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A B S T R A C T   

Anthropogenic heat (AH) is an important input for the urban thermal environment. While reduction in AH during 
the Coronavirus disease 2019 (COVID-19) pandemic may have weakened urban heat islands (UHI), quantitative 
assessments on this are lacking. Here, a new AH estimation method based on a remote sensing surface energy 
balance (RS-SEB) without hysteresis from heat storage was proposed to clarify the effects of COVID-19 control 
measures on AH. To weaken the impact of shadows, a simple and novel calibration method was developed to 
estimate the SEB in multiple regions and periods. To overcome the hysteresis of AH caused by heat storage, RS- 
SEB was combined with an inventory-based model and thermal stability analysis framework. The resulting AH 
was consistent with the latest global AH dataset and had a much higher spatial resolution, providing objective 
and refined features of human activities during the pandemic. Our study of four Chinese megacities (Wuhan, 
Shanghai, Beijing, and Guangzhou) indicated that COVID-19 control measures severely restricted human ac-
tivities and notably reduced AH. The reduction was up to 50% in Wuhan during the lockdown in February 2020 
and gradually decreased after the lockdown was eased in April 2020, similar to that in Shanghai during the Level 
1 pandemic response. In contrast, AH was less reduced in Guangzhou during the same period and increased in 
Beijing owing to extended central heating use in winter. AH decreased more in urban centers and the change in 
AH varied in terms of urban land use between cities and periods. Although UHI changes during the COVID-19 
pandemic cannot be entirely attributed to AH changes, the considerable reduction in AH is an important 
feature accompanying the weakening of the UHI.   

1. Introduction 

The coronavirus disease 2019 (COVID-19) caused by the severe acute 
respiratory syndrome coronavirus triggered a global public health 
disaster in late December 2019 (Li et al., 2020; Zhou et al., 2021). 
Approximately 529 million confirmed cases and >6,299,000 deaths 
were reported worldwide by June 6, 2022 (WHO, 2022). China was the 
first country hit by the virus and a strict lockdown was implemented on 
January 23, 2020 in Wuhan, where the pandemic first occurred, to curb 
the spread of the virus (Zhou et al., 2021). The Wuhan lockdown was the 
first in modern public health history in a megacity with a population of 
>10 million. China also raised the national public health response to the 

highest level of emergency, involving measures that suspended public 
transportation and entertainment and restricted non-essential activities 
and production to minimize the movement and gathering of people 
(Tian et al., 2020; Wang et al., 2020; Wilder-Smith and Freedman, 
2020). Such lockdown and control measures effectively prevented the 
spread of the virus and avoided further infections (Atalan, 2020; Tian 
et al., 2020). The COVID-19 pandemic forced most countries to imple-
ment similar national control measures as China from March 2020 (Bar 
et al., 2021; Pal et al., 2021; Tosepu et al., 2020). Although the COVID- 
19 control measures caused a global economic recession (The World 
Bank, 2020), they also resulted in temporary improvements in regional 
ecology (Bauwens et al., 2020; Liu et al., 2022b). 
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Transportation and industrial activities were considerably reduced 
during the lockdown and subsequent control measures, with a decrease 
in greenhouse gases, air pollutants, and aerosols, thus improving city air 
quality (He et al., 2020; Muhammad et al., 2020). Wang and Su (2020) 
observed lower concentrations of air pollutants (NO2, CO, SO2, and 
PM2.5) in China during this time, with this trend beginning in Wuhan 
and spreading across the country, being strongly associated with travel 
restrictions (Bao and Zhang, 2020). Similar improvements in air quality 
were observed in Europe, America, India, Korea, Japan, and Russia (Bar 
et al., 2021; Ju et al., 2021; Wang and Li, 2021). Decreased atmospheric 
pollution not only mitigates respiratory diseases (Nicola et al., 2020; 
Sannino et al., 2021) but also affects the urban surface and atmospheric 
radiation balance. Higher daytime surface temperatures were expected 
during the lockdown in some cities because of air quality optimization, 
which increases the incident solar radiation (Parida et al., 2021; Shep-
herd, 2022). Surprisingly, several studies indicated significant re-
ductions in surface temperature and urban heat island (UHI) intensity in 
China (Liu et al., 2022b), Europe, the United States (Parida et al., 2021), 
Middle East (El Kenawy et al., 2021), and India (Nanda et al., 2021) 
during the pandemic controls. Most studies attributed the UHI weak-
ening to anthropogenic heat (AH) reduction caused by limited human 
activities; however, this has not been confirmed through quantitative 
AH studies during the pandemic are lacking. Therefore, the intensity of 
AH and its spatial distribution changes are still unknown in this anom-
alous period (Pal et al., 2021; Shepherd, 2022). Changes in the urban 
thermal environment are complicated, and various potential influencing 
factors should be clarified to analyze this process (Liao et al., 2017; 
Meng et al., 2022; Zhou et al., 2014). The COVID-19 epidemic caused an 
unprecedented anomalous scenario for urban thermal environments and 
AH is key to interpreting the characteristics of UHI changes due to the 
pandemic control measures. 

AH is a source term in the urban energy balance and plays a vital role 
in urban climates (Nie et al., 2014; Zhou et al., 2012). Direct measure-
ment of AH is challenging, but various estimation methods have been 
proposed, including the inventory-based method, surface energy bal-
ance (SEB) method, and building energy simulation (Grimmond, 1992; 
Sailor, 2011). AH is defined differently by the various methods. The 
inventory-based method assumes that heat from energy consumption is 
instantaneously emitted into the atmosphere, ignoring the hysteresis in 
heat release (Kotthaus and Grimmond, 2012; Smith et al., 2009). In 
contrast, the SEB method assesses the AH transferred and absorbed 
through the building envelope and released into the atmosphere via 
turbulent heat fluxes, long-wave radiation, etc. (Liu et al., 2022a). The 
AH of these two methods is similar on longer time scales but inconsistent 
on shorter, sub-daily scales (Offerle et al., 2005; Pigeon et al., 2007). The 
reason for these differences could be the large heat storage owing to the 
thermal inertia of building materials (Liu et al., 2022a; Oke et al., 1999). 
The net rate of change in heat storage (ΔS) reflects the net absorption or 
release of energy, hereinafter as heat storage. Its role in urban areas is 
more notable than that in rural areas because of the differences in 
thermal properties, which is also an important factor contributing to 
UHI (Lindberg et al., 2020; Ramamurthy and Bou-Zeid, 2017). The non- 
negligible changes in heat storage caused by AH within urban areas 
(Grimmond and Oke, 1999; Yu et al., 2021) results in a hysteresis be-
tween AH emissions and urban temperature changes, which is contained 
in the residuals of the SEB. 

The remote-sensing surface energy balance (RS-SEB) model pro-
posed by Kato and Yamaguchi (2005) for AH estimation is a classical 
method, but the urban center AH based on this method is generally 
lower than that of the inventory-based method (Wong et al., 2015; Yu 
et al., 2021; Zhou et al., 2012). A major reason for this underestimation 
is the hysteresis of heat storage, as mentioned previously. In addition, 
the decrease in land surface temperature and albedo owing to building 
shadow could contribute to the partial AH underestimation of RS-SEB 
(Yu et al., 2021). The AH estimated from the RS-SEB cannot directly 
reflect human activities and energy consumption in comparison with the 

inventory-based method (Allen et al., 2011; Dong et al., 2017), which 
has advanced considerably in recent years owing to machine learning 
and big data techniques (Liu et al., 2021b; Ming et al., 2022; Qian et al., 
2022; Xu et al., 2021). However, during COVID-19 control measures, the 
inventory-based method was limited by insufficient data and empirical 
reliance, while RS-SEB could reflect the surface energy composition 
more objectively based on remote sensing images and meteorological 
conditions. Thus RS-SEB is a universal method for obtaining high- 
resolution AH (Yu et al., 2021), but the influence of ΔS needs to be 
avoided to more intuitively reflect AH changes induced by human ac-
tivity anomalies during the COVID-19 pandemic. A combination of 
different AH estimation methods could be a potential solution (Chow 
et al., 2014; Wang et al., 2022; Zheng and Weng, 2018). In addition, the 
reduction in air pollutants during the pandemic slightly enhanced the 
solar radiation reaching the surface, yet the UHI showed an anomalous 
decreasing trend in most areas. And from the perspective of the more 
sensitive AH during the COVID-19 lockdown, this anomalous scenario is 
an excellent opportunity to explore the impact of human activities on the 
urban thermal environment. 

This study focused on the period of the COVID-19 pandemic to 1) 
develop a high-resolution AH estimation method applicable to scenarios 
of various human activities, 2) explore the spatiotemporal characteris-
tics of AH during COVID-19 control measures, and 3) investigate the 
association between AH and UHI during the lockdown. This study was 
conducted in four Chinese megacities (Beijing, Shanghai, Wuhan, and 
Guangzhou) before and after the pandemic. 

2. Study area and data set 

2.1. Study areas 

Wuhan, located in central China, is the capital of Hubei Province and 
has a population of over 12 million. As the first city to report COVID-19 
cases, Wuhan adopted the strictest lockdown measures on January 23, 
2020 (Tian et al., 2020), involving the suspension of most socioeco-
nomic activities and residential closures. After March 20, 2020, the city 
resumed work and production and the roadblocks that isolated Wuhan 
from the rest of the country were eased on April 8. Moreover, Beijing, 
Shanghai, and Guangzhou, three of China's most populous, largest, and 
powerful cities, also faced considerable impacts of the COVID-19 
pandemic in early 2020. Therefore, lockdowns similar but relatively 
more lenient to that in Wuhan were adopted. Work and production 
gradually resumed around February 9 in most areas except Hubei 
Province, but a long term Level 1 response to public health emergencies 
was maintained (National Health Commission of the People's Republic 
of China, 2020). These four megacities are typical cases of AH studies 
during the pandemic. Owing to limitations in RS image availability, only 
urban centers and cloud-free moments were used for this study (Fig. 1a). 

The development of the pandemic in these four cities is illustrated in 
Fig. 1b. Note that to distinguish the different lockdown stages, “lock-
down” in the following text only refers to the strictest control measures 
taken in Wuhan and Hubei Province at the beginning of the pandemic. 
The pandemic control measures of other cities or other periods will be 
called “L1 response”. 

2.2. Data set 

Landsat-8 Collection 2 Level 2 and Level 1 cloud-free data covering 
multiple temporal phases for the study area, Tokyo, and Seoul, for a total 
of 32 scenes (Table A1), were provided by the United States Geological 
Survey (https://earthexplorer.usgs.gov). Level 2 products included 
surface reflectance and surface temperature. For the not available part of 
Level 2 products, radiation calibration, atmospheric correction, and 
surface temperature retrieval were performed based on Level 1 products 
to obtain the corresponding data. Landsat-8 data were used to calculate 
the SEB parameters and land cover classification. NASA digital elevation 
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model (DEM) derived from the Shuttle Radar Topography Mission with a 
global 1 arc-second spacing (NASA JPL, 2020) was used to determine the 
surface altitude for calculating the relevant parameters. Finally, 
MOD11A1 daytime surface temperature data covering Wuhan were used 
to calculate the UHI intensity for the corresponding month, which was 
obtained from the LAADS website (https://ladsweb.nascom.nasa.gov). 

The meteorological data used for the SEB modeling included station 
observation data and the ERA5 hourly atmospheric reanalysis dataset 
corresponding to the time of satellite passing. Meteorological station 
data were hourly/sub-hourly observations from the National Centers for 
Environmental Information (NCEI GIS Team, 2021), including air tem-
perature, wind speed, and dew-point temperature. ERA5 provides 
hourly space-continuous air temperature, wind speed, dew-point, and 
downwelling shortwave radiation at a spatial resolution of 31 km 
(Muñoz Sabater, 2019). The reanalysis data were corrected based on the 
average between the station data and reanalysis raster pixel values at the 
corresponding locations (Eq. (B.5)). Due to the absence of shortwave 
radiation observations, the reanalysis data were used directly, while 

relative humidity was estimated from air temperature and dew point. 
Energy consumption, socio-economic statistics, points of interest, 

road networks, night-lights, normalized vegetation index, and other 
multi-source data were used to construct the machine learning model 
based on the energy inventory method in Section 3.1. The data source 
and pre-processing were based on a previous study (Qian et al., 2022) 
where the data closest to the moment of satellite passing were selected. 
In addition, population heat maps representing the spatial aggregation 
of the population at different times of the day of the four cities were 
obtained based on the Baidu Huiyan big data platform (https://huiyan. 
baidu.com) for the hourly details of the inventory-based AH. The details 
and sources of the data used in the inventory-based method can be found 
in Table A2. 

3. Methods 

Here, we developed a new AH estimation method with high- 
resolution (see the workflow in Fig. 2) and four sections:1) inventory- 

Fig. 1. (a) Study area locations and albedo; (b) COVID-19 incidences in the four cities in early 2020 and important time points for pandemic control.  
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based AH estimation combined with machine learning, 2) initial RS-SEB 
model construction, 3) shadow calibration of the initial RS-SEB model, 
and 4) adjustment of the ΔS impact on the estimated AH of RS-SEB. The 
inputs and outputs for each workflow in the study and some of the key 
abbreviations appearing are described in Table 1. 

3.1. Inventory-based AH estimation 

The inventory-based method assesses the heat directly generated by 
energy consumption without hysteresis from ΔS, which corresponds to 
the intensity of human activity within the city. Therefore, the results of 
this method can provide a reference for RS-SEB adjustments. The top- 
down inventory method is based on large-scale energy consumption, 
which is subsequently assigned to smaller spatiotemporal scales based 
on empirical laws (Allen et al., 2011; Flanner, 2009; Jin et al., 2019; Lu 
et al., 2017). We proposed a coarse-resolution (500 m) AH model 
combined with energy inventory and machine learning (Qian et al., 
2022). The model was based on multi-source data and machine learning 
algorithms, which not only improve the efficiency of AH estimation but 
provide a more refined representation of the spatiotemporal character-
istics of AH from different sources (building, transportation, industrial 
heat). More information can be found in the original paper (Qian et al., 
2022). Meanwhile, to obtain a more accurate AH close to the moment of 
satellite passing and avoid reconstructing the multiple years model, we 
replaced the original data of the model with data corresponding to the 
study temporal phase and supplemented the AH of Beijing based on the 
original modeling process. The hourly AH was derived from the hourly 

profile factors and the monthly AH results obtained from the model, as 
shown in Eqs. (1)–(3): 

AHm
Inv = ModelE(Input) (1)  

AHh
Inv = fh− BT • AHm

BT + fh− I • AHm
I (2)  

fh− BT =
POPheath

1 /24
∑23

0
POPheath

(3)  

where AHm
Inv is the monthly multi-source AH derived from the model 

(ModelE) based on the energy inventory method and machine learning 
proposed in the previous study (Qian et al., 2022) and can be divided 
into monthly industrial heat AHm

I and building and transportation heat 
AHm

BT; AHh
Inv is the hourly mean anthropogenic heat for the time corre-

sponding to the passage of Landsat 8; fh− I (%) is the hourly factor of 
industrial heat based on previous studies (Liu et al., 2021b; Zheng and 
Weng, 2018); fh− BT (%) is the hourly factor estimated from the gridded 
hourly population heat value (POPheath), which depicts the distribution 
of people in the city in real-time based on the geographic location of cell 
phone users, which is one of the products of geographic big data and can 
effectively reflect the dynamic changes of the population (Lin et al., 
2020). This study applied the hourly relative population heat values for 
each grid to reflect the intra-day variation of human activity intensity 
(Eq. (3)), which provides a reasonable basis for the estimation of hourly 
profiles of building and transportation heat. AHh

Inv is the hourly average 

Fig. 2. Workflow of the study method. Rn: Net radiation; H: Sensible heat flux; LE: Latent heat flux; G: Ground heat flux; AH: Anthropogenic heat flux; SAA: Solar 
altitude angle; ML: Machine learning. 
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value of the satellite crossing moment, which can express the instanta-
neous value of the AH at that moment given that AH does not vary much 
within one hour (Dong et al., 2017; Liu et al., 2021b). AHh

Inv will be 
applied to the heat storage adjustment of the RS-SEB in Section 3.3.2. 

3.2. Initial RS-SEB model 

AH was initially estimated for four Chinese megacities based on the 
classical RS-SEB model (Kato and Yamaguchi, 2005; Kato and Yama-
guchi, 2007; Zhou et al., 2012). The basic assumption of this method is 
that AH contributes only to the sensible heat flux; therefore, the results 
obtained by this method are the increases in sensible heat due to AH: 

AHSEB = H − (Rn − G − LE) = H − Hn (4)  

where Rn is the net radiation, AH is the anthropogenic heat flux, H is the 
sensible heat flux, Hn is the sensible heat flux resulting from the radia-
tive heat balance, and LE is the latent heat flux. In the case of no AH 
impact, the ground heat flux or conductive heat flux (G) is equivalent to 
the heat storage ΔS (Sun et al., 2017; Yu et al., 2021). 

However, all other terms in the RS-SEB except sensible heat are also 
perturbed by AH but to a lesser extent (Kato and Yamaguchi, 2005), so 
the assumption of the RS-SEB model is not valid in reality but is still a 
relatively reasonable simplification in dry surface conditions. One of the 
most notable problems arising from this simplification is AH underes-
timation due to stronger ΔS in the urban center (Liu et al., 2022a; Yu 
et al., 2021; Zhou et al., 2012). The SEB equation considering the ΔS 
perturbation is as follows: 

Rn + AH = H + LE + (G + AHΔS) (5)  

where AHΔS is the perturbation of ΔS caused by anthropogenic heat, 
meaning the hysteresis between temperature change and heat emission. 
If AHΔS can be determined, then the value of AH can be calculated more 
accurately. However, currently, AHSEB based on Eq. (4) cannot reflect 
the real heat generated by human activities owing to the hysteresis effect 
of ΔS, meaning that a part of the heat is stored during the day and 

released at night (Kato and Yamaguchi, 2007). Hysteresis can greatly 
interfere with the determination of AH during the COVID-19 pandemic, 
making it difficult to quantify variations in human activities under 
control measures. In addition, the overestimation of the temperature in 
shadowed areas may lead to an underestimation of H directly affecting 
the AH values and interfering with the adjustment of the ΔS impacts. 
Details of the initial RS-SEB modeling are shown in Appendix B. 

3.3. AH adjustment of RS-SEB 

3.3.1. Calibration for shadows 
The surface temperature obtained from remote sensing is lower in 

shaded areas of medium/high-rise buildings (Kato and Yamaguchi, 
2005), but coarse-resolution meteorological data cannot reflect air 
temperature decrease in shadowed areas, resulting in an underestima-
tion of H in urban areas, eventually interfering with AH estimation. 
Here, a simple calibration procedure was established based on the idea 
that the building shadow interference decreases with an increasing solar 
altitude angle (SAA). The difference in the H values between mid/high- 
rise and low-rise buildings at the image scale would change with the SAA 
under the assumption of no shadowing in low-rise buildings. The rela-
tive percentage of this difference (Rl− h) was calculated at the image 
scale, and an empirical relation was established with the SAA at the 
corresponding moment of the remote sensing image: 

Hlr = δlr
S2H

′

lr (6)  

Hhr = δhr
S1δhr

S2H ′

hr = δhr
S1βδlr

S2H ′

hr (7)  

Rl− h =
Hlr − Hhr

Hlr
=

(
H′

lr − δhr
S1βH ′

hr

)

H ′

lr

(8)  

where Hlr and Hhr are the mean values of sensible heat for low-rise and 
mid/high-rise buildings in the image respectively; H′ is the ideal sensible 
heat that is not perturbed by shadows; δhr

S1 are shadow perturbation 
terms (%) of H in mid/high-rise buildings; δlr

S2 and δhr
S2 are ΔS pertur-

bation terms (%) caused by AH in low-rise and mid/high-rise buildings, 
respectively. β = δhr

S2/δlr
S2 is a constant value in this study (Appendix B), 

implying that the δhr
S2 characteristics were preserved without producing 

new perturbations when shadow calibration was applied to mid/high- 
rise buildings. Furthermore, Rl− h can be expressed as a function asso-
ciated with the SAA: 

Rl− h = 1 − (f1(SAA) + ε1 )*β
H ′

hr

H ′

lr

= f2(SAA) + ε2 (9)  

where ε is the error term and the final function f2(SAA) was fitted based 
on experiments in different regions and periods (Fig. 3). Although the 
coefficient of determination R2 was approximately 0.37, there was a 
significant negative linear correlation between Rl− h and SAA (p < 0.001) 
for calibrating the H of mid/high-rise buildings. 

Rd
SS = f2(1) + εd

2 (10)  

Hns
hr =

1
n

∑n

i=1
wi
(
Hi

lr − Hi
lrR

d
SS

)
(11)  

AHns
hr =

(
Hns

hr + LE + G
)
− Rn (12) 

Where Rd
SS is the ideal percentage difference of sample image d when 

the SAA (normalized) reaches a maximum of 1; εd
2 is the error term 

unrelated to shadow impacts; Hns
hr is the calibrated mid/high-rise build-

ing sensible heat on a pixel scale (if the calibrated value is lower than the 
pre-calibration value, the initial value is maintained, representing the 
unshaded image pixels); wi is the inverse distance weight; n is the nearest 
low-rise pixel number of the mid/high-rise building pixels; and AHns

hr is 

Table 1 
Overall workflow information.  

Workflow Input Key parameters Output 

Initial RS-SEB 
model 

Meteorological data, 
multispectral remote 
sensing data 

H: sensible heat flux. Rn: net 
radiation. 
G: Ground heat flux. LE: 
latent heat flux. 
LULC: land use and land 
cover. 

AHSEB 

Inventory- 
based model 

Multi-source data 
(Table A2) 

fh− BT : hourly factor of 
building and transportation 
heat. 
fh− I: hourly factor of 
industrial heat. 

AHInv 

Calibration for 
shadow 

AHSEB 

(H, Rn, G, LE), 
LULC 

Rl− h: the difference in H 
between low-rise and mid/ 
high-rise buildings in 
percentage. 
Rd

SS : ideal percentage 
difference in the subsolar 
point assumption. 
SAA: Solar altitude angle. 

AHns 

Adjustment for 
heat storage 

AHInv, AHns, 
LULC 

ra/rg: relative efficiency of 
energy dissipation by heat 
storage compared to 
sensible heat. 
ci: adjustment factor of AH. 
μi: relative impact of ΔS on 
AH compared to H. 
AHGrid

ΔS : the ΔS perturbation 
caused by AH in the 
sampled grid. 

AH  
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the anthropogenic heat of mid/high-rise buildings after shadow cali-
bration. The impact of shadow on H is a highly complex matter, which 
requires consideration of various factors, such as the building 
morphology, envelope structure, and shadow area separation, thus a 
more precise physical solution is a future focus to be addressed. At the 
same time, our method can be a more appropriate solution in case of 
insufficient experimental conditions. For instance, in the case of 
exploratory and comparative studies, such as the present study, which 
has less stringent requirements for absolute values, the great applica-
bility of this method enables it to meet and support the AH studies with 
multiple scenarios. 

3.3.2. Adjustment for heat storage 
The heat generated by energy consumption with human activities 

(AHInv) is regarded as a common definition of AH because of the 
extensive applications of inventory-based methods, while the low AHSEB 

in urban centers is considered an underestimation (Kato and Yamaguchi, 
2005; Yu et al., 2021). However, not all the heat generated by human 
activities is instantaneously released into the atmosphere. In addition to 
the turbulent sensible heat exchange, expressed as the temperature 
change, AH may also be dissipated by long-wave radiation, latent heat, 

and heat storage (ΔS). In particular, ΔS has an important effect in urban 
built-up areas due to the thermal inertia of massive building materials 
(Grimmond and Oke, 1999; Roberts et al., 2006), the main reason for the 
hysteresis in AH conduction under the dry surface assumption, which 
leads to the difference between AHInv and AHSEB (Liu et al., 2022a; Yu 
et al., 2021). Thus, AHSEB represents the increase in instantaneous 
sensible heat owing to AH, which is affected by the hysteresis of ΔS, 
while AHInv is the actual heat generated by human activities (Fig. 4a). 
The different representations of AH obtained by the two methods are 
reasonable in various scenarios. 

In anomalous scenarios such as the COVID-19 pandemic lockdown or 
instances of war, the reliance on data and empirical laws reduces the 
applicability of inventory-based methods, and coupled with its coarse 
resolution, renders it unable to properly reflect anomalous AH features. 
Thus, we attempted to monitor AH changes during the pandemic using 
the RS-SEB model, which is more generalizable owing to lower data 
requirements. However, the hysteresis of AH release due to ΔS interferes 
with these results. We planned to determine the ΔS perturbations caused 
by anthropogenic heat (AHΔS) in normal scenarios using the hysteresis- 
free AHInv as a reference (Fig. 4b). This was followed by an adjustment of 
the AHSEB (after shadow calibration) in combination with the relative 
efficiency of ΔS from the thermal stability analysis framework (Yu et al., 
2021) and eventually extended to the anomalous scenario (Fig. 5). The 
thermal stability analysis framework based on the force-restore 
approach (Bateni and Entekhabi, 2012; Johnson et al., 1991) was used 
to quantify the relative efficiencies of the SEB components. Yu et al. 
(2021) proposed a stability analysis framework applied to AH pertur-
bations to surface temperature: 

dδTs

dτ = −

(

1 +
ra

ro
+ β

δq

γ
+

ra

rg

)

δTs + Q′ (13)  

where δTs is the surface temperature perturbation (K) caused by AH; τ is 
the nondimensional time scale; ra

ro
, β δq

γ , and ra
rg 

represent the relative ef-
ficiency of energy dissipation by long-wave radiation, latent heat, and 
heat storage, respectively, compared to sensible heat; and Q′ is the in-
dependent term of δTs. Here, rg represents the conductive heat resistance 
of the surface, depending on the thermal inertia of the material. More 
information on the framework and ra/rg calculations can be found in 
Appendix B. ra/rg can be understood simply as the ΔS efficiency but it is 
difficult to apply directly to urban areas where ΔS is stronger and more 

Fig. 3. Regression of sensible heat percentage difference between mid/high- 
rise and low-rise buildings with solar altitude angle. 

Fig. 4. (a) Differences in anthropogenic heat (AH) estimated by the inventory-based method and remote sensing surface energy balance (RS-SEB); (b) Adjustment of 
AH from RS-SEB based on coarse resolution AH from the inventory-based method, LULC represents land use and land cover for ra/rg calculation. 
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complicated. Here, AHSEB was adjusted based on the relative values of 
ra/rg within the sampling grid corresponding to the AHInv as a reference. 
The adjustment scheme is illustrated as follows (Fig. 5): 

AHi = AHns
i + ci

[
¯AHInv −

(
αHRĀHns

HR + αLR ¯AHLR + αR ¯AHR + αI ¯AHI
) ]

Grid

= AHns
i + ciAHGrid

ΔS

(14)  

ci =

(
ra

rg

)

i

/
∑n

j=1

(
ra

rg

)

j

1
n

(15)  

where AHi is the adjusted anthropogenic heat of pixel i; AHns
i is the 

AHSEB after shadow calibration; ci is the adjustment factor of the cor-
responding pixel; Grid is the sampling grid where pixel i is located; n is 
the number of pixels in the grid; ¯AHInv is the mean anthropogenic heat of 
the inventory-based method in the grid; ĀHns

HR, ¯AHLR, ¯AHR, and ¯AHI are 
mean AHSEB for mid/high-rise (shadow-calibrated), low-rise, roads, and 
factories in the grid, respectively; α is the proportion (%) of the corre-
sponding land cover types in the grid; and AHGrid

ΔS represents the ΔS 
perturbation caused by AH in the sampled grid and the grid is not 
adjusted for AHGrid

ΔS <0. 
To avoid disturbance of the AHSEB, the AHGrid

ΔS and ci calculated in 
normal scenarios were not directly used in the anomalous scenarios. 
Considering the similarity of land cover and meteorological conditions 
between the corresponding images of the two scenarios, and the insen-
sitivity of the dissipation efficiency of ΔS relative to sensible heat to 
climate differences (Bateni and Entekhabi, 2012; Yu et al., 2021), we 
believe that the relative impact of ΔS obtained in normal scenarios is 
still valid in anomalous scenarios that violate the general distribution 
law of AH (Grimmond and Oke, 1999). Therefore, AH adjustment during 
COVID-19 control was calculated based on Eqs. (16) and (17): 

AHi COVID = AHns
i COVID + μiH

ns
i COVID (16)  

μi =

[
ciAHGrid

ΔS

Hns
i

]

normal
(17)  

where AHns
i COVID is the shadow calibrated AHSEB of pixel i during COVID- 

19 pandemic control and AHi COVID is the AHns
i COVID after the heat storage 

adjustment; μi is the impact of ΔS relative to H for the normal months 
corresponding to the time of the pandemic scenario; Hns

i and Hns
i COVID are 

the sensible heat after shadow calibration in the same month during the 
normal scenario and COVID-19 pandemic control, respectively; and ci is 
the adjustment factor for the normal scenario of the corresponding 
month. 

4. Results 

4.1. AH of RS-SEB before and after adjustment 

AHSEB and AHInv are similar in overall terms, but there are notable 
differences in spatial details. Similar to previous studies (Kato and 
Yamaguchi, 2005; Yu et al., 2021), the AHSEB showed various magni-
tudes of underestimation in urban centers of several cities, and the 
spatial distribution characteristics were considerably different from 
those of AHInv (Fig. A1 and A2). We present a specific result of Wuhan as 
a case analysis (Fig. 6). AHInv shows more notable clustering charac-
teristics than AHSEB, with high values concentrated in the urban center 
and gradually decreasing in the suburban areas. The high values of 
AHSEB were dispersed and notably lower than the values of AHInv in the 
urban center but the two methods were consistent in some suburban 
areas. The high intensity of energy consumption and strong heat storage 
in the urban center might contribute to the above differences, whereas in 
other areas, although also affected by ΔS, the weaker intensity of human 
activities results in fewer AH differences. Thus, the adjustment for the Δ 
S impact was concentrated in central areas, whereas in some built-up 
areas far from the urban center, the AHSEB tended to be larger than 
the AHInv, which was more evident in the northern industrial areas of 
Shanghai and Guangzhou. This phenomenon might be caused by higher 
G values in suburban areas owing to the fixed estimation factor (cg) 
throughout the region (Oke et al., 2017; Yu et al., 2021). In addition, 
owing to the coarse spatial resolution of the inventory-based model, the 
pixels contained some small impervious surfaces, and AHInv exhibited 
heat emission in non-built-up areas. Regarding the comparison of 
different temporal phases, the RS-SEB model and inventory-based 
method were consistent in AH intensity across seasons. There were 
more areas with abnormally low AHSEB values in spring than in winter, 
with more dramatic variations in the continuous space in spring. The 
stronger shadow impacts caused by higher temperatures and net radi-
ation might be an important reason for the seasonal differences. 
Furthermore, AHSEB and AHInv were consistent in the general charac-
teristics of the annual variations, such as the AH growth in normal 
scenarios from 2017 to 2019 in Wuhan and Guangzhou. It is the asso-
ciation and differences between the two methods that contributed to the 
combined adjustment. 

To ensure a reasonable representation of human activity intensity, 
the AHSEB was greatly enhanced in the urban center after the adjust-
ment, showing significant central aggregation characteristics like the 
AHInv, as well as retaining the temporal information of AHSEB to help us 
explore the characteristics in anomalous scenarios. Its higher spatial 
resolution means that it can express more detailed features. The AH of 
mid/high-rise buildings increased notably after the adjustment, as evi-
denced by the filling of the anomalous low AHSEB voids in the city 

Fig. 5. Schematic of AHSEB (after shadow calibration) adjustment scheme in a sampling grid.  
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center, resulting in more diverse AH values within the city. More 
importantly, the adjusted RS-SEB is more comparable to other studies 
and represents AH without hysteresis corresponding to the intensity of 
human activity, rather than the increase in sensible heat flux due to AH, 
as defined by the initial model (Kato and Yamaguchi, 2005), which 
provides a more convenient condition for validation of the results. 

4.2. AH variations during COVID-19 controls 

China adopted rapid emergency response and control measures at 
the beginning of the pandemic to control the spread of COVID-19. As the 
first and most seriously affected city of the pandemic, the AH in Wuhan 
was considerably reduced during the February 2020 lockdown and did 
not completely recover after the lockdown was eased in April 2020 
(Zhou et al., 2021), but the results in December showed an increasing 
trend during normal scenarios (Fig. 6). This indicates that COVID-19 
interrupted the healthy development trajectory of the city. A similar 
AH reduction occurred in Shanghai and Guangzhou during the L1 
response in February 2020 (Fig. 7), whereas the reduction was incon-
spicuous in Guangzhou. As an exception, the results of the adjusted AH 
in Beijing revealed an increase during the L1 response in March 2020, 
which is contrary to the results of the AHInv (Fig. A1). In general, from 
the AH maps, compared to the notable enhancement or weak variation 
in normal scenarios, cities except Beijing have different magnitude of 
reduction in AH especially in the urban centers under the pandemic 
control. 

The numerical distribution mode of AH values for the same period 

between different years was similar under normal scenarios (Fig. 8). In 
winter, the AH numerical distribution was approximate to the normal 
distribution with a mean >0 and a smaller standard deviation with 
relatively concentrated values, while in spring (Wuhan) and autumn 
(Guangzhou), the distribution of AH values was more dispersed. The AH 
of Beijing was considerably greater than that of other cities owing to the 
use of central heating, followed by Shanghai, which is comparable in 
urban scale to Beijing, while Guangzhou had the weakest AH owing to a 
more comfortable climate in autumn and winter. In addition, AH 
increased in all four cities under normal scenarios but was weaker in 
Shanghai and Beijing. In contrast to the normal situation, during the 
COVID-19 control period, the distribution curve of AH values in all cities 
except Beijing moved leftward and the concentration of low values was 
more notable. These results reflect the general weakening of human 
activities throughout the urban area, which attenuated the spatial 
variability of AH values across the city. In particular, the largest AH 
reduction (average of 30 W/m2) occurred during the Wuhan lockdown, 
while the reductions during the L1 response in Shanghai (16 W/m2) and 
Wuhan (17 W/m2) were similar but approximately half of that experi-
enced in Wuhan under strict lockdown (Fig. 8). All the reductions were 
significant (p < 0.001). This pattern is consistent with the intensity of 
control measures in restricting human activities. 

The spatial variation characteristics of AH resulting from COVID-19 
control measures are shown at the block scale in Wuhan and Shanghai 
(Fig. 9), as the periods used for comparison in these two cities were 
typically less disturbed. Most areas of Wuhan exhibited significant 

Fig. 6. Anthropogenic heat (AH) of different methods for different periods in Wuhan. The dates representing the Level 1 response and lockdown are highlighted in 
red, with different saturations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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reductions in AH during the lockdown, whereas in some areas around 
the urban center there was an increasing trend during the L1 response 
after the lockdown was eased. Furthermore, AH in the urban center 
increased as the reduction magnitude diminished as human activities 
recovered during the L1 response, presenting a trend of gradual recovery 
from suburban areas to the center. A similar AH change characteristic 
appeared during the L1 response in Shanghai, but with a weaker 
reduction in the urban center, whereas the industrial areas in the north 
showed a more notable AH reduction. In combination with the essential 
urban land use categories (EULUC) (Gong et al., 2020), it is known that 
the mean AH reduction in the industrial and public service areas of 
Shanghai is 30%, while that in other areas is approximately 15% (Fig. 9d 
and A3). Further, residential areas had the smallest AH reduction due to 
the lower impact of pandemic control measures on human home activ-
ities, while industrial production, public facilities, and commercial ac-
tivities were notably restricted and recovered more slowly than 
transportation facilities after the resumption of work. The AH of in-
dustrial areas in Wuhan was less affected (41%) compared to other 
EULUC during the lockdown, and the reduction of AH in other EULUC 

was approximately 50%, with the reduction of transportation and in-
dustrial facilities weakening to around 15% after the lockdown ended. 
However, human activities in commercial, residential, and public ser-
vice areas were still greatly restricted (approximately 30% reduction), 
though there was a certain recovery. In summary, the restrictions on 
human activities during the Wuhan lockdown were much stronger than 
the ordinary control measures, and the AH reduction during the L1 
response in Wuhan and Shanghai was similar at about 20%, but the AH 
change characteristics varied for land use categories. 

4.3. Relative and indirect validation 

The results of the initial RS-SEB calculations were validated. The 
absolute values of SEB components are difficult to compare directly 
owing to the lack of measurement conditions and the variability of the 
experimental location and time, but the ratio of heat fluxes to net ra-
diation can be used for relative validation to reflect model stability and 
reasonableness (Kato and Yamaguchi, 2007; Weng et al., 2014). 
Comparing the RS-SEB of this study with previous estimations and 

Fig. 7. Estimated Anthropogenic heat (AH) using the adjusted remote sensing surface energy balance (RS-SEB) model for Shanghai (SH), Beijing (BJ), and 
Guangzhou (GZ). The dates representing the Level 1 response are highlighted. 
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practical observations in the literature, we confirmed our results for 
different seasons and cities (Table A3). Specifically, H/Rn was larger in 
summer than in winter and increased with the percentage of impervious 
surface, while LE/Rn also peaked in summer but decreased with the 
percentage of impervious surface, which could be attributed to summer 
high temperatures and greater evapotranspiration from the vegetation 
surface. The exception was the larger H/Rn in Beijing winters, which 
was also observed in Hu et al. (2012), which may be due to the 
centralized heating use and weaker net radiation in northern China 
winters. The RS-SEB we performed was in accordance with the criteria of 
previous studies. 

The AH of the RS-SEB before and after adjustment were further 
validated using comparative validation based on correlation analysis, 
which is a common indirect validation method, due to the lack of actual 
AH measurement data (Firozjaei et al., 2020). The adjusted AH can be 
compared with recognized AH datasets, such as AH4GUC (Varquez 
et al., 2021) and PF-AHF (Jin et al., 2019), which are two recently 
proposed global AH datasets based on the idea of energy consumption 
but with a notably different construction process from the inventory- 
based method in this paper, which thus serve as good validation mate-
rial. A significant (p < 0.001) correlation between the AH of RS-SEB and 
global AH datasets was found (Table 2), and the correlation of the 
adjusted results was markedly enhanced, indicating a stronger consis-
tency between the adjusted AH and the common definition of AH at 
present. In addition, the adjusted AH had a more similar spatial 

distribution to the results of the model based on more refined data (Liu 
et al., 2021b; Sun et al., 2018), further demonstrating the validity of the 
high-resolution AH estimation method proposed in this study, which can 
be applied to AH monitoring during the COVID-19 pandemic. 

5. Discussion 

5.1. Impacts of pandemic control on AH 

The results demonstrated the considerable impact on urban human 
activities of the COVID-19 pandemic and its control measures, which 
reduced AH while hindering normal urban development, with the 
impact varying with the magnitude of the pandemic. The lockdown in 
Wuhan, where the pandemic first started, halted most of the city's 
functions and severely restricted people's movements. After the 
pandemic spread, Wuhan resumed production activities and trans-
portation to the outside world on April 8, 2020, while Shanghai and 
Guangzhou, which experienced less impact from the pandemic, resumed 
work on February 9 after a short period of strict control. Thus, although 
the cities still maintained the L1 response in the time we studied, the AH 
reduction was much lower than that during the strict lockdown mea-
sures. Although the results suggest a lower AH reduction in Guangzhou, 
it could be due to the effect of the comparison periods. Considering the 
rapid increase of AH in the last two years (October 2017 to October 
2019) and that the Guangzhou image (February 2, 2016) used for 

Fig. 8. Numerical distribution of Anthropogenic heat (AH) in four cities at different stages and the slope of change over the same period in different years.  
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comparison with the AH during the COVID-19 pandemic coincided with 
the Chinese New Year's Eve holiday, the AH reduction in Guangzhou 
during the L1 response could be much more than indicated by the cur-
rent results. In contrast, AH changes in Beijing under pandemic control 
showed weakening and enhancement on AHInv and AHSEB, respectively. 
Considering that the AHInv based on annual energy consumption and 
empirical patterns in general scenarios cannot accurately reflect the 
anomalous AH characteristics, the AHInv during the March 2020 
pandemic may be unreliable. In addition, the original model of AHInv did 
not consider central heating energy consumption. Specifically, the 
causes of the AH increase in Beijing in March 2020 may be the longer 
central building heating time (lasting until March 31, 2020) because of 
COVID-19 control measures, while in 2019 the central heating lasted 

only until March 15. Therefore, the AH increases in this period based on 
RS-SEB could be more realistic. It also indicates that the RS-SEB may be 
more objective and applicable in anomalous scenarios. 

The spatial and temporal characteristics of AH during the COVID-19 
pandemic reflect differences in human activity restrictions owing to 
different control measures and recovery strategies. For example, despite 
most traffic activities in Wuhan being stopped during the lockdown, 
traffic facilities were also the fastest to resume after the lockdown was 
released for the regular functioning of the city, while nonessential ac-
tivities involving large human flows, such as public services and com-
merce, resumed slowly. And such characteristics varied among cities 
due to differences in policies and urban production requirements. 
Following the resumption of urban human activities, energy 

Fig. 9. (a)-(c) Anthropogenic heat (AH) changes at block scale due to COVID-19 controls in February and April in Wuhan, and February in Shanghai; (d) AH 
reduction in terms of essential urban land use categories at different control stages; radar values represent relative magnitude of the AH reduction. 
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consumption and AH may recover or even exceed pre-pandemic levels 
(Wang and Su, 2020). Thus, the pandemic provides an excellent op-
portunity to confirm whether AH reduction will optimize the urban 
thermal environment and what spatiotemporal changes in AH are most 
beneficial, thus providing a theoretical basis for subsequent urban 
planning and energy use studies. 

5.2. Relations between changes in UHI and AH 

Previously, due to the absence of AH data, it has been difficult to 
establish whether there was a relationship between the decrease in UHI 
and reduction in AH during the COVID-19 control measures (Pal et al., 
2021). This study provided some discussion of this issue and the rela-
tionship between UHI (Liu et al., 2022b) and the two main energy inputs 
for the corresponding months before and after the pandemic outbreak in 
Wuhan is shown in Fig. 10. In general, AH had a marked promoting 
effect on UHI, while there was a simultaneous negative correlation be-
tween Rn and UHI, with this negative correlation being stronger in 
winter. Similar trends have been found in previous studies (Hou et al., 
2022; Memon et al., 2009) and because the Rn differences between 
urban and rural areas are small, this negative correlation can be 
attributed to the difference in surface thermal properties. For example, 

urban surfaces with low albedo receive more radiation, but a higher heat 
capacity or thermal conductivity makes the temperature change insig-
nificant, which is also an important factor determining a weaker UHI 
during daytime in winter. When shortwave radiation is enhanced to 
summer intensity, the relative impacts of heat storage can be weakened, 
implying a positive relationship change between radiation and tem-
perature, enhancing daytime UHI (Zheng et al., 2021; Zhou et al., 2014), 
while the promotion effect of AH indicates its higher dissipation effi-
ciency through sensible heat compared to Rn. During the lockdown, the 
lower AH had a steeper slope, implying that the UHI in this period was 
more sensitive to generally weakened AH and there was a greater spatial 
coherence between human activities and UHI intensity. However, the 
contribution of AH decreased slightly during the L1 response due to the 
spatial heterogeneity of the reduction or enhancement of AH within the 
city, thereby breaking the spatial coherence with the UHI (Fig. 9). It 
should be noted that such weak variations may also be natural fluctu-
ations. The effect of Rn weakened during both the lockdown and L1 
response, with the weakening closely related to the anomalous changes 
in AH or other factors because of the interactions among the UHI drivers 
(Hu et al., 2020). The driving mechanism of daytime UHI is complicated 
(Zhou et al., 2014); thus, there was no direct correlation between indi-
vidual Rn and UHI but the positive effect of AH was notable. 

The changes in AH and Rn with the weakening of the UHI during the 
pandemic were discussed to examine the reasons for the abnormal 
change in UHI (Fig. 11). The trends of AH and Rn were almost exactly 
opposite but Rn was slightly enhanced; however, in the same region, a 
single Rn enhancement at different moments should not lead to UHI 
reduction. Thus, the current UHI anomaly is the result of a combination 
of multiple factors, with the marked reduction in AH, as another 
important urban energy input, being the most direct reason. Although 
the linear or monotonic relationship between ΔAH and ΔUHI was weak, 
most of the AH reduction corresponded to a decrease in the UHI. The 
magnitudes of AH and Rn variability during the L1 response were 
smaller and more concentrated compared to the lockdown, but the range 
of UHI variability was greater. In addition to the stronger daytime UHI 
baseline in spring (Hou et al., 2022), the complexity of this during the 
warm season indicates that other factors may also play a role, such as 
meteorological conditions, urban morphology, water distribution, and 

Table 2 
Correlation of the results of typical months in the general scenarios for this study 
before and after adjustment with the latest global AH dataset. Note that the 
AH4GUC contains hourly AH for each month in 2010, whereas the PF-AHF 
represents only the annual mean in 2015.  

Area Date AH4GUC (2010) PF-AHF (2015) 

Initial Adjusted Initial Adjusted 

Wuhan 2017/02/16 0.49*** 0.61*** 0.23*** 0.44*** 
2017/12/17 0.45*** 0.55*** 0.3*** 0.42*** 
2018/04/08 0.44*** 0.55*** 0.28*** 0.41*** 

Shanghai 2017/02/13 0.44*** 0.64*** 0.35*** 0.56*** 
2018/12/17 0.43*** 0.64*** 0.33*** 0.54*** 

Beijing 2018/12/04 0.53*** 0.72*** 0.38*** 0.52*** 
2019/03/26 0.18*** 0.7*** 0.14*** 0.52*** 

Guangzhou 2016/02/07 0.34*** 0.6*** 0.24*** 0.5*** 
2017/10/23 0.34*** 0.58*** 0.24*** 0.49***  

Fig. 10. Urban heat islands (UHI) scatter plot with AH and Rn in Wuhan for the corresponding months before and after the COVID-19 pandemic.  
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vegetation activity (Liu et al., 2021a; Wang et al., 2021; Zhou et al., 
2014). The anomalous changes in UHI during the pandemic cannot be 
fully explained at present but the significant reduction in AH is an 
important feature accompanying the weakening of the UHI, indicating 
the potential optimization of the urban thermal environment by con-
trolling AH sources. Analysis of the UHI driving forces involving finer 
AH inputs as an important direction for future research will provide a 
more scientific, theoretical basis for urban planning and energy 
utilization. 

5.3. Limitations and prospects 

This study focused on the AH variations in four Chinese megacities 
during the COVID-19 pandemic in 2020, but uncertainties remained due 
to data availability limitations and the complexity of factors influencing 
AH. Limited by the coarse temporal resolution and cloud cover problems 
of Landsat, few images during the pandemic were available which led to 
uncertainties in the high-resolution AH results of this study. However, 

the climate conditions during the same months used for comparison 
differed little, thus its impacts might be small. Furthermore, the 
inventory-based model (Qian et al., 2022) in this study was established 
exactly on the impact factors of AH. In summary, based on the direct 
relationship between AH and human activities (Liu et al., 2022b; 
Shepherd, 2022), it remains reasonable to attribute the AH changes 
during the pandemic to abnormal human activity restrictions, but a 
more detailed analysis of AH variability factors should be conducted in 
subsequent studies. The precise validation of AH is one of the key issues 
that need to be urgently addressed. Although the current AH estimation 
methods have been validated and developed based on local site flux 
observations (Chow et al., 2014; Pigeon et al., 2007), more convincing 
experiments for specific cases are required. However, due to the rigorous 
experimental conditions required for accurate flux field measurements 
(Sailor, 2011), most AH-related studies, both RS-SEB and inventory 
methods, use indirect validation (Firozjaei et al., 2020; Varquez et al., 
2021). We believe that numerical meteorological simulations incorpo-
rating AH inputs could be an important tool for effective and convenient 

Fig. 11. Anthropogenic heat (AH), Rn, and urban heat islands (UHI) changes in February (lockdown) and April (Level 1 response) in Wuhan compared to the periods 
before the pandemic. The red dashed ellipse contains 80% of the data. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Q. Meng et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 293 (2023) 113602

14

AH assessment in the future. 
The spatial resolution of meteorological data should ideally match 

that of the remote sensing data to achieve the highest accuracy and 
reliability of RS-SEB, but such data are hardly available due to the 
discontinuity and availability limitations of real meteorological stations. 
Therefore, this study followed the common assumption made in previ-
ous studies (Malbeteau et al., 2017; Weng et al., 2019; Yu et al., 2021) of 
using coarse-resolution data and station observations to represent 
meteorological conditions at the urban scale, which is based on the small 
variability and autocorrelation of general meteorological elements over 
a certain extension (Hubbard, 1994; Quinones et al., 2019). However, 
the neglect of spatial heterogeneity contributes to problems of scale 
mismatch. For example, the impacts of shadows on RS-SEB are caused by 
a mismatch between meteorological inputs and the high-resolution 
spatial details expressed by remote sensing (Kato and Yamaguchi, 
2005; Yu et al., 2021). Although this study provided an approximate 
calibration for the shadow impacts, it is still challenging to fully clarify 
and resolve the issues associated with the scale mismatch. Apart from 
improvements in infrastructure and experimental equipment, this issue 
might be solved by data downscaling based on sophisticated numerical 
simulation models or deep learning algorithms, but effective examina-
tions are lacking at present. 

6. Conclusion 

The reduction in urban AH due to COVID-19 controls might be an 
important reason for the decrease in UHI during this period and helps to 
clarify the AH variations during the pandemic for the interpretation and 
management of the urban thermal environment. To overcome the lim-
itations of the initial RS-SEB model in AH representation owing to the 
impact of shadows and ΔS, this study proposed a high-resolution AH 
estimation method without hysteresis by taking full advantage of the 
inventory-based method and RS-SEB model. The initial RS-SEB model 
had a notable underestimation of urban center AH compared to the re-
sults of the inventory-based method, which had a more dispersed dis-
tribution of high values and no obvious central aggregation 
characteristics. The results of the initial RS-SEB can be regarded as an 
increase in anthropogenic sensible heat influenced by ΔS, rather than 
AH in the general definition, and the effects of shadows cannot be 
ignored. The adjusted AH of RS-SEB was more correlated and consistent 
with the inventory-based AH datasets and had a much higher spatial 
resolution than the latter, which can thus represent more objective and 
finer human activities to apply to AH change monitoring during COVID- 
19 pandemic control measures. 

AH estimation in four Chinese megacities showed that the COVID-19 
pandemic and its control measures greatly reduced AH, providing 
practical evidence for optimizing the urban thermal environment 
through heat emission control measures. The AH in Wuhan was reduced 
by >50% during the strict lockdown in February 2020 and gradually 
recovered after lockdown measures were relaxed in April 2020. The AH 
reduction during the L1 response in Shanghai and Wuhan was similar, 
approximately half of that during the lockdown. Guangzhou had a 
smaller AH reduction in the same stage, while Beijing showed an in-
crease in AH due to the extension of the centralized heating time. In 
addition, there was considerable spatiotemporal heterogeneity in AH 
changes during the COVID-19 pandemic, with urban centers tending to 
have greater reductions. Moreover, AH changes varied among the 
different land-use categories affected by the severity of pandemic con-
trol measures. The anomalous changes in the UHI during the pandemic 
cannot be fully explained at present but the notable reduction in AH is an 
important feature accompanying the weakening of the UHI. In addition, 
multiple drivers of the urban thermal environment, such as canopy 
structure, climate, and water distribution, should be further analyzed. 

The AH adjustment method proposed in this study is empirically 
oriented, with considerable potential for improvement. However, it 
promotes the integration of multiple methods for AH estimation and 

establishes a foundation for meeting the AH requirements of different 
scenarios. Furthermore, the exploration of AH and UHI in multiple 
scenarios will provide diverse examples of evidence for subsequent 
studies and contribute to a deeper understanding of the mechanisms 
driving the urban thermal environment to provide more scientific 
solutions. 
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