Table 4.
Benchmarking results compared with the related works
Method | Input | SBP | DBP | |
---|---|---|---|---|
Inputs | Signal | Error | Error | |
Machine Learning [63] | Feature | ECG | MAE : 7.72 | MAE : 9.45 |
AdaBoost [64] | Feature | ECG PPG | MAE : 8.21 STD : 5.43 | MAE : 4.31 STD : 3.52 |
Seq2seq+Attention [65] | raw | PPG | MAE : 12.08 STD : 15.67 | MAE : 5.56 STD : 7.32 |
ResNet-GRU [66] | raw | PPG | MAE : 9.43 | MAE : 6.88 |
Linear regression [67] | Feature (PTT) | PCG PPG | MAE : 7.47 STD : 11.08 | MAE : 3.56 STD : 4.53 |
Linear regression [68] | Feature (PAT) | ECG PPG | MAE : 7.78 | MAE : 4.21 |
Linear regression with the recalibration (Proposed) | Feature (PTT) | ECG PPG | MAE : 5.10 STD : 3.45 | MAE : 4.22 STD : 2.19 |
CNN+Bi-GRU+Attention with the recalibration (Proposed) | raw | MAE : 4.75 STD : 2.61 | MAE : 4.23 STD : 2.51 |