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Abstract
Programmed cell death (PCD) is regarded as a pathological form of cell death
with an intracellular program mediated, which plays a pivotal role in maintain-
ing homeostasis and embryonic development. Pyroptosis is a new paradigm of
PCD, which has received increasing attention due to its close association with
immunity and disease. Pyroptosis is a form of inflammatory cell death medi-
ated by gasdermin that promotes the release of proinflammatory cytokines and
contents induced by inflammasome activation. Recently, increasing evidence
in studies shows that pyroptosis has a crucial role in inflammatory conditions
like cardiovascular diseases (CVDs), cancer, neurological diseases (NDs), and
metabolic diseases (MDs), suggesting that targeting cell death is a potential
intervention for the treatment of these inflammatory diseases. Based on this,
the review aims to identify the molecular mechanisms and signaling pathways
related to pyroptosis activation and summarizes the current insights into the
complicated relationship between pyroptosis andmultiple human inflammatory
diseases (CVDs, cancer, NDs, andMDs). We also discuss a promising novel strat-
egy and method for treating these inflammatory diseases by targeting pyroptosis
and focus on the pyroptosis pathway application in clinics.
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1 INTRODUCTION

Cell death plays an important role in maintaining home-
ostasis and physiological function of multicellular organ-
ism, and its abnormality is closely related to the occurrence
and development of many diseases.1–6 Based on the mor-
phological and biochemical characteristics, cell death can
be divided into twomain types, accidental cell death (ACD)
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and programmed cell death (PCD).7–10 Pyroptosis, a new
type of PCD thought to be mediated by caspase-1, was first
coined by Cookson and Brennan in 2001.11
Morphologically, pyroptosis is mainly characterized by

the formation of cell membrane pores, membrane rup-
ture, and nuclear condensation.3,12–14 Upon activated by
inflammasome or its downstream inflammatory caspases,
such as caspase-1 in both human and mouse, caspase-11
in mouse, and caspase-4/5 in human, pyroptosis induces
the release of intracellular content, including lactate
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dehydrogenase (LDH), high mobility group box 1
(HMGB1), and proinflammatory cytokines IL-1β and
IL-18.15–17 As a key downstream event of inflammasome,
pyroptosis plays an important role in resisting pathogen
invasion.18–20
In recent years, emerging evidence has indicated that

pyroptosis is closely related to cardiovascular diseases
(CVDs),21–25 cancer,26–31 neurological diseases (NDs),32–34
and metabolic diseases (MDs).35–37 It is also widely
involved in the occurrence and progression of a variety
of inflammatory diseases, especially the transformation of
development of organ or tissue inflammation into can-
cer. In this review, we aim to summarize current insights
into the molecular pathways of pyroptosis and the compli-
cated relationship between pyroptosis and related different
diseases (CVDs, cancer, NDs, and MDs). The review also
provides a new idea and a promising new strategy for
the prevention and treatment of diseases by targeting
pyroptosis.

2 OVERVIEWOF PYROPTOSIS

2.1 The chronicle and characteristics of
pyroptosis

The earliest study on pyroptosis dates back to 1986;
Friedlander et al.38 found that treating mouse peritoneal
macrophages with anthrax lethal toxin induces rapid cell
death and cell contents release in an acid-dependent
manner. A subsequent study in 1992 found that the Gram-
negative bacterial pathogen Shigella flexneri induced the
suicide of infected macrophages, which was the first time
discovery of pyroptosis.39 However, the study did not pin-
point the type or mechanism of this cell death. In 1996, a
study byChen et al.40 found that the invasion plasmid anti-
gen B (ipaB) of S. flexneri induces PCD of macrophages
through binding directly to interleukin-1beta converting
enzyme (ICE; caspase-1). Then, a similar study in 1998
found that the invasin SipB of Salmonella functions as an
analog of the invasin IpaB of Shigella to induce infected
macrophage death by binding to caspase-1.41 Since some
of the morphological characteristics of this form of cell
death were closely similar to apoptosis, it was mistak-
enly considered as apoptosis at the time. However, further
studies discovered that Salmonella typhimurium infec-
tion induced macrophage death dependent on caspase-1
rather than classical apoptotic caspase-3. Moreover, this
form of macrophage death results in a rapid loss of mem-
brane integrity and an unusual release of proinflammatory
cytokines.42 These results suggest that this form of cell
death is neither apoptosis nor necrosis, but a new mode
of cell death. In 2001, the term of pyroptosis (from the

Greek roots “pyro,” associated with fire or fever, and “pto-
sis” denoting a falling) was first coined by Cookson and
Brennan to describe a novel form of caspase-1-dependent
proinflammatory PCD.11
Pyroptosis has some morphological similarities with

other types of cell death, but also has its own unique
characteristics.43 Similar to apoptosis, pyroptosis causes
DNA damage and chromatin condensation. However,
pyroptosis has a unique form of DNA damage that is dis-
tinct from apoptosis. During pyroptosis, although caspase-
1 can cleave caspase-activated DNase (CAD) in vitro,44
chromosomal DNA is not cleaved by CAD to produce
the oligonucleosomal DNA fragments of approximately
180 bp as apoptosis, but cleaved by an unknown caspase-
1-activated nuclease. In the meantime, their nucleuses
remain intact in pyroptosis cells.45 In addition, membrane
blebbing occurs in both apoptosis and pyroptosis.46 The
main unique characteristics of pyroptosis is that it is medi-
ated by members of the gasdermin protein families and
caspase-1.47–49 Upon infected with pathogen-associated
molecular patterns (PAMPs), such as bacterial toxins and
viral nucleic acids, or stimulated by danger-associated
molecular patterns (DAMPs), such as cholesterol crystals,
adenosine triphosphate (ATP), and chemotherapy drugs,
caspase-1 is activated by inflammasome,which cleaves gas-
dermin D (GSDMD) and induces release of its N-terminal
domain. Then, the N-terminal domain of GSDMD trans-
fers to the cell membrane to aggregate and form a mem-
brane pore with an inner diameter of 10−16 nm, which
enables the release of mature IL-1β (4.5 nm) and caspase-
1 (7.5 nm).50 In the meantime, the extracellular water can
also enter the cell through themembrane pore, causing cell
swelling and eventually leading to the rupture of the cell
membrane, thus releasing a large number of cell contents,
including LDH and HMGB1.51 In addition to caspase-1,
recent studies have found that some apoptotic caspases can
also trigger pyroptosis, such as caspase-3, -6, and -8.52,53
These studies suggested that caspase-1 does not determine
whether cells undergo pyroptosis; therefore, pyroptosis
was redefined as gasdermin-dependent PCD.

2.2 The executioner of pyroptosis

The name “gasdermin” comes from a mouse gene that
is highly expressed in the gastrointestinal tract, espe-
cially in the esophagus and stomach.54 The N-terminal
sequences of the gasdermin family members are highly
conservative and have the function of membrane pore
formation to mediate pyroptosis.55 Therefore, gasdermins
act as the executor of pyroptosis. Currently, there are
six members of gasdermin family in human, namely
GSDMA/B/C/D/E and DFNB59. Mice lacked GSMDB, but
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TABLE 1 The types of gasdermins.

Expression profile Organism Activate way Gene function Diseases References
GSDMA Upper

gastrointestinal
tract and skin

Human/mouse Caspase-3 Poorly
understood

Gastric cancer,
alopecia and
keratosis

54,58–61

GSDMB Esophageal
epithelium,
bladder, liver
and small
intestine.

Human Caspase-1,
caspase-3,
caspase-6,
caspase-7

Tumor-associated
gene

Skin cutaneous
melanoma and
bladder carcinoma

50,53,66,67,69

GSDMC Spleen, skin, tonsil,
small intestine and
colon

Human/mouse Caspase-8 Melanoma
metastasis-
associated
gene

Melanoma, colorectal
cancer

72,73,76

GSDMD Skin, stomach,
macrophage and
dendritic cell

Human/mouse Caspase-1,
caspase-11,
caspase-4/5,
caspase-6 and
caspase-8

Pyroptosis Burkholderia
thailandensis,
Neospora caninum

48,49,46,91,93

GSDME Heart, brain, kidney,
small and large
intestine.

Human/mouse Caspase-3 Maintain hearing Nonsyndromic
hearing loss,
squamous
esophageal cancer,
hepatocellular
carcinoma, gastric
cancer, colorectal
cancer

94–97,101

DFNB59 Testis, brain, inner
ear, liver and small
intestine

Human/mouse – Maintain hearing Nonsyndromic
hearing loss

105–107

expressed three GSDMA (GSDMA1/2/3) and four GSDMC
(GSDMC1/2/3/4)56 (Table 1).

2.2.1 GSDMA

Mouse GSDMA1 is the first member of the gasdermin
family to be identified in 2000, which is specifically
expressed in upper gastrointestinal tract and skin.54 Subse-
quent studies revealed that GSDMA1 had two homologous
genes on chromosome 11 in mice, named GSDMA2 and
GSDMA3.57 Similar to GSDMA1, GSDMA2 is also highly
expressed in the upper region of the gastrointestinal tract
in the glandular stomach, but its function is still poorly
understood.58 GSDMA3 is specifically expressed in the hair
follicle of skin, and the gain-of-function mutations in its
C-terminal domain have been reported to cause alope-
cia and keratosis.59,60 In addition, Lei et al.61 found that
tumor necrosis factor (TNF)-α treatment induced signif-
icant upregulation of GSDMA3 and that it was critical
for TNF-α-induced caspase-3 activation and apoptosis in
mouse skin keratinocytes in vivo and in vitro. Human
GSDMA is relatively widely expressed, not only in the

stomach and skin, but also in the pancreas esophagus
and mammary gland, and it is frequently silenced in gas-
tric cancer (GC) tissues and cells.62 Although GSDMA
family members are highly expressed in the stomach
and GSDMA3 mutations are associated with a variety of
diseases, GSDMA3-deficient mice do not have a signif-
icant phenotype under normal physiological conditions,
suggesting that GSDMA may play a role in pathologi-
cal conditions.63 Two independent research groups have
recently pointed out that GSDMA, as a receptor and sub-
strate for protease virulence factor Streptococcal pyrogenic
exotoxin B (SpeB) secreted by the major human pathogen
group A Streptococcus (GAS), can be cleaved by SpeB after
site Gln246, thereby releasing the active amino-terminal
fragment to form lytic pores and trigger keratinocytes
pyroptosis.64,65

2.2.2 GSDMB

GSDMB is the only member of the gasdermin family that
is expressed only in human. Unlike GSDMA, which is
restricted to the gastrointestinal tract, GSDMB is widely
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expressed in the esophageal epithelium, bladder, liver, and
small intestine. In addition, GSDMB is expressed in a
variety of tumor cells and is closely related to the occur-
rence and development of these tumors, skin cutaneous
melanoma, and bladder carcinoma.66,67 Consistent with
GSDMA, the GSDMB can also be cleaved by caspase-
1 and its N-terminal domain forms membrane pores.68
Panganiban et al.68 revealed that GSDMB is cleaved by
caspase-1, which releases its N-terminal fragment and
induces pyroptosis of epithelial cells, thereby promoting
asthma risk. A functional splice variant rs11078928 lost 13
critical amino acids in the N-terminal domain of GSDMB,
thus inhibiting asthma by blocking pyroptosis.68 In addi-
tion to caspase-1, GSDMB could be cleaved by caspase-3,
-6, and -7.53 However, GSDMB could not form a complete
N-terminal domain after being cleaved by caspase-3, -6,
and -7. Therefore, it remains to be further studied whether
the cleaved product of GSDMB can induce pyroptosis.50,69
Interestingly, Chen et al.69 found that GSDMB promotes
GSDMD cleavage and noncanonical pyroptosis pathway
by enhancing caspase-4 activity, which establishes a new
link between GSDMB and pyroptosis. A study by Zhou
et al.70 found that cytotoxic T lymphocytes (CTLs) and nat-
ural killer (NK) cells-derived granzyme A cleaves GSDMB
to trigger pyroptosis in target cells. In addition to play-
ing a crucial role in antitumor immunity, recent studies
have found that the effector protein IpaH7.8 secreted by
enteroinvasive S. flexneri targets induction of GSDMB
degradation and thus inhibit NK cell bactericidal func-
tions, suggesting that GSDMB plays an important role in
defending against bacterial invasion.71

2.2.3 GSDMC

GSDMC was first discovered as a tumor-associated gene
in 2004, which is closely associated with melanoma
metastasis.72 In parallel, phylogenetic analysis revealed
that mice contain four homologous GSDMC named
GSDMC1/2/3/4, which all contain a similar N-terminal
domain.58 GSDMC ismainly expressed in spleen, skin, ton-
sil, small intestine, and colon, and studies have shown
that its expression is regulated by a variety of factors.73
In human skin keratinocytes, ultraviolet (UV) irradi-
ation promotes the expression of GSDMC and then
increases the expression of matrix metalloproteinases-1
(MMP-1) through activating ERK and c-Jun N-terminal
kinase (JNK).74 Further, a subsequent study by the same
group found that UV light promotes GSDMC expression
through the TRPV1/calcium/calcineurin/NFATc1 signal-
ing pathway.75 In breast cancer, PD-L1 acts as a transcrip-
tion factor to promotes GSDMC expression by interacting
with p-STAT3 under hypoxia. Furthermore, GSDMC is

specifically cleaved by caspase-8 after treatment with TNF-
α or chemotherapy drugs, such as doxorubicin (DOX),
epirubicin, and actinomycin D, thereby switching apop-
tosis to pyroptosis and facilitates tumor necrosis.76 In
addition, GSDMC is also upregulated by inactivation of
transforming growth factor β receptor and promoting cell
proliferation in colorectal carcinogenesis.77 These results
suggest that GSDMC is an oncogene and can be used as a
therapeutic target for cancer.

2.2.4 GSDMD

GSDMD is the first member of the gasdermin family to
be identified as the executor of pyroptosis and the most
widely studied.48,49 GSDMD is mainly expressed in the
skin, stomach,macrophage, and dendritic cell (DC).72 Typ-
ically, GSDMD is cleaved by inflammatory caspase-1, a
proteolytic enzyme that is activated by inflammasome in
response to PAMPs and DAMPs.78 The crystal structure
of GSDMD reveals that it is composed of two domains,
among which the N-terminal domain can form mem-
brane pores to induce pyroptosis, and the C-terminal
domain has the self-inhibition function to stabilize the
full-length GSDMD in the inactivated conformation.79,80
Caspase-1 cleaves the interdomain between theN-terminal
and C-terminal domains of GSDMD and destroys its
self-inhibited conformation. The N-terminal domain is
released from GSDMD and subsequently transferred to
the cell membrane to form pores, mediating inflammatory
cytokine release, such as IL-1β and IL-18, and induc-
ing pyroptosis.79 Interestingly, a recent study revealed
that GSDMD pores-mediated calcium influx initiates the
membrane repair by recruiting the endosomal sorting
complexes required for transport machinery to damaged
plasma membrane areas, which enhances cell survival
during pyroptosis.81
In addition to caspase-1, several other caspases have also

been found to cleave GSDMD and induce pyroptosis, such
as caspase-11 in mice, caspase-4/5 in human, caspase-6,
and caspase-8. In human monocytes, lipopolysaccharide
(LPS) directly binds to the CARD domain of caspase-
4/5 and induces their activation. Subsequently, activated
caspase-4/5 cleave GSDMD and induce pyroptosis.49 Simi-
larly, caspase-11, a homologous protein of caspase-4/5, can
also be directly activated by LPS to cleave GSDMD.48,49
It should be noted that caspase-11 is activated not only
by LPS but also by lipid A and parasite membrane glyco-
conjugate lipophosphoglycan.82,83 Caspase-8, an initiator
of the extrinsic apoptosis pathway, has recently been
reported by two independent groups to cleave GSDMD
to induce pyroptosis during Yersinia infection.84,85 Simi-
larly, Demarco et al.86 also found that caspase-8-dependent
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GSDMD cleavage contributes to TNF-induced lethality in
a caspase-1-independent manner. Moreover, cathepsin G
(CatG) and ELANE are able to proteolytically activate
GSDMD.87,88 In monocyte and neutrophil, CatG induces
pyroptosis by effectively cleaving GSDMD and releasing
the n-terminal active domain, indicating that CatG is an
important target for maintaining cell survival.87 ELANE is
a neutrophil-specific serine protease released by cytoplas-
mic granules in aging neutrophils, which cleaves GSDMD
to induce pyroptosis.88
Collectively, GSDMD is not only an important execu-

tor of pyroptosis, but also mediates inflammatory cytokine
release, such as IL-1β and IL-18, which plays a crucial
role in the maintenance of homeostasis. Emerging evi-
dence suggests that pyroptosis also plays an important
role in defense against pathogen invasion and parasitic
infection. Liu et al.89 found that the released N-terminal
domain of GSDMD can kill free bacteria in vitro and
have a direct bactericidal effect in the cytoplasm of host
cells. Parallel to the neutrophil extracellular trap (NET),
cleaved GSDMD can also form pore-induced intracel-
lular trap, the remnants of a broken cell membrane
that retains organelles and viable bacteria, which con-
fines pathogen within the cellular debris of pyroptotic
macrophages to defense against intracellular bacteria.90
Moreover, GSDMD-mediated pyroptosis can also kill
Burkholderia thailandensis directly in a mouse model of
melioidosis.91 In Brucella abortus infection, caspase-11 and
GSDMD-mediated pyroptosis with the help of GBP5 are
critical to resist pathogen invasion.92 In addition, a recent
study found that GSDMD protects against the intracellu-
lar parasite Neospora caninum infection by inducing Th1
immune response and proinflammatory cytokine secre-
tion, including IL-18 and IFN-γ.93 Although GSDMD is
involved in various pathological and physiological pro-
cesses by mediating pyroptosis, whether GSDMD has
an independent function of pyroptosis remains to be
studied.

2.2.5 GSDME

GSDME, also known as DFNA5, is highly expressed
primarily in the heart, brain, kidney, and small and
large intestine. GSDME was originally identified as a
gene responsible for nonsyndromic hearing loss and
has been implicated in a variety of tumors over the
past two decades.94–96 DOX activates caspase-3 and trig-
gers GSDME-induced pyroptosis to induce cardiac injury,
GSDME plays an important role in DOX-induced car-
diac injury. Targeting Bnip3-dependent pyroptosis path-
way may be a novel therapeutic strategy to reduce
DOX-induced cardiotoxicity.97 In squamous esophageal

cancer, patients with high GSMDE expression have a
better survival rate, suggesting that GSDME can be
used as a prognostic biomarker of squamous esophageal
cancer.98 In hepatocellular carcinoma (HCC), overex-
pression of GSDME in HepG2 cells inhibits cell prolif-
eration by increasing apoptosis and cell cycle arrest.99
In GC, transcriptional initiation region methylation of
GSDME inhibits its expression in GC cell lines, and
treatment of GC cells with the methylation inhibitor, 5-
aza-2′-deoxycytidine (5-aza-dC), restores the expression of
GSMDE and blocks tumorigenesis.100 Consistent with this
study, Kim et al.101 found that the promoter of GSDME
was highly methylated (about 65%) and its expression was
significantly decreased in colorectal cancer (CRC). Treat-
ment with the methylation inhibitor 5-aza-dC promotes
GSDME expression and inhibits tumor cell proliferation
and tumorigenesis, suggesting GSDME as a novel tumor
suppressor gene in CRC.101 Moreover, recent studies have
found that GSDME plays an important role in pyrop-
tosis. During chemotherapy, caspase-3 cleaves GSDME
after Asp270 to release its N-terminal domain, which
has the ability to form membrane pores and eventually
leads to cell pyroptosis.52 In addition to chemotherapy,
some other apoptotic triggers, such as etoposide or vesic-
ular stomatitis virus infection, can also induce caspase-
3 activation and GSMDE cleaving, causing secondary
necrosis/pyroptosis.102 Interestingly, GSDME not only
form pores in the plasma membrane, but also mediates
mitochondrial pore formation, which induces cytochrome
C release and caspase-3 activation in response to apop-
totic stimulis.103 In addition to caspase-3, a recent study
by Zhang et al.104 found that GSDME can also be cleaved
and activated by granzyme B in a caspase-independent
manner, revealing that tumor-infiltrating NK and CD8+
T lymphocytes inhibit carcinogenesis by inducing tumor
cells pyroptosis.

2.2.6 DFNB59

DFNB59, a long-neglected member of the gasdermin fam-
ily, has received little coverage so far. Like GSDME,
DFNB59 truncation mutations also cause cochlear hear-
ing impairment and central vestibular dysfunction.105
DFNB59 is mainly expressed in testis, brain, inner ear,
liver, and small intestine, and its primary function is to
maintain hearing.106 Previous clinical studies have iden-
tified that a c.406C>T (p.R136X) nonsense mutation in
the DFNB59 gene is associated with autosomal recessive
nonsyndromic hearing loss.107 Schwander et al.108 shown
through a forward genetics screen that a 122delA muta-
tion in the DFNB59 gene causes outer hair cell (OHC)
defects and hearing loss by introducing a premature stop
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DAMPs PAMPs

Inflammasomes

Caspase-1

LPS

GSDMD

Caspase-4/5/11

Yersinia

YopJ

Caspase-8 Caspase-3

GSDME

Apoptosome

Granzyme B Granzyme A

GSDMB

Chemotherapy

Pyroptosis Pyroptosis Pyroptosis

Canonical Non-canonical Caspase-3/8-mediated Granzymes-mediated

GSDMD

CD8+ T NK

F IGURE 1 The activation of pyroptosis pathways. In canonical pyroptosis pathway, NLRP3 recruits the adaptor protein ASC and
procaspase-1 to assemble into inflammasome in response to large amounts of PAMPs and DAMPs, which induces procaspase-1 self-cleavage
into mature caspase-1. Then, the activated caspase-1 cleaves gasdermin D (GSDMD) and releases its N-terminal domain to form membrane
pores and inducing pyroptosis. In noncanonical pyroptosis pathway, pyroptosis is induced by murine caspase-11 or the human homologue
caspase-4/-5, which can be activated by LPS from Gram-negative bacteria. In caspase-3/8-mediated pyroptosis pathway, the effector protein
YopJ from Yersinia promotes the activation of caspase-8 by inhibiting TAK1 kinase. Then, the activated caspase-8 cleaves GSDMD as well as
GSDME to induce pyroptosis. In addition, caspase-3 activated by chemotherapy drugs can also cleave GSDME to induce pyroptosis. In
granzymes-mediated pyroptosis pathway, granzyme A and granzyme B from tumor-infiltrating CD8+ T lymphocytes and natural killer (NK)
can directly cleave GSDME and GSDMB respectively to induce pyroptosis.

codon in human. Moreover, another study by Delmaghani
et al.106 found that the R183W variant of DFNB59 causes
nonsyndromic deafness was associated with neuronal
defect. In addition, DFNB59 was found to interact with
the coiled-coil domains of ROCK2, an effector of the
small GTPase Rho, and the scaffold protein IQGAP1
through its C-terminal domain, both are well-known
actin/microtubule dynamics regulators that alter cell
shape and contribute to DFNB59 to maintain the function
of OHCs in a cellular autonomous manner.109 However,
the C-terminal domain of DFNB59 is extremely short
compared with other members of the gasdermin pro-
tein family, it is unclear whether the extremely short
C-terminal domain ofDFNB59has the same self-inhibitory
function as other gasdermin proteins, and whether the N-
terminal domain of DFNB59 has the ability of membrane
pore formation is also unknown, which requires further
investigate.

2.3 The signaling pathways of
pyroptosis

Gasdermins are the executor of pyroptosis, and many
proteolytic enzymes have been reported to be able to
cleave gasdermins to induce pyroptosis. To date, pyropto-
sis is mainly mediated by four signaling pathways, namely
canonical pyroptosis pathway, noncanonical pyroptosis
pathway, other caspases-mediated pyroptosis pathway and
granzymes, and other proteases-mediated pyroptosis path-
way (Figure 1).

2.3.1 Canonical pyroptosis pathway

Canonical pyroptosis is induced by caspase-1, which is
activated by inflammasome in response to PAMPs and
DAMPs. So far, five main types of pattern recognition
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TABLE 2 DAMPs, PAMPs, and their corresponding PRRs.

PRR PAMPs DAMPs References
TLRs Viruses, bacteria, fungi HMGB1, mRNA, microRNAs 112

CLRs Fungi F-actin, β-glucosylceramide 113

RLRs Viruses Endogenous 5′ppp RNA, endogenous retroviral RNA 114

CDSs Microbial DNA Cytoplasmic DNA, damaged DNA 115,116

NLRs Viruses, bacteria, fungi MSU, glucose, cholesterol crystals, Aβ, ATP 117

receptors (PRRs) have been identified, including Toll-like
receptors (TLRs), C-type lectin receptors (CLRs), retinoic
acid-inducible gene-I-like receptors (RLRs), cytoplasmic
DNA sensors and nucleotide-binding, and oligomeriza-
tion domain-like receptors (NLRs).110,111 These PRRs are
expressed on both immune cells and nonimmune cells.
After recognizing their corresponding ligands, PRRs ini-
tiate and activate a variety of innate immune signaling
pathways, produce a series of cytokines that promote
inflammation and mediate immune responses. TLRs are
the most deeply studied class of PRRs. TLRs can recognize
a variety of pathogen-relatedmolecular patterns, including
LPS and flagellin on the surface of bacteria, viral single-
stranded RNA (ssRNA), double-stranded RNA (dsRNA),
and fungi.112 CLRs family contains 17 subtypes. CLRs can
recognize a series of ligands, including carbohydrates, and
participate in a variety of physiological processes of the
body.113 RLRs include retinoic-acid inducible gene I (RIG-
I), melanoma differentiation-associated 5 (MDA5), and
laboratory of genetics and physiology 2 (LGP2). RIG-I and
MDA5 recognize viral RNA in the cytoplasm and then
produce type I interferons through downstream signals to
initiate the host antiviral response.114 The twomost impor-
tant DNA receptors in the cytoplasm are AIM2 and cGAS.
AIM2 inflammasome is essential for cells to resist the inva-
sion of pathogens such as DNA viruses and bacteria,115
and cGAS–STING signaling pathway plays an important
role in autoimmune diseases, tumors, and host defense.116
NLRs are a class of intracellular PRRs. NLRs are widely
expressed in various immune cells and epithelial cells,
and can initiate innate immune response by recogniz-
ing intracellular PAMPs and DAMPs.117 Inflammasome is
a polymeric protein complex composed of PRRs, adap-
tor proteins ASC, and effector protein procaspase-1.118
To date, five PRRs are widely accepted to form inflam-
masome, including NLRP1, NLRP3, NLRC4, AIM2, and
pyrin.119 In general, inflammasome activation requires
two steps. During the prestimulation step, some bacte-
rial components, such as LPS, induce the expression of
PRRs and pro-IL-1β through TLR4–NF-κB pathway. In
the subsequent assembly and activation step, the PRRs
sensor molecules recruit ASC and procaspase-1 to form
inflammasome through interaction upon stimulated by

PAMPs and DAMPs120 (Table 2). The assembled inflam-
masome induced procaspase-1 self-cleavage and activa-
tion. Then, the activated caspase-1 cleaves gasdermin D
(GSDMD) and releases its N-terminal domain, allowing
its oligomerization to form membrane pores and inducing
pyroptosis, which not only contribute to proinflamma-
tory cytokine secretion and cell contents release, but also
crucial for host defense against pathogens and maintain
homeostasis.121

2.3.2 Noncanonical pyroptosis pathway

In the noncanonical pyroptosis pathway, pyroptosis is
induced by murine caspase-11 or the human homo-
logue caspase-4/-5, which is activated by LPS from
Gram-negative bacteria.82 Mechanically, LPS or lipid
A directly bind to the N-terminal CARD domain of
caspase-11 or caspase-4/-5 with high specificity and affin-
ity, which leads to their oligomerization and activation.
resulting in GSDMD cleavage, inducing cell membrane
pore formation and pyroptosis.82,122 Similar to caspase-1,
although caspase-11 or caspase-4/-5 can cleave GSDMD
and cause cell membrane pore formation and pyropto-
sis, it cannot directly cleave pro-IL-1 and pro-IL-18.122
Interestingly, caspase-11-mediated noncanonical pyropto-
sis induces potassium outflow, which leads to inflam-
masome activation and proinflammatory cytokines mat-
uration and secretion.123 In addition to reducing the
intracellular potassium level, Yang et al.124 recently found
that caspase-11 can also cleave pannexin-1 to promote ATP
release, which in turn facilitates inflammasome activation
and proinflammatory cytokine secretion.

2.3.3 Other caspases-mediated pyroptosis
pathway

Similar to caspase-1, caspase-11, and caspase-4/-5, several
other caspases have been reported to cleave gasdermin to
induce pyroptosis. Caspase-8, an initiator of the extrin-
sic apoptosis pathway, has recently been reported by
two independent groups to cleave gasdermin to induce
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pyroptosis. In response to Yersinia infection, its effector
protein YopJ promotes caspase-8 to cleave GSDMD by
inhibiting TAK1 or IκB kinase (IKK).84 Similarly, Sarhan
et al.85 found that caspase-8 was activated by costimulation
of LPS and (5Z)-7-Oxozeaenol, a small-molecule inhibitor
of TAK1, and subsequently the activated caspase-8 cleaves
GSDMD to induce pyroptosis in murine macrophages.
Consistent with this finding, a recent study by Demarco
et al.86 found that caspase-8-dependent GSDMD cleavage
also contribute to TNF-induced lethality in a caspase-
1-independent manner. Caspase-3, an apoptotic caspase
that activated by TNF-α or chemotherapy drugs, specifi-
cally cleaves GSDME in its linker, releasing its N-terminal
domain to formmembrane pores to induce pyroptosis.52,125
Moreover, Zheng et al.126 found that caspase-6 facilitates
ZBP1-mediated inflammasome activation and pyroptosis
in response to influenza A virus infection. Notably, a
recent study found that caspase-6 directly cleaves caspase-
11 at Asp59 and Asp285 to induce pyroptosis during
Gram-negative bacteria infection.127

2.3.4 Granzymes and other
proteases-mediated pyroptosis pathway

Granzymes are specific cytotoxic lymphocyte granulation
associated with serine proteases that have been implicated
in lymphocyte functions to protects organisms against
viral infection and cellular transformation.128 Recent stud-
ies have found that granzymes are also closely related
to pyroptosis.70,104 Granzyme B, derived from tumor-
infiltrating CD8+ T lymphocytes and NK, directly cleaves
GSDME at the same site as caspase 3 to induce pyroptosis
of target cells, thereby enhancing antitumor immunity and
act as a tumor suppressor.104 Moreover, Zhou et al.70 found
that another lymphocyte-derived protease granzymeA can
also induce pyroptosis by cleaving GSDMB at the site
Lys229/Lys244. In addition to granzymes, several other
proteases have been found to mediate pyroptosis, such as
CatG and elastase (ELANE).87,88 In monocyte and neu-
trophil, CatG induces pyroptosis by effectively cleaving
GSDMD and releasing the n-terminal active domain, indi-
cating that CatG is an important target formaintaining cell
survival.87 ELANE is a neutrophil-specific serine protease
released by cytoplasmic granules in aging neutrophils,
which cleaves GSDMD to induce pyroptosis.88

3 PYROPTOSIS AND CVDs

CVDs are an umbrella term for disorders of the heart
and blood vessels, including atherosclerosis, myocardial
infarction, hypertension, diabetic cardiomyopathy (DCM),

myocarditis, and cardiac hypertrophy, which are the lead-
ing cause of death globally, killing more than 17 million
people each year.129 Although there have been significant
improvements in the treatment of CVDs, the develop-
ment of novel and effective therapies remains a major
research goal in this field. In the past decades, studies have
shown that the occurrence of CVDs is closely related to cell
death, suggesting that targeting cell death is an effective
intervention for the treatment of CVDs130–133 (Figure 2).

3.1 Pyroptosis and atherosclerosis

Atherosclerosis is a well-known CVD, which mainly
involves abnormal lipid accumulation, immune cell infil-
tration, and proinflammatory cytokines activation in the
aorta.134–136 Many risk factors are involved in the devel-
opment of atherosclerosis, but the mechanisms are not
completely understood. Recent studies have found that
multiple risk factors trigger pyroptosis in atherosclero-
sis associated cells, including endothelial cells (ECs),
macrophages, and smooth muscle cells (SMCs),137–140 sug-
gesting that pyroptosis plays an important role in the
pathological development of atherosclerosis (Figure 3).

3.1.1 ECs pyroptosis during atherosclerosis

ECs are essential for maintaining cardiovascular home-
ostasis, and its pyroptosis leads to the endothelium dys-
function and loss of integrity, thereby contributing to
pathogenesis of atherosclerosis. Multiple atherosclerotic-
related risk factors have been found to cause ECs pyrop-
tosis, such as cholesterol crystal, oxidized low-density
lipoprotein (ox-LDL).141 Cholesterol crystals are a well-
known pivotal pathological marker of atherosclerotic
plaque vulnerability; studies have shown that choles-
terol crystal promotes atherosclerosis by inducing the
activation of inflammasome and subsequent pyroptosis
in ECs.142–144 Moreover, miR-302c-3p, a targeted neg-
ative regulator of NLRP3, blocks EC pyroptosis in a
mouse model of atherosclerosis.145 ox-LDL acts as an
important initiator of atherosclerosis by promoting adhe-
sion molecules expression and proinflammatory cytokines
release. A recent study by Wu et al.146 confirmed that
ox-LDL can induce EC pyroptosis and inflammatory
response. Mechanically, ox-LDL upregulates mixed lin-
eage kinase domain-like (MLKL) expression in ECs,
which augments NLRP3 inflammasome activation and
pyroptosis.146 Notably, the inhibitor of NLRP3 inflam-
masome, MCC950, was able to block ox-LDL-induced
pyroptosis, suggesting that MCC950 could be used as a
promising treatment for atherosclerosis.146 Interestingly,
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F IGURE 2 Pyroptosis promotes the occurrence of multiple cardiovascular diseases. Inflammasome-mediated pyroptosis is involved in
the pathogenesis processes of multiple cardiovascular diseases, including atherosclerosis, myocardial infarction (MI), hypertension, and
cardiac hypertrophy.

MLKL is the terminal executor of necroptosis and is inex-
tricably linked to pyroptosis.118 Therefore, it is necessary to
distinguish the different roles of pyroptosis and necropto-
sis in ECs death during atherosclerosis. In addition to these
endogenous metabolites, several exogenous substances
have also been found to contribute to ECs pyroptosis
and atherosclerosis. Nicotine is the main harmful ingredi-
ent of cigarette, which has been found to induce NLRP3
inflammasome activation and pyroptosis by facilitating
reactive oxygen species (ROS) production in human aor-
tic ECs (HAECs).147 Consistentwith this finding, cadmium
(Cd), another important and common environmental pol-
lutant, has been implicated in atherosclerosis, but the
mechanisms are not fully understood. Chen et al. dis-
covered that treatment with Cd significantly increased
NLRP3 inflammasome-dependent pyroptosis by inducing
mitochondrial ROS (mtROS) and intracellular ROS pro-
duction in HUVECs. In general, ECs induce atherosclero-
sis through multiple downstream events upon pyroptosis
occurs. On the one hand, ECs pyroptosis increase cardio-
vascular inflammation by inducing themature and release
of proinflammatory cytokines, such as IL-1β and IL-18,

and subsequent recruiting monocytes to the endothe-
lium for transformation into macrophages. On the other
hand, ECs pyroptosis promote SMCs migration and depo-
sition by causing endothelium dysfunction and increases
permeability.

3.1.2 Macrophages pyroptosis during
atherosclerosis

Macrophages play an important role in the formation of
plaques by engulfing the modified LDL to form foam
cells, and their pyroptosis is involved in the pathogen-
esis of atherosclerosis.148 High-glucose and ox-LDL are
major causes of atherosclerosis; a recent study found that
treatment with glucose and ox-LDL triggers macrophages
pyroptosis in rats with diabetic atherosclerosis (DA).149
Similarly, Liu et al.150 found that ox-LDL could also inhibit
the cell viability by inducing pyroptosis in THP-1-derived
macrophages. Moreover, blocking autophagy promotes
macrophages pyroptosis through the p62/Nrf2/ARE path-
way, which provides a promising therapeutic target for
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F IGURE 3 Multiple risk factors contribute to atherosclerosis by inducing inflammasome-mediated pyroptosis. A large number of
atherosclerotic-related risk factors, such as cholesterol crystal, oxidized low-density lipoprotein (ox-LDL), and high-glucose, can induce
inflammasome activation. The subsequently activated inflammasome induces IL-1βmaturation and secretion to mediate inflammatory
responses, as well as triggers endothelial cells (ECs), macrophages, and smooth muscle cells (SMCs) pyroptosis, both of which contribute to
the pathogenesis of atherosclerosis.

atherosclerosis.150 GSDMD as an executor of pyroptosis
has recently been found to be involved in the pathogen-
esis of atherosclerosis.151 The expression of gasdermin D
was upregulated in peripheral blood mononuclear cells
(PBMCs) from patients with atherosclerosis. Moreover,
GSDMD was activated in macrophages of ApoE−/− mice
on a high-fat/high-cholesterol (HFHC) diet, and block-
ing GSDMD in HFHC-fed ApoE−/− mice significantly
reduced lesion volume and the number of infiltrated
macrophages, suggesting that GSDMD can be act as a
novel therapeutic target for atherosclerosis.151 In addition,
nicotine also triggersmacrophage pyroptosis in atheroscle-
rotic lesions in an HDAC6-dependent manner. In terms
of the mechanism, HDAC6 mediates the acetylation of
p65 and promotes NLRP3 transcription, targeting HDAC6
suppress nicotine-induced pyroptosis inRAW264.7 cells.152
Notably, a recent study by Magupalli et al.153 found that
HDAC6 can also promote NLRP3 inflammasome acti-
vation by inducing microtubule retrograde transport to
microtubule-organizing center, which is an important plat-

form for inflammasome assembly. Overall, multiple risk
factors can induce macrophages pyroptosis and then pro-
mote necrotic core formation and plaque instability in
advanced lesions, which are continued to the pathogenesis
of atherosclerosis.154

3.1.3 SMCs pyroptosis during
atherosclerosis

SMCs are the main stromal cells of the vascular wall,
which are essential for maintaining cardiovascular home-
ostasis, and their abnormal function can lead to a variety of
CVDs, including atherosclerosis. Studies have shown that
SMCs pyroptosis leads to its dysfunction in response to
various atherosclerotic-related risk factors.155 Pan et al.156
found that high-fat diet (HFD) promotes ICMA-1 and
GSDMD-Nexpression and plaque lesion area by increasing
AIM2 expression inApoE−/−mice.Moreover, in vitro stud-
ies showed that ox-LDL accelerates GSDMD activity and
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SMCs pyroptosis throughNF-κB, AIM2, ASC, and caspase-
1 pathway in a concentration-dependent manner.156 In
parallel, a recent study by Liu et al.157 reported that LPS
derived from Porphyromonas gingivalis (Pg-LPS) could
lead to SMCs pyroptosis depending on circRNA PPP1CC,
and knockdown of circRNA PPP1CC relieved the expres-
sion of HMGB1, TLR9, and AIM2. Mechanically, circRNA
PPP1CC directly targeted miR-103a-3p and miR-107 to
increase the expression of HMGB1, suggesting that cir-
cRNAPPP1CCmay represent a novel therapeutic target for
atherosclerosis by blocking SMCs pyroptosis.157 Anyway,
SMCs are important for inhibiting plaque formation and
maintaining plaque stability. Upon pyroptosis is induced
by atherosclerotic-related risk factors and leads to its
dysfunction; the dysfunctional SMCs can release inflam-
matory cytokines, such as IL-6, IL-8, and other cytokines,
to promote plaque formation in the early stages and also
trigger an inflammatory response to destroy the fiber cap.
Subsequently, the damaged fiber cap increases plaque
instability and vulnerability, and ultimately leading to the
development of atherosclerosis.155

3.2 Pyroptosis and myocardial
infarction

MI is a common CVDs caused by prolonged ischemia of
part of the myocardium upon the coronary artery throm-
bosis is occluded. Although the current treatment of MI
has achieved rapid development and reperfusion can alle-
viate MI well, reperfusion will cause ischemia/reperfusion
(I/R) injury (IRI) and aggravate fatal tissue damage.
Recent studies have found that pyroptosis contributes to
myocardium death and involves in the pathological pro-
cess of MI.158–160 As previously mentioned, Mezzaroma
et al. found that three components of the inflammasome,
such as cryopyrin, ASC, and caspase-1, were significantly
increased in the granulation tissue and cardiomyocytes
surrounding the infarct in an experimental mouse model
of acute myocardial infarction (AMI). In addition, inflam-
masome formation was associated with increased cell
death,myocardial infarction size, and cardiac enlargement
after AMI. Moreover, inhibiting inflammasome formation
by blocking purinergic receptor P2X, ligand gated ion
channel, 7 (P2 × 7), an ATP gated ion channel has been
found to promote NLRP3 inflammasome activation, and
cryopyrin can limit cell death and alleviate MI, although
the investigators did not determine whether pyroptosis
was involved.161 Subsequently, Lei et al.162 reported that
oxidative stress induced NLRP3 inflammasome-mediated
pyroptosis through the NF-κB–GSDMD axis, which is
contributed to cardiomyocytes loss following MI. Signif-
icantly, inhibited oxidative stress with N-acetyl-cysteine

(NAC) or suppressed NF-κB activation with pyrrolidine
dithiocarbamate reduced GSDMD activation and pyropto-
sis, providing a promising target for MI-related ventricular
remodeling.162 Consistent with this finding, a recent study
found that GSDMD activation and its mediated pyroptosis
were upregulated in cardiomyocytes after IRI, andGSDMD
deficiency in cardiomyocytes significantly reduced the
myocardial infarct size induced by I/R, suggesting that
GSDMD-mediated cardiomyocyte pyroptosis exacerbates
myocardial IRI.163 In addition to cardiomyocytes, inflam-
masome has also been found to be activated by inducing
ROS production and potassium efflux in cardiac fibrob-
lasts, another cell closely involved in MI development, to
initiate the inflammatory response after myocardial IRI.
Furthermore, in vivo studies also shown that inflamma-
tory responses are inhibited in cardiac fibroblasts, but
not in cardiomyocytes, from ASC or caspase-1-deficient
mice and the subsequent myocardial dysfunction and
infarction size are significantly alleviated.164 Although
GSDMD-mediated cardiomyocytes and cardiac fibroblasts
pyroptosis plays an important role in the pathogenesis
of MI, it is unclear whether the inflammatory response
mediated by GSDMD is also involved in MI processes.
Therefore, the detailed mechanism of pyroptosis in MI
remains to be further explored.

3.3 Pyroptosis and hypertension

Hypertension, also known as elevated blood pressure,
refers to the excessive force of blood hitting against the
artery walls and is associated with a variety of CVDs.
Recent studies have found that pyroptosis is closely related
to the pathogenesis of hypertension.134,165 It has been
found that LPS and hyperhomocysteine (generally refers
to the concentration of homocysteine in the serum above
10 μmol/L) are important risk factors for inducing hyper-
tension by triggering EC damage.166–168 However, the
mechanism of LPS and hyperhomocysteine-induced EC
dysfunction is not fully understood. Xi et al. found that
homocysteine and/or LPS individually and synergistically
induced aortic EC death by activating caspase-1-mediated
pyroptosis in HUVEC during hypertension. Mechani-
cally, homocysteine/LPS increases intracellular ROS lev-
els, promotes NLRP3 inflammasome assembly and subse-
quent pyroptosis. Furthermore, treatment with caspase-1
inhibitors or caspase-1/NLRP3 deficiency could rescue
hyperhomocysteine-induced aortic EC dysfunction.169 In
addition, it should be noted that homocysteine/LPS can
also induce caspase-3-mediated-EC apoptosis by promot-
ing mitochondrial dysfunction and cytochrome C release.
Interestingly, this process can be attenuated by antioxi-
dants and caspase-1 inhibitor, suggesting that apoptosis is
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a downstream event of caspase-1 activation and ROS.169
Consistent with this finding, a recent study by Zhang
et al. found that pyroptosis occurred in the media of
pulmonary arteries in rat models of pulmonary hyper-
tension (PH). Similarly, pyroptosis has also been found
in hypoxic human pulmonary arterial SMCs (hPASMCs)
under hypoxia in vitro. Furthermore, administered vx-
765 and ac-YVAD-CMK, two caspase-1 inhibitors, sup-
pressed pulmonary vascular fibrosis as well as alleviated
the pathogenesis of PH by inhibiting SMCs pyroptosis.170
Interestingly, glioma-associated oncogene family zinc fin-
ger 1 (GLI1), a transcriptional activator, was found to
aggravate the pathological process of PH by promoting
hypoxia-inducedPASMCspyroptosis.Moreover, treatment
with GLI1-specific inhibitor GANT61 reduces PASMCs
pyroptosis and alleviates PH during hypoxia. Mechani-
cally, GLI1 enhances ASC expression by binding to its
promoter, which promotes inflammasome activation and
subsequent pyroptosis.171 These findings suggest that GLI1
is an important target for the molecular therapy of PH.

3.4 Pyroptosis and DCM

DCM refers to cardiac dysfunction in individuals with
diabetes mellitus, including myocardial structure, func-
tional and metabolic abnormalities in the absence of
other risk factors, such as coronary artery disease (CAD)
and hypertension.172–174 It is well known that cardiomy-
ocyte death is the initiator of DCM, and recent studies
have pointed out that pyroptosis plays an important role
in the pathogenesis of DCM. Luo et al.175 demonstrated
that NLRP3 inflammasome activation and pyroptosis were
found in myocardium of diabetic rats, and silencing of
NLRP3 in cardiomyocytes alleviates the pathological pro-
cess of the DCM by suppressing cardiomyocyte pyroptosis
under high glucose and. In addition, a recent study by
Xie et al.176 discovered that chemerin can induce car-
diomyocyte pyroptosis in G-protein-coupled chemokine-
like receptor 1 (CMKLR1) and NLRP3 inflammasome-
dependent manner. Furthermore, silencing of CMKLR1
with siRNA improves the function of cardiac in a Sprague–
Dawley ratmodel of DCM induced byHFDand lowdose of
streptozotocin (STZ) by attenuating cardiac inflammation
and cardiomyocyte pyroptosis, indicating that pyroptosis
is an important protective target of DCM.176 Consis-
tent, the bone morphogenetic protein-7 facilitates cardiac
repair and left ventricular heart function by attenuat-
ing TLR4–NLRP3 inflammasome axis-induced pyroptosis
in DCM.173 In addition, several studies have pointed out
that noncoding RNA (ncRNA) also plays a critical role in
regulating cardiomyocyte pyroptosis in DCM. Li et al.177
reported that the expression of mir-30d was positively

correlated with cardiomyocyte pyroptosis in STZ-induced
diabetic rats. Mechanistically, mir-30d promotes caspase-1
activation and cardiomyocyte pyroptosis through directly
inhibiting the expression of foxo3a and its downstream
transcription target protein, apoptosis repressor with cas-
pase recruitment domain (ARC). Similarly, microRNA-9
restrains hyperglycemia-induced human hearts and ven-
tricular cardiomyocyte pyroptosis by directly targeting
ELAV-like protein 1 in DCM.178 In addition, the long
noncoding RNA (lncRNA) Kcnq1ot1 was found to com-
petently regulate caspase-1 expression with miR-214-3p.
Knock downing Kcnq1ot1 by lentivirus-shRNA or small
interfering RNA improves cardiac function and fibrosis
in DCM by inhibiting caspase-1 expression and ameliorat-
ing cardiac fibroblasts pyroptosis.179 In conclusion, these
results suggest that pyroptosis is an important pathogenic
factor of DCM, and targeting pyroptosis is a promising
approach for treating the disease. However, the function
of GSDMD, a key executor of pyroptosis, in the patho-
genesis of DCM is still unclear, and further investigation
is needed.

3.5 Pyroptosis and other CVDs

In addition to the diseases mentioned above, pyroptosis
has been found to be closely associated with a variety of
other CVDs, such as dilated cardiomyopathy, arrhythmia,
myocarditis, and cardiac hypertrophy.141,180–182 Dilated car-
diomyopathy is a common cause of heart failure. Zeng
et al.183 provides evidence of cardiomyocyte pyroptosis
in the heart. NLRP3 inflammasome activation through
caspase-1 will trigger cardiomyocyte pyroptosis to induce
dilated cardiomyopathy, whichwill be regarded as a proper
therapeutic target of dilated cardiomyopathy. Arrhythmia
affects the life quality and threatens human life. Xu et al.184
reveal that aesculin could decrease the NLRP3 inflam-
masome activation and ameliorated the inflammatory
response and NLRP3 inflammasome-mediated pyropto-
sis of cardiomyocytes in neonatal rat cardiomyocytes and
rats. Myocarditis is an inflammatory disease of the heart
muscle. Liu et al. revealed that cholecalciterol cholesterol
emulsion improves experimental autoimmune myocardi-
tis in mice by downregulating the pyroptosis signaling
pathway.185 In addition, the cysteine proteolytic enzyme
cathepsin B has been reported to significantly exacer-
bate coxsackievirus B3 (CVB3)-induced viral myocarditis
by inducing inflammasome activation and its initiated
myocardial pyroptosis.186 Moreover, inhibiting calpain
with the endogenous inhibitor calpastatin improves CVB3-
induced viral myocarditis through inhibiting canonical or
noncanonical pyroptosis pathways.187 Cardiac hypertro-
phy is initially as an adaptive response to physiological and
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TABLE 3 Treatment of cardiovascular diseases by targeting pyroptosis.

Targets Inhibitors NLRP3 related diseases References
NLRP3 MCC950 Atherosclerosis 192

Myocardial infarction 193

Melatonin Atherosclerosis 195

Myocardial infarction 196

Colchicine Atherosclerosis 143

Sinapic acid Diabetic atherosclerosis 149

Hydroxytyrosol acetate Atherosclerosis 197

Tranilast Coronary artery disease 199

Myocardial fibrosis 200

OLT1177 Myocardial infarction 203

Oridonin Myocardial infarction 204

Caspase-1 VX-765 Atherosclerosis 208

Acute myocardial infarction 158

z-WEHD-FMK Diabetic cardiomyopathy 209

Atherosclerosis 210

Ac-YVAD-CMK Ischemia/reperfusion injury 211

Hypoxia/reoxygenation injury 212

Ac-YVAD-CHO Chronic kidney disease 213

GSDMD Necrosulfonamide Ischemia/reperfusion injury 215

Disulfiram Heart disease 217

Dimethyl fumarate Ischemia/reperfusion injury 219

pathological stimuli, which is the primary cause of mortal-
ityworldwide. Zhu et al. found thatmiR-133a-3p attenuates
human myocardial cell line pyroptosis by directly target-
ing the 3′-UTR of IKKε and suppressed its expression
in angiotensin II-induced cardiac hypertrophy. Moreover,
NLRP3 inflammasome-mediated pyroptosis contributes to
cardiac hypertrophy induced by aortic constriction, and
the inhibitor of NLRP3 inflammasome irisin can attenuate
cardiac hypertrophy by inhibiting pyroptosis.188

3.6 Treatment of CVDs by targeting
pyroptosis

Pyroptosis contributes to the development of CVDs, sug-
gesting that inhibition of pyroptosis is a promising and
effective strategy for the treatment of these diseases. Cur-
rently, numerous inhibitors of pyroptosis and its upstream
inflammasome have been reported to alleviate CVDs189
(Table 3).

3.6.1 NLRP3 inhibitors

NLRP3 inflammasome activation is a key upstream event
of pyroptosis, and its inhibition is an important strategy for

preventing pyroptosis and alleviating CVDs.190 MCC950
is a small molecule inhibitor of NLRP3 that can allevi-
ate a variety of inflammasome-related diseases, including
cryopyrin-associated periodic syndrome (CAPS), exper-
imental autoimmune encephalomyelitis (EAE), type 2
diabetes, and Alzheimer’s disease (AD).191 Recent stud-
ies have found that MCC950 has a good protective
effect on the development of atherosclerosis by alleviating
macrophages pyroptosis and proinflammatory cytokine
production in apoE−/− mice fed with HFD.192 Moreover,
MCC950 also reduces infarct size and protect the cardiac
function from being weakened in a pig model of MI.193
It should be noted that although MCC950 has shown
good efficacy in animal models of NLRP3 inflammasome-
related diseases, MCC950 failed in clinical trials due to
safety issues.194 Therefore, the drug properties of MCC950
remain to be further explored. Melatonin (MT) is a hor-
mone secreted by the brain pineal gland. Zhang et al.
found that MT alleviates atherosclerosis via inhibiting EC
pyroptosis in aortic intima of HFD-fed ApoE−/− mice.
Mechanistically, treatment HAECs with MT upregulates
the expression of lncRNA MEG3, an endogenous RNA
that suppresses the function of miR-223 by sequence
complementarity, and promotes NLRP3 expression and
inflammasome activation.195 In addition to alleviating the
pathological process of atherosclerosis, MT has also been
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found to have cardioprotective effects via inhibitingNLRP3
inflammasome activation and its induced cardiomyocyte
pyroptosis in mice with MI.196 Colchicine is an important
plant extract that inhibits cell proliferation. A recent study
shown that colchicine inhibits cholesterol crystal-induced
pyroptosis via triggering AMPK/SIRT1 pathway activation
in human umbilical vein ECs (HUVECs).143 Furthermore,
Magupalli et al.153 found that colchicine could also inhibit
NLRP3 inflammasome activation by blockingmicrotubule
polymerization.
In addition, sinapic acid was found to suppress

macrophages pyroptosis in DA, and treatment with
low-dose (≤50 mg/kg) sinapic acid inhibits the levels
of endothelin 1 (ET-1) and proinflammatory cytokine
IL-1β in serum by downregulating the expression of
lncRNA-metastasis-associated lung adenocarcinoma tran-
script 1 (MALAT1).149 Hydroxytyrosol acetate (HT-AC), a
natural polyphenolic compound derived from olive oil,
has recently been found to inhibit vascular EC pyrop-
tosis and atherosclerotic lesions formation via targeting
the downregulated expression of HDAC11 in HFD-fed
ApoE−/− mice.197 However, the mechanism of HDAC11
regulating pyroptosis is still unclear and needs to be
further explored. In addition to the inhibitors mentioned
above, several other drugs and molecules that inhibit
inflammasome activation have been found to alleviate
CVDs. Tranilast is a targeted inhibitor of inflammasome
by directly binding to NLRP3198 and has been shown
to be effective in the treatment of CAD and myocar-
dial fibrosis.199,200 Similarly, OLT1177 and oridonin also
interact directly with NLRP3 and inhibit inflammasome
activation,201,202 reducing infarct size and relieving MI
after IRI in the mouse.203,204 Moreover, glyburide and
3,4-methylenedioxy-β-nitrostyrene are two other small
molecule compounds that have been found to inhibit
inflammasome activation,205,206 but their protective effect
on CVD is unclear. Together, these studies suggest that
indirect targeting of pyroptosis by inhibiting inflamma-
some can treat CVDs, but the important role of pyroptosis
in this process needs to be further clarified.

3.6.2 Caspase-1 inhibitors

Similar to NLRP3, caspase-1 is another key molecule in
the initiation of pyroptosis by direct cleaving of GSDMD,
and its inhibitors have also been found for the treat-
ment of CVDs, such as VX-765, z-WEHD-FMK, ac-YVAD-
CMK, andAc-YVAD-CHO.207 VX-765 is a specific inhibitor
of caspase-1, which has been found to attenuate the
development and progression of atherosclerosis in ApoE-
deficient mice by inhibiting VSMCs pyroptosis.208 In
addition, VX-765 treatment also significantly reduced the

infarct size and cardiomyocyte pyroptosis in the mouse
model of AMI.158 Benzyloxycarbonyl-Trp-Glu(OMe)-His-
Asp(Ome)-fluoromethylketone (z-WEHD-FMK) is an irre-
versible inhibitor of caspase-1 that inhibits vascular
neointima hyperplasia by preventing VSMCs prolifera-
tion and migration in diabetic mice.209 Furthermore,
Wang et al.210 reported that treatment with z-WEHD-FMK
alleviates hyperhomocysteinemia-induced atherosclerosis
in apoE-deficient mice. Ac-YVAD-CMK is a tetrapep-
tide sequence that irreversible inhibits caspase-1 by
targeting the sequence of caspase-1 in pro‑IL‑1β, treat-
ment with Ac-YVAD-CMK significantly restrains hypoxia-
reoxygenation-induced troponin I (TnI), an effective diag-
nostic biomarker formyocardial infarction, degradation by
inhibiting MMP-2 activity in a dose-dependent manner in
neonatal cardiomyocytes.211 Furthermore, Ac-YVAD-CMK
attenuates high glucose (HG)- and hypoxia/reoxygenation
(H/R)-induced H9C2 cell injury by blocking NLRP3
inflammasome-mediated pyroptosis.212 Similar to Ac-
YVAD-CMK, Ac-YVAD-CHO is also a specific tetrapeptide
inhibitor of caspase-1, with IC50 values of 2.5 μM inmice. It
has been found that Ac-YVAD-CHO can partially reverse
uric acid-induced vascular endothelial injury and play a
protective role in the cardiovascular system.213

3.6.3 GSDMD inhibitors

GSDMD is themain executor of pyroptosis, unlike caspase-
1 and NLRP3 inflammasome inhibitors, the inhibitors of
GSDMDhave been less reported. Necrosulfonamide (NSA)
was first found to inhibit necroptotic by directly binding
to MLKL, but a recent study by Rathkey et al. demon-
strated that NSA can directly interact with GSDMD via
Cys191 and thus act as a selective inhibitor of GSDMD.214
In the rat model of pulmonary IRI, administration of
NSA significantly improves the physiological functions
of lung.215 However, this study suggests that the protec-
tive effect of NSA on IRI depends on its inhibitory effect
on necroptosis, and the role of pyroptosis in IRI remains
to be further explored. Consistent with NSA, disulfiram
(DSF), an old drug that has been approved for treating
alcohol addiction in 1951 by the United States Food and
Drug Administration, was also found to inhibit pore for-
mation and pyroptosis by targeting human GSDMD at
Cys191.216 Although the protective role of DSF in heart
disease has been mentioned,217 its effect and mechanism
remain to be elucidated in detail. In addition, exogenously
dimethyl fumarate (DMF) and endogenous fumarate block
the interaction between GSDMD and caspase-1, and then
inhibit pyroptosis by inducing GSDMD succination at
Cys191.218 Interestingly, DMF has been reported to pro-
tect cardiomyocytes from injury in an oxygen-glucose
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TABLE 4 The role of pyroptosis in different diseases

Disease Pyroptosis functions References
Breast cancer miR-1290/NLRP3-mediated decreases the tumor radioresistance 235

GSDME-mediated pyroptosis inhibits the tumor growth 236–242

GSDMD-mediated pyroptosis suppresses the tumor growth 243–245

Lung cancer GSDMD-dependent pyroptosis enhances antitumor therapy 249–254

Colorectal cancer GSDME-dependent pyroptosis inhibits the tumor progression 256–260

Gastric cancer NLRP3-dependent pyroptosis promotes cisplatin sensitivity for cancer therapy 261

Enhanced GSDMD cleavage could achieve cell pyroptosis to inhibit tumor growth 264–265

GSDME-mediated pyroptosis enhances antitumor effect 266–267

Liver cancer GSDME-dependent pyroptosis promotes cancer therapy 268–269

Macrophages pyroptosis enhances NK-cell response for immunotherapy 270

NLRP3 inflammasome-dependent pyroptosis promotes tumor suppression 271

Parkinson’s disease Inhibition of inflammasome activation and pyroptosis can prevent dopaminergic neuron
death

286–287

Inhibition of pyroptosis can improve behavioral disorders and reduce nigrostriatal
dopaminergic degeneration in MPTP mouse model

291–292

Alzheimer disease Inhibition of caspase-1 alleviates neuronal injury and neuroinflammation 301

Stroke Caspase-1-mediated pyroptosis leads to neuroinflammation 311

Caspase-1-mediated pyroptosis leads to neuronal death and cerebrovascular destruction 312

Amyotrophic lateral sclerosis NLRP3-mediated pyroptosis leads to neuronal death and motor neuron degeneration 323

Diabetes NLRP3-mediated pyroptosis impairs the regulation of glucose homeostasis and
metabolism

314,329

NLRP3-mediated pyroptosis leads to impaired islet β cell function 337

Obesity Caspase-11-mediated pyroptosis leads to degeneration of colonic intermuscular
nitrogenergic neurons and colonic dyskinesia

340

Caspase-1/4/5 activates pyroptosis leading inflammatory response in adipose tissue 345–346

Gout NlLRP3-dependent pyroptosis leads inflammatory response in the joints 348

deprivation/reoxygenation model of myocardial IRI. But
the therapeutic effect of DMF on AMI depends on its
inhibitory effect on apoptosis rather than pyroptosis.219
Notably, a recent study shown that the ragulator–rag–
mTORC1 pathway is required for GSDMD pore formation
and pyroptosis rather than GSDMD cleavage. Mechanis-
tically, mTORC1 promotes GSDMD oligomerization by
inducing ROS production and mitochondria damage.220
These results show that theRagulator–Rag–mTORC1 com-
plex is a necessary regulator for GSDMD oligomerization,
indicating that targeting this pathway may improve CVD
by suppressing pyroptosis.

4 PYROPTOSIS AND CANCER

At present,malignant tumors have become one of themost
serious diseases endangering human health.221–223 The
tumor occurrence and development, which need detailed
research to search proper treatments to improve the
survival rate of patients, are affected by a variety of factors,

including oncogene activity, oxidative stress, immune
microenvironment, and chronic inflammation.224–226
Particularly, pyroptosis induces inflammatory cytokines
release, such as IL-1 and IL-18, which could induce an
inflammatory environment to increase tumor infiltra-
tion and promote the likelihood of tumorigenesis and
metastasis.227–229 Meanwhile, pyroptosis occurs in almost
all the type of cancer and shows a double-edged sword
effect to cancers, which could either enhance or restrain
tumorigenesis.230–233 Therefore, we need to deeply explore
the specific mechanism of pyroptosis and tumor pro-
gression to provide evidence for tumor prevention and
treatment (Table 4).

4.1 Pyroptosis and breast cancer

In recent years, the new cases of breast cancer have
increased dramatically, becoming the largest cancer
in the world.234 Research into effective breast cancer
prevention and treatment strategies remains a huge
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challenge. The expression of miR-1290 shows higher
level in radioresistant tumor tissues of triple-negative
breast cancer (TNBC) patients, which could inhibit
the radiation-induced pyroptosis with human breast
cancer cells (MDA-MB-231) radiosensitivity reduced.
The potential target of miR-1290 was NLRP3, and miR-
1290/NLRP3-mediated pyroptosis has a good potential
to decrease the radioresistance in TNBC to be served
as a novel antitumor strategy.235 GSDME is the core of
pyroptosis and plays a significant role in breast cancer
cells, which has a great potential to suppress the tumor
growth and metastasis. Enhanced mitochondrial ROS
could induce caspase-3-dependent cleavage of GSDME
to promote pyroptotic cell death for inhibiting metastasis
and proliferation of human breast cancer cells (MDA-MB-
231).236 Triclabendazole could induce GSDME-dependent
pyroptosis through caspase-3 activation, which shows
a good potential for breast cancer therapy.237 Acute Cd
exposure induces caspase 3-GSDME-mediated pyroptosis
to suppress tumor growth of MDA-MB-231 breast can-
cer cells by NLRP3 inflammasome activation and ROS
generation.238 Tumor suppressor DRD2 could induce
GSDME-mediated murine 4T1 breast cancer cells pyrop-
tosis and educate macrophage to enhance antitumor
efficacy.239 Mitochondrial uncoupling protein 1 could
activate mitophagy and pyroptosis to inhibit the process
of TNBC.240 Because of the high content of glutathione
in murine 4T1 breast tumor microenvironment, the
combination of chlorin e6 (Ce6) and heat shock pro-
tein 90 inhibitor tanespimycin (17-AAG) could induce
GSDME-mediated pyroptosis and decrease myeloid-
derived suppressor cells, which could sensitize tumors
of antiprogrammed death-1 (PD-1) therapy and enforce
immunogenic photodynamic-immune therapy.241 NI-TA
is a photocatalytic superoxide radical generator, which
could trigger pyroptosis in MDA-MB-231 breast cancer
via a caspase-3/GSDME pathway for excellent stemness
inhibition and tumor growth suppression.242 Meanwhile,
GSDMD is also a significant target in breast cancer
therapy. Cisplatin upregulates the lncRNA maternally
expressed gene 3 to activate NLRP3/caspase-1/GSDMD
pyroptosis pathway for TNBC patients’ therapeutic
enhancement.243 A bacterium-attenuated S. typhimurium
(VNP) system is developed to deliver GSDMD into murine
4T1 tumor cells to initiate GSDMD-triggered pyroptosis for
immunotherapy. The strategy based on tumor pyroptosis
has a great chance to enhance adoptive T-cell therapy and
cancer vaccines.244 Niu et al. construct a drug delivery
system including nigericin (Nig) and decitabine (DAC).
Nig could activate NLRP3 inflammasome and caspase-1
protein to cleave GSDMD regulated by DAC, which could
trigger murine 4T1 tumor cell pyroptosis for systemic
anticancer immunity.245

4.2 Pyroptosis and lung cancer

Lung cancer is one of themost commonmalignant tumors,
which has a high morbidity and mortality rate around
the world with a significant threat to human health.246
GSDMD is a crucial factor of pyroptosis and overex-
pressed in non-small cell lung cancer (NSCLC) cells, which
is closely related to the larger tumor size and lymph
nodes metastasis.247,248 Ophiopogonin B (OP-B) is a bioac-
tive component from Radix Ophiopogon Japonicus, which
shows high cell proliferation inhibition of NSCLC cells. It
is verified that OP-B induce caspase-1/GSDMD-dependent
pyroptosis to reverse cisplatin resistant A549 cells.249
Trichosanthin could increase the expression of pyroptosis-
related proteins, such as GSDMD and NLRP3, to induce
the pyroptosis of A549 NSCLC.250 Cucurbitacin B (CuB),
a bioactive component from muskmelon pedicel, could
bound the TLR4 to activate the NLRP3 inflammasome
and separate of N- and C-terminals of GSDMD to induce
TLR4/NLRP3/GSDMD-dependent pyroptosis for antitu-
mor therapy of A549 NSCLC.251 Polyphyllin VI (PPVI),
a bioactive component from Trillium tschonoskii Maxim,
could increase ROS level to activate NF-κB signaling path-
way and NLRP3 inflammasome in A549 cells. The study
demonstrates PPVI-triggered caspase-1-mediated pyropto-
sis was closely related with ROS/NF-κB/NLRP3/GSDMD
signal axis in NSCLC.252 A combination system of a ruthe-
nium (II) polypyridyl complex and Taxol could activate the
pyroptosis key molecules of caspase-1 and GSDMD to trig-
ger caspase-1/GSDMD-mediated pyroptosis of A549 tumor
cells for enhanced anticancer therapeutic effect.253 Ning
et al. demonstrate that mixed-lineage leukemia 4 ablation
decreases the expression of DNA methytransferases and
RNA-induced silencing complex, which causes GSDMD-
dependent pyroptosis and transcriptional reactivation of
double-stranded RNA for strengthened immunotherapy
in human lung cancer (H1299) cells. It reveals a gen-
eral function of tumor-cell GSDMD-induced pyroptosis in
enhancing anticancer immunity.254

4.3 Pyroptosis and CRC

CRC is one of the most common tumors worldwide,
which seriously threatens human life and health.255 A
synthetic farnesoid X receptor agonist (GW4064) could
induce BAX/caspase-3/GSDME-mediated pyroptosis to
promote the efficacy of oxaliplatin so as for enhanced
anticancer effects of human CRC.256 In colitis-associated
CRC, released HMGB1 could trigger GSDME-mediated
pyroptosis to promote tumor cells proliferation by ERK1/2
pathway. How to inhibit GSDME-mediated pyroptosis is
one of a promising target for colitis-associated humanCRC



JIN et al. 17 of 35

therapeutic strategies.257 Gambogic acid (GA) could regu-
late the activation of caspase-3 and induce the GSDME-
dependent pyroptosis to inhibit human CRC cells prolif-
eration.Meanwhile, GA-induced pyroptosis promotes pro-
portions of DCs and CTLs in tumor microenvironment to
enhance antitumor immune response.258 Apoptin from the
VP3 gene of chicken anemia virus can increase the intra-
cellularROSand cleave caspase-3 to trigger pyroptosiswith
GSDME cleavage. Apoptin induces HCT116 cells pyrop-
tosis via the mitochondrial GSDME-mediated apoptotic
pathway for CRC therapy.32 The expression of GSDME
could sensitize radio-resistant tumor cells to radiation
in human CRC. The radiation-induced CRC cells pyrop-
tosis via caspase-3-mediated pathway is determined by
GSDME, which activates NK cells to promote anticancer
immunity.259 The lobaplatin increase ROS expression and
JNK phosphorylation to recruit Bax to mithochondria,
thereby trigger pyroptosis to cleaveGSDMEdue to the acti-
vation of caspase-3. The mechanism of lobaplation against
human CRC cancer is related to GSDME-dependent
pyroptosis, which may have promising in the anticancer
clinical application.260

4.4 Pyroptosis and GC

GC has a high degree of malignancy and high rate of
recurrence and metastasis in advance stage. Low-dose
diosbulbin-B (DB) could inhibit properties of cancer stem
cells and induce PD-L1 depletion to activate NLRP3-
dependent pyroptosis, which effetely sensitize cisplatin-
resistant GC cells. Low-dose DB induces PD-L1/NLRP3
pathway pyroptosis to promote sensitivity of cisplatin in
GC, indicating an appropriate strategy of GC treatment.261
As reported, GSDMA and GSDMC are decreased in
GC compared with normal gastric tissue and may be
regarded as antioncogene.262,263 GSDMD is silenced in
GC compared to adjacent normal tissues and decreased
expression could trigger proliferation of cancer cells.264
A system of fructose-coated Ångstrom-scale silver par-
ticles (F-AgÅPs) is established. F-AgÅPs could induce
LDH release, caspase-1 expression, and GSDMD cleav-
age to achieve BGC-823 cells pyroptosis in vitro and in
vivo, indicating a promising therapeutic treatment for
GC.265 Additionally, a combination of BIX-01294 (BIX)
and cisplatin shows human cancer cell pyroptosis with
cleavage of GSDME and caspase-3. The study first to
verify BIX could induce GSDME-mediated pyroptosis by
autophagic flux activated to enhance antitumor effect.266
Cold atmospheric plasma (CAP) could effectively trigger
GC pyroptosis depended on the cleavage of GSDME and
the activation of mitochondrial pathways, which provides
a novel strategy for anticancer treatment.267

4.5 Pyroptosis and liver cancer

HCC accounts for the majority of primary liver cancers
and shows a serious threat to human health. Miltirone
is a bioactivate molecule isolated from the root of Salvia
miltiorrhiza Bunge. Miltirone could elicit ROS gener-
ation, inhibit the regulated ERK1/2 extracellular and
MEK phosphorylation for pyroptosis induction with
cleavage of GSDME and caspase-3. Caspase-3 siRNA-
mediated silencing attenuates the induction of miltirone
on GSDME-mediated human HCC pyroptosis.268 As2O3
nanoparticles (As2O3-NPs) could promote more LDH
release and trigger pyroptosis in GSDME-expressing
human HCC cancer cells. As2O3-NPs activates caspase-3
to cleave GSDME with free N-terminal domain releasing,
indicating emergence of pyroptosis.269 Sorafenib is an
inhibitor of multitarget kinase, which is used to treat
HCC in clinical. Sorafenib could induce macrophages
pyroptosis, which approves direct immune modulation
and decreases major histocompatibility complex class
I expression for favor NK-cell response, indicating a
promising immunotherapy.270 Alpinumisoflavone, an
anticancer drug for the treatment of HCC, could effec-
tively induce cancer cell pyroptosis through NLRP3
inflammasome-dependent pathway to increase the expres-
sion of pyroptosis-related genes for enhanced tumor
inhibition.271

4.6 Prospects of anticancer therapy by
targeting pyroptosis

Pyroptosis plays an important role in tumor occurrence
and development, which is related to both tumor-
suppressing and tumor-promoting effects. On the one
hand, the adverse tumor environment in cancer cells
induces long-term chronic pyroptosis, which could
enhance cancer progression. The proinflammatory
cytokines induced by chronic pyroptosis promote the for-
mation and maintenance of inflammatory environment
for tumor progression. On the other hand, the activation of
pyroptosis in cancer cells leads to infiltration of immune
cells, which could activate the tumor immune response to
inhibit the tumor growth (Figure 4).

4.6.1 Chemotherapeutic drugs

As reported, chemotherapy is demonstrated it could trig-
ger pyroptosis to induce cancer cell death, thus inhibits
tumor growth. The pyroptosis of epithelial ovarian can-
cer cells could be triggered by 2-(anaphthoyl) ethyl-
trimethylammonium iodide (α-NETA) through pathway
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F IGURE 4 Prospects of anticancer therapy by targeting pyroptosis. The feasibility and potential of targeting pyroptosis as an antitumor
therapy is investigated in recent years. Chemotherapy remains the most common cancer treatment, as it induces pyroptosis of tumor cells to
cause cell death. Furthermore, some distinctive strategies have been investigated, including immunotherapy and nanomedicine therapy, all of
which can effectively trigger pyroptosis in tumor cells.

of caspase-4/GSDMD.272 α-NETA exhibits much lower
cytotoxic effect after the knockdown of either caspase-
4 or GSDMD in ovarian cancer cells and decreases the
growth of epithelial ovarian tumor in vivo. The results
indicate that a-NETA is a promising molecule of antitu-
mor for cancer therapy by pyroptosis. Metformin could
target miR-497/leucine-rich protein (PELP1) axis to pro-
mote pyroptosis of esophageal squamous cell carcinoma
by GSDMD pathway.273 DOX could silence the expression
of eukaryotic elongation factor-2 kinase (eEF-2K), which
plays an important role in humanmelanoma cells through
DOX-induced pyroptosis, to promote the sensitivity of can-
cer cells to DOX.274 Lobaplatin increases the expression
of ROS and JNK phosphorylation to induce GSDME-
dependent pyroptosis and caspase-3/9 cleavage, thereby
promoting the suppression of colon tumor growth.260
Cisplatin can trigger caspase-3 and GSDME-dependent
pyroptosis in A549 cells, indicating cisplatin has a good
potential in lung cancer therapy with high expression
of GSDME.275 The pyroptosis in GC cells is induced
by 5-fluorouracil, accompanied by accumulation of the
GSDME N-terminal segment and generation of cleaved
caspase-3.276 Anthocyanidins could increase the expres-

sion of caspase-1, NLRP3, and IL-1β to induce pyroptosis,
which enhances anticancer effect of oral squamous cell
carcinoma cells.277

4.6.2 Cancer immune stimulation by
pyroptosis

The association of pyroptosis and anticancer immunity is
tight. Granzyme B secreted by NK cells cleaves GSDME
directly or activates caspase-3 to cleave GSDME indirectly,
inducing the pyroptosis of GSDME-expressing cancer
cells. The experiments in vivo demonstrated that tumor
growth is not suppressed in nude mice, indicating that
tumor growth inhibition through pyroptosis is related
with the host immune system.278 A biorthogonal system
of gold nanoparticles and phenylalanine trifluoroborate
could deliver GSDMA3 into tumor cells to induce pyrop-
tosis, thereby increasing the populations of NK cells and
cytotoxic T cells. The pyroptotic tumor cells trigger anti-
cancer immune response for enhanced PD-L1 combined
therapy.279 The tumor cells pyroptosis is triggered by
NK cells and CD8+ T cells through granzyme-A/GSDMB
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axis. The experiments reveal that the GSDMB triggers
lytic death of target cell by granzyme A in NK cells.280
The released granzyme B and perforin trigger caspase-
3/GSDME-induced cancer cell pyroptosis to achieve CAR-
T-cell cancer therapy. The cancer cell pyroptosis also
leads to the activation of capase-1/GSDMD pathway in
macrophages with proinflammatory cytokines release,
triggering cytokine release syndrome.281 In hypoxic tumor
cells, PD-L1 nuclear translocation increases the produc-
tion of GSDMC, then converts apoptosis to pyroptosis. The
mechanism of nuclear PD-L1 in hypoxia-dependent pyrop-
tosis is investigated, which proves the complex of PD-L1/p-
Y705-Stat3 induces pyroptosis through caspase-8/GSDMC
pathway.76

4.6.3 Cancer pyroptosis and nanomedicine

Up to now, the chemical drug combinations have shown
splendid efficacy in clinic, whereas the challenges of
low solubility and nontargeted properties of drugs are
remained. Because of rapid development of nanotechnol-
ogy, it has a great opportunity to be a strategy to reduce the
side effects and promote bioavailability of drugs.282 How to
combine tumor cell pyroptosis and nanotechnology to sup-
press cancer progression has become a research hotspot.
Lipo-DDP, cisplatin loaded in liposome, could induce
tumor cell pyroptosis by caspase-3-depedented pathway.
The combination of Lipo-DDP and DAC (a DNA methyl-
transferase inhibitor) triggers system immune response
to suppress the tumor growth and metastasis.283 To
promote the tumor accumulation of As2O3, a triblock
polymer of mPEG–PLGA–PLL is prepared to construct
nanomedicine with As2O3 enveloped. The As2O3 loaded
in nanomedicine could increaseGSDME-N expression and
trigger pyroptotic cell death.269 Metal-organic framework
(MOF) nanoparticles are regarded as promising carriers
to deliver drugs into tumor. The lipid-coated MIL-100
(L-MOF) is designed to deliver amounts Fe3+ ions into
cancer cells. Large amounts of Fe3+ induce lysosomal rup-
ture and pyroptosis.284 The nanocarrier with controlled
release is a promising strategy to eliminate cancer cells by
pyroptosis.

5 PYROPTOSIS AND NDs

NDs manifested as dysfunction or loss of nervous system
function. Neuroinflammation driven byNLRP3 inflamma-
some in NDs has been proved, such as AD, Parkinson’s dis-
ease (PD), stroke, and amyotrophic lateral sclerosis (ALS).
Next, we will introduce the involvement of pyroptosis in
NDs specifically (Table 4).

5.1 Pyroptosis and PD

PD is a common neurodegenerative disease, which is
mainly due to the degeneration and death of dopamin-
ergic neurons in the substantia nigra of midbrain. The
development of PD is accompanied by the loss and
appearance of dopaminergic neurons.285 Activation of the
inflammasomehas also been implicated in PD, recent stud-
ies have shown that suppression of the inflammasome
and prevents dopaminergic neuron death in a 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD
mouse model.286,287 In an MPTP-induced PD mouse
model, the release of IL-1β was induced significantly
higher than in controls, IL-1β levels can be inhibited by
MCC950.288,289 In microglia, α-synuclein aggregates into
Lewy bodies, and α-synuclein aggregates activate NLRP3
to promote the release of proinflammatory cytokines such
as IL-1β.290 In addition, inhibiting the occurrence of pyrop-
tosis can improve behavioral disorders, reduce nigros-
triatal dopaminergic degeneration, neuroinflammation,
and inhibit the activation of proinflammatory microglia
of PD rats.291,292 Moreover, Anderson et al.293 findings
suggest that midbrain inflammasome protein expression
is a histopathological marker of early substantia nigra
degeneration in PD patients. Li et al. found that high
expression of microRNA-188-3p inhibit pyroptosis by tar-
geting NLRP3 in MPTP-induced PD mice and MN9D
cells.294 At present, the clinical treatment of PD patients
is mainly to increase the content of dopamine transmitters
in the brain. However, considering that neuroinflamma-
tion has been shown to be an important pathogene-
sis of PD, alleviating the damage of dopamine neurons
caused by inflammatory factors is also crucial for PD
treatment.295,296

5.2 Pyroptosis and AD

Many evidences support a significant role for inflamma-
somes in the pathogenesis of AD.297 IL-18 was expressed
in microglia and astrocytes, microglia-derived proinflam-
matory cytokines are thought to be involved in AD and
IL-1β and IL-18 aggravate the disease.298,299 The shuttle of
Amyloid β-protein (Aβ) into mitochondria promotes the
activation of DRP1 and aggravates mitochondrial dysfunc-
tion in the hippocampus of 5xFAD mice, which in turn
induces the activation of NLRP3 inflammasome, leading
to IL-1β secretion and pyroptosis-related protein GSDMD
activation.300 Knockdown of NLRP1 or caspase-1 reduced
neuronal damage in an amyloid mouse model of AD.
However, inhibition of caspase-1 also blocks the release
of inflammatory factors, so it is unclear whether neu-
ronal damage is induced by inflammation or pyroptosis.
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In vitro, oligomeric fibers of Aβ induced ASC and NLRP3-
dependent IL-1β release in astrocyte and microglia.301
Extracellular ASC have been shown to contribute to dis-
seminate of amyloid and aggregate AD. Brain lysates
bound to fibrous ASC spots were detected in animal mod-
els of AD pathology. This suggests that ASC plays a role
in planting Aβ plaques.302,303 What is more, both NLRP3
and caspase-1 knockout mice showed improved memory
compared with wild-type mice.304 Recent studies have
shown that targeting amyloid alone may not be sufficient
to prevent AD and exploring the treatment of AD by tar-
geting inflammasome pyroptosis is an important research
avenue. Microglia-derived proinflammatory cytokines IL-
1β and IL-18 are thought to exacerbate AD.305 IL-18 and
IL-1βwere detected in microglia and neurons in the brains
of AD patients, and IL-18 showed colocalization with Aβ
plaques and Tau protein.306 In AD models, the NLRP3
inhibitor mefenamic acid was shown to have no effect on
pyroptosis, but inhibition or caspase-1 deficiency protected
neuroinflammation and memory deficits in rat models
of Aβ-induced AD.307 Tian et al.308 findings elucidate
the crucial mechanisms of NLRP3/caspase-1 in pyroptosis
and tau pathogenesis induced by sevoflurane. Salidroside
(Sal) can not only reduce and inhibit pyroptosis through
accumulation of Aβ and phosphorylation of Tau through
downregulation of IL-1β and IL-18 expression, in addition,
Sal reversed the increase in the protein expression of TLR4,
NF-κB, NLRP3, ASC, cleaved caspase-1, cleaved GSDMD,
IL-1β, and IL-18 in AD mouse model.309 Targeting amy-
loid alone may not be enough to prevent AD, exploring
the drivers of the inflammasome in AD pathology is an
important avenue of research.

5.3 Pyroptosis and stroke

Stroke-induced neuroinflammation can cause delayed
neuronal death. Other studies have shown that inflam-
masome can be activated for pyroptosis in the brain after
ischemic stroke. Neuronal caspase-1may be activated early
in infarction, and in vivo, the activation of caspase-1 was
inhibited using intraventricular Ac-YVAD-cmk.310 IL-1β is
one of the major proinflammatory cytokines mediating
neuroinflammation, which acts by amplifying neuroin-
flammation, leading tomicroglia-mediatedneuronal death
or vascular destruction, and inhibition or knockdown
of caspase-1 has neuroprotective effects in focal stroke
models.311 Cerebral ischemia can initiate the inflamma-
tory response of microglia and promote the formation of
inflammasomes, such as NLRP1, NLRP3, and NLRP4 pro-
teins, which then recruit and activate caspase-1. Caspase-1
is toxic to neuronal cells by cleaving pro-IL-1β and pro-IL-

18 into mature proinflammatory cytokines. IL-1 receptor
antagonists are protective in animal models of stroke and
in phase II clinical trials.312 The NLRP3 inflammasome
drives the inflammatory response after the transient inter-
mediate phase of IRI andNLRP3 inflammasome continues
to drive neuroinflammation within the subacute stroke
phase.313 Inhibition of NLRP3 inflammasome can reduces
neurological deficits and long-term cognitive impair-
ment, and reduces infarcts. MCC950 also reduced brain
damage in rats.314,315 In intracerebral hemorrhage mod-
els and cerebral infarction controlled cortical impinge-
ment models, inflammasome inhibitors that covered all
inflammasomes or specific NLRP3 significantly attenu-
ated inflammatory responses and reduced infarct volume,
accompanied by clear evidence of reduced caspase-1 acti-
vation in mice.312 The disease-driven role of NLRP3
suggest that NLRP3 blockers have therapeutic potential
for stroke.

5.4 Pyroptosis and ALS

ALS is a motor neuron disease characterized by the degen-
eration of motor neurons in the motor cortex, brain
stem and spinal cord. Studies have found that neuroin-
flammation plays an important role in its course. The
expression of NLRP3, GSDMD, and IL-1β was detected
in microglia in the motor cortex and spinal cord of ALS
patients, suggesting that NLRP3 inflammasome was acti-
vated in ALS patients. In addition, increased microglial
pyroptosis was also found in TDP-43A315T ALS mice and
correlated with neuronal death.294 Copper/zinc superox-
ide dismutase (SOD1) gene mutation can lead to ALS
animal model. The expression of caspase-1 is reduced
in in transgenic mice expressing mutant human SOD1
with a substitution of glycine to alanine in position 93
(mSOD1(G93A)), and intraventricular administration of
caspase-1 inhibitor zVAD-fmk candelay the onset andmor-
tality of ALS.316 In addition, SOD1 was found to activate
caspase-1 and IL-1β, and mutant SOD1 can be recognized
by ASC to limit caspase-1-mediated inflammation.317 As
the disease progresses, the expression of GSDMD, NLRP3,
activated caspase-1, and IL-1β in the spinal cord of ALS
mice increases compared with CON mice. In the early
stage of ALS, NLRP3, caspase-1, and IL-1β are mainly
located in ventral horn neurons. In the late stage of
ALS, GSDMD, NLRP3, activated caspase-1, and IL-1βwere
mainly expressed in reactive astrocytes and microglia.
Activation of NLRP3 inflammasome can lead to pyropto-
sis of ventral horn neurons in ALS patients, which may
be involved in motor neuron degeneration and disease
progression in ALS.318
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5.5 Treatment of NDs by targeting
pyroptosis

5.5.1 NLRP3 inhibitors

Numerous studies have shown that neuroinflammation
plays a key role in neurodegenerative diseases. Studies
have shown that the expression of proinflammatory fac-
tor IL-1β is upregulated in the brain of AD patients,
and NLRP3 knockout improves behavioral tests in AD
mice. Inhibition of NLRP3 by OLT1177 can improve the
impairment of learning and memory ability and treat neu-
roinflammation in ADmice.319 Recent studies have shown
that fenamic nonsteroidal anti-inflammatory drugs such as
flufenamic acid and mefenamic acid can inhibit cyclooxy-
genase to exert anti-inflammatory effects and inhibit
NLRP3 activation. This dual anti-inflammatory fenamic
acid has been shown to exert neuroprotective effects in ani-
mal models of AD. MCC950 is a widely recognized NLRP3
specific inhibitor and has no effect on other inflamma-
somes such as NLRP1, NLRC4, and AIM2. The specificity
ofMCC950makes it unable to completely block the release
of proinflammatory factors in vivo and maintain part of
the body’s immune response. In an experimental autoim-
mune EAE mice model, MCC950 ameliorated the disease
by inhibiting NLRP3 inflammasome activation by block-
ing ASC oligomerization. Moreover, tivantinib can also
effectively alleviate EAE in mice directly blocking ATPase
activity of NLRP3.320 The development of antagonists of
pyroptosis may transform the treatment of neurodegen-
erative diseases. Studies have found that Prussian blue
nanozyme, a pyroptosis inhibitor, inhibits pyroptosis by
inhibiting the activation of NLRP3 inflammasome, which
can alleviate motor deficits, rescue dopaminergic neurons,
and alleviate the severity of PD in MPTP-induced PD
rats.286

5.5.2 Caspase-1 inhibitors

In addition, inflammasome-induced pyroptosis may
be involved in neuronal death after stroke. AIM2
inflammasome-mediated pyroptosis may aggravate
cognitive impairment after stroke. AIM2 knockout and
capase-1 inhibitor Ac-YVAD-CMK treatment significantly
improved cognitive function in stroke mice.321 In LPS
and 6-OHDA-induced PD models, caspase-1 inhibitor
Ac-YVAD-CMK could protect dopaminergic neurons
by inhibiting NLRP3/caspase-1/IL-1β signaling path-
way. VX-765, a small molecule inhibitor, can inhibit
the expression of caspase-1 in human microglia and
oligodendrocytes, reduce axonal injury, and alleviate

neurobehavioral manifestations in mice with immune
EAE.322 In addition, treatment with caspase-1 inhibitor
VX-765 also alleviated Zika virus-induced neuroinflam-
mation and pyroptosis and significantly alleviated nerve
damage and brain atrophy in vivo.323 VX-765 has been
proved to be an antiepileptic drug with less side effects
and has passed clinical phase 2 trials, which has great
application prospects. In Febrile seizures (FS) mice, the
expression level of caspase-1 was significantly increased
before the onset of the disease. CZL80, an inhibitor of
caspase-1, reduced neuronal excitability to inhibit FS in
neonatal mice. CZL80 also reduced epileptic susceptibility
in adult mice.324 Progressive ischemic stroke is character-
ized by progressive neurological dysfunction after tissue
ischemia. High expression of caspase-1 can aggravate
ischemic brain damage. Caspase-1 inhibitor CZL80 can
inhibit the activation of microglia in the peri-infarct
cortex and promote the recovery of neurological function
in stroke mice by inhibiting caspase-1.325 VRT-018858, a
selective caspase-1 inhibitor, has neuroprotective effects
at 1 and 3 h after brain injury and significantly attenuates
ischemic injury in rats.326 Wuyang Huanwu Decoction
(BYHWD) is a classical traditional Chinese medicine
used for the treatment of cerebral ischemia. Glycosides
are the main effective components of BYHWD against
nerve injury. The cerebral I/R model was established by
occlusion of the middle cerebral artery for 2 h followed by
reperfusion for 24 h. Studies have found that glycosides
reduce the protein expression levels of NLRP3, ASC, and
caspase-1, inhibit cell pyroptosis, and play a protective role
in neurons.327

5.5.3 GSDMD inhibitors

Pyroptosis plays an important role in the development
of a variety of nervous system diseases. However, the
role of GSDMD, the executor of pyroptosis, in NDs
has not been elucidated, but a number of studies have
found that inhibiting the expression of GSDMD can
greatly help to alleviate the progression of NDs. DMF
binds to the cysteine residue of GSDMD to succinylation
of GSDMD. Succinylation of GSDMD prevents pyrop-
tosis and thus alleviates EAE in mice.218 Sevoflurane
has been reported to be neurotoxic, which can lead to
cognitive defects in learning and memory during devel-
opment. NSA and DSF were found to inhibit pore for-
mation in GSDMD. In addition, NSA and DSF treatment
also attenuated the release of DAMPs and subsequent
plasmamembrane disruption induced by sevoflurane chal-
lenge, thereby attenuating the neurotoxicity of sevoflurane
in vitro.328
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6 PYROPTOSIS ANDMETABOLIC
DISEASES

MDs are caused by metabolic problems, including
metabolic disorders and metabolic exuberant causes,
mainly including the following diseases: diabetes, obesity,
and gout (Table 4).

6.1 Pyroptosis and diabetes

Diabetes is a complex metabolic syndrome characterized
by hyperglycemia. The NLRP3 inflammasome has been
associated with the regulation of glucose homeostasis in
rats.314 High glucose injury leads to impaired adipose func-
tion. STZ induced diabetic myopathy in C57 mice, com-
pared with the control group treated with normal saline,
the expression of downstreampyroptosis pathway caspase-
1, IL-1β, and IL-18 was significantly upregulated.329 In
addition, pyroptosis further increases the inflammatory
response by releasing the proinflammatory cytokine IL-6.
Hyperglycemia can induce macrophage GSDMD activa-
tion and pyroptosis, which plays an important role in
the pathogenesis of diabetic periodontal disease, and
NLRC4 phosphorylation may play a key role.330 Hyper-
glycemia induces pyroptosis in DCM cells by upregulating
miR-30d.331 The cause of hyperglycemia associated with
diabetic nephropathy (DN) is inadequate insulin secre-
tion or insulin resistance, which leads to hypoxia and
excessive production of inflammatory cytokines. High
glucose can increase the expression of TLR4, cleaved
caspase-1, GSDMD-NT, and the secretion of IL-1β and
IL-18 in mice diabetic kidneys.332,333 TLR4 inhibitor and
NF-κB inhibitor partially reversed the pyroptosis induced
by high glucose.334 In podocytes stimulated by high
glucose, the release of proinflammatory cytokines and
chemokines, including intracellular ROS, IL-6 and IL-
1β, is increased by activation of TLR4/NF-κB signaling
pathway.173,335 When duodenojejunal bypass (DJB) surgery
was performed in HFD/STZ-induced diabetic rats, the
results showed that pyroptosis was reduced and islet β
cells were significantly improved. It is speculated that this
may be related to the downregulation of NLRP3 inflam-
masome signaling in macrophages by DJB surgery.336
In addition, it has been confirmed that combined use
of trehalose and guavas juice can protect β-cell func-
tion by reducing pyroptosis and protect against diabetic
pathological damage in rats.337 Pyroptosis has become an
important research perspective in the pathogenesis of dia-
betes, but the mechanism of pyroptosis in diabetes is still
unclear.

6.2 Pyroptosis and obesity

Obesity is strongly associated with low-grade inflamma-
tion throughout in adipose tissue. The level of adipocyte
death is increased significantly in both obese mice and
human, and this cell death is due in part to macrophage-
induced adipocyte pyroptosis.338,339 Obesity often causes
enteric neuronal degeneration, which in turn leads to
gastrointestinal motility disorders. It was found that the
level of activated caspase-1 was higher in the myen-
teric ganglia of obese subjects compared with normal
subjects. Mice fed a high-fat Western diet are prone to
degeneration of myenteric nitriergic neurons and colonic
motility disorders, which are due to caspase-11-mediated
pyroptosis.340 Metabolic inflammation is a key factor in
the pathogenesis of obesity. Cordycepin was found to
significantly improve systemic inflammation and body
weight gain in mice fed a high-fat western diet. Fur-
ther studies have shown that cordycepin can inhibit
intestinal oxidative stress injury and reduce intestinal
epithelial cell apoptosis and pyroptosis.341 Obesity also
promotes the assembly of the NLRP3 inflammasome
in macrophages, which induces macrophage-mediated T
cell activation and IFN-γ release.342 The NLRP3 inflam-
masome can regulate adiposity and insulin sensitivity,
indicating that glucose homeostasis is improved in mice
lacking NLRP3.343,344 In obese mice and human, hyper-
trophic adipocytes may induce obese adipocyte death
through pyroptosis-mediated NLRP3-dependent caspase-
1 activation.345 Obesity is often associated with metabolic
infiltration in multiple tissues, and monocytes from obese
individuals often exhibit elevated inflammatory caspase
activity. The saturated fatty acid can activate monocyte
pyroptosis through caspase-4/5, leading to the release of
inflammatory mediators and inflammasome activation.346

6.3 Pyroptosis and gout

Gout, the autoinflammatory diseases, is characterized by
episodes of inflammation, causing fever, and severe joint
pain and swelling. The development of gout or pseu-
dogout caused by the deposition of monosodium urate
(MSU) or crystals in joints.347 There is still a lack of effec-
tive treatment strategies. Instead, research has focused on
identifying risk factors for disease, and the cellular mech-
anisms by which crystals trigger inflammatory responses.
Gout is associated with high levels of NLRP3, caspase-
1, IL-1β, and IL-18 detected in serum and synovial fluid
of patients.348 Bromodomain-containing protein 4 (BRD4)
has been reported to mediate the regulation of NF-κB
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signaling through acetylation of RELA13. BDR4 inhibitor
JQ-1 improves rheumatoid arthritis by blocking NF-κB
activation. In addition, the BRD4 inhibitor JQ-1 was effec-
tive in reducing joint swelling and synovial inflammation
in MSU-induced rat model. Exploring the mechanism
showed that BRD4 was involved in MSU induced gouty
arthritis by regulating the NF-κB/NLRP3/GSDMD sig-
naling pathway. NLRP3, IL-1β are risk factors for mice
gout.349 The expression of NLRP3 and IL-1β in PBMCs
was significantly increased.350 GLUT1-mediated glucose
uptake is instrumental during NLRP3 activation induced
byMSU and calcium pyrophosphate crystals.351 Raf kinase
inhibitor protein (RKIP) has been found to inhibit the
activation of NLRP1, NLRP3, and NLRC4 inflammasomes.
In bone marrow-derived macrophages, RKIP deficiency
activates NLRP1, NLRP3, and NLRC4 inflammasomes.
Mechanistically, RKIP directly binds to ASC to interrupt
inflammasome activation. Deletion of RKIP can aggravate
inflammasome-related diseases, such as MSU-induced
gouty arthritis and HFD-induced metabolic disorders.352
Signaling resulting from inflammasome activation is a very
effective approach to treat gout.

6.4 Treatment of metabolic diseases by
targeting pyroptosis

6.4.1 NLRP3 inhibitors

The abnormal activation of NLRP3 inflammasome is
closely related to the occurrence and development of a
variety of abnormalities, such as CAPS, type 2 diabetes,
AD, and so on. A specific NLRP3 inhibitor, MCC950, was
found to reduce the severity of DN.329 In addition, CY-
09 could directly bind to the ATP in the NACHT domain
of NLRP3 and inhibit activation of the NLRP3 inflam-
masome; thus, relieving the symptoms of type 2 diabetic
mice.353 Oridonin is a Chinese herbal medicine compo-
nent that has been reported to have anti-inflammatory and
antitumor effects. Recent studies have shown that oridonin
directly binds to the NACHT domain of NLRP3 and specif-
ically inhibits the activation of NLRP3 inflammasome,
thereby alleviating gouty arthritis and type 2 diabetes in
mice.202 Several NLRP3 inhibitors have been shown to
alleviate gout by directly inhibiting NLRP3 inflammasome
activation. For example, metformin and resveratrol can
reverse the damage process and protect mitochondrial
integrity by limiting ER stress to prevent NLRP3 inflam-
masome activation in high-fat mice.354,355 Erianin allevi-
ates gout by directly interacting with NLRP3 to inhibit
NLRP3 assembly. At the cellular level, artemisinin inhib-
ited MSU-induced NEK7 and NLRP3 expression, thereby

reducing symptoms such as ankle swelling in arthritic
mice. In addition, sulforaphane alleviated MSU-induced
arthritis symptoms and inflammatory cell infiltration in
gout mice by directly inhibiting NLRP3 inflammasome
activation. Eucalyptol inhibits gout and joint inflamma-
tion mainly by inhibiting NLRP3 inflammasome activa-
tion and proinflammatory cytokine production through
antioxidant mechanism. DSF inhibits NLRP3 activation
by inhibiting mitochondrial ROS production and has a
significant effect on MSU-induced gout inflammation.
Gallic acid is an active phenolic acid that has been shown
to have anti-inflammatory effects. Gallic acid was found
to inhibit MSU-induced recruitment of neutrophils and
macrophages to the synovial region of the joint. Gallic
acid also inhibits the production of ROS, thereby limit-
ing the activation ofNLRP3 inflammasome and pyroptosis,
thereby playing a protective role in the mouse gouty
arthritis model.

6.4.2 Caspase-1 inhibitors

It is now generally accepted that chronic tissue inflamma-
tion is the main cause of insulin resistance and metabolic
dysfunction in obese patients. Caspase-1 plays an impor-
tant role in pyroptosis after inflammasome activation and
the release of inflammatory factors. Therefore, inhibit-
ing caspase-1 to reduce inflammation and pyroptosis
may be an important method to alleviate metabolism-
related diseases. Leidenmice obesity was induced byHFD.
Treatment with Ac-YVAD-cmk inhibited weight gain and
dyslipidemia in mice. Treatment with caspase-1 inhibitor
Ac-YVAD-cmk reduced the development of liver fibrosis
and insulin resistance in obesity complications.356 VX-765
is a broad-spectrum caspase-1 inhibitor, which can inhibit
pyroptosis and the release of inflammatory factors by
inhibiting caspase-1, thereby alleviating a variety of inflam-
matory diseases, such as multiple sclerosis,322 silicosis,357
and atherosclerosis,208 and is expected to relieve inflam-
mation related to MDs.

6.4.3 GSDMD inhibitors

Pyroptosis plays a crucial role in the disease progression
of gouty arthritis and has become a target because of
its clinical therapeutic potential. Obesity can also lead to
changes in the structure and function of the heart, which
seriously threatens human life. Wogonin treatment can
alleviate obesity-induced lipid metabolism disorders and
cardiac injury by inhibiting pyroptosis and IL-17 signaling
pathway. It alleviates myocardial pyroptosis, myocardial
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injury, and lipid metabolism disorder in mice induced by
HFD.Diabetes can cause a variety of complications, among
which diabetic foot is the most common. Inhibition of
GSDMD by persulfiram can inhibit the formation of NETs
and accelerate the wound healing of diabetic foot.358 Stud-
ies have found that when obesity occurs, GSDMD interacts
with interferon regulatory factor 7 and forms a complex to
promote adipocyte pyroptosis. By targeting GSDMD, MT
inhibits the activation of NLRP3 inflammasome in adipose
tissue ofmice and inhibits pyroptosis to alleviate obesity.359
NSA, as a GSDMD-targeted inhibitor, can inhibit pyrop-
tosis by inhibiting GSDMD, thereby alleviating a variety
of inflammatory diseases, such as inflammatory bowel
disease,360 acute liver failure,361 and pulmonary fibrosis362
and is expected to alleviate inflammation related to MDs.

7 CONCLUSIONS AND PERSPECTIVE

Pyroptosis is a new type of inflammatory PCD that
is triggered by inflammatory caspase and gasdermins
proteins.363 To date, pyroptosis is mainly mediated by four
signaling pathways, namely canonical pyroptosis path-
way, noncanonical pyroptosis pathway, other caspases-
mediated pyroptosis pathway, and granzymes and other
proteases-mediated pyroptosis pathway. Increasing stud-
ies on pyroptosis show a great progress in extensively
various diseases; therefore, we write the review to summa-
rize recent developments in understanding of the complex
mechanism of pyroptosis and application in different dis-
eases (CVDs, cancer, NDs, and MDs). As described above,
the evidence has verified that pyroptosis plays an impor-
tant role and is closely related to the occurrence and
development of diseases (CVDs, cancer, NDs, and MDs).
There are many factors causing various diseases, among
which cell death is one of the most important causes.
However, the mechanisms that trigger cell death remains
unclear.
In the past decade, emerging evidence has demonstrated

that pyroptosis was found in CVDs, cancer, NDs, andMDs,
which are involved in the pathogenesis processes of many
diseases. In review,we summarize current insights into the
complicated relationship between pyroptosis and CVDs,
cancer, NDs, and MDs, and also discusses a promising
new strategy for treating these diseases by targeting pyrop-
tosis. Since pyroptosis contributes to the development of
CVDs, cancer, NDs, and MDs, inhibition of pyroptosis is
a promising and effective strategy for the treatment of
these diseases.We also summarize current insights into the
complicated relationship between pyroptosis and CVDs,
cancer, NDs, andMDs, discuss the promising new strategy
for treating these diseases by targeting pyroptosis and its
upstream inflammasome.

In conclusion, the pathogenic mechanism, and func-
tions of pyroptosis underlying the occurrence, develop-
ment, and outcome of related diseases are still to be
investigated. Such a deep investigation of the relationship
between related diseases and pyroptosis is the focus of rele-
vant research fields, providing new clinical approaches for
the treatment of various diseases.
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