calibration(Systolic) 2.682 0.02 − 6.553 2.593 2.256 0.037 − 8.928 8.035
Wrist calibration(Diastolic) 2.359 0.043 − 5.451 0.771 2.17 0.054 − 7.95 1.25
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6  Conclusion

We proposed a novel deep learning architecture based on 
the CNN-BiGRU-Attention mechanism to estimate SBP 
and DBP accurately using a wrist-worn BP monitor. The 
model was first trained with ECG and PPG signals as input 
and arm BPs as labels. During the testing, the model was 
recalibrated when the difference between the prediction 
and the ground truth rose above 5 mmHg, in accordance 
with AAMI standards. We tested the linear regression and 
DNN models with and without recalibration. Both mod-
els performed better with recalibration. The DNN model 
outperformed the linear regression model. We found that 
periodic recalibration with the wrist-cuff BP produced BP 
measurements as accurate as those obtained with arm-cuff 
BP monitors.
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