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Abstract

The DynaSig-ML (‘Dynamical Signatures–Machine Learning’) Python package allows the efficient, user-friendly
exploration of 3D dynamics–function relationships in biomolecules, using datasets of experimental measures from
large numbers of sequence variants. It does so by predicting 3D structural dynamics for every variant using the
Elastic Network Contact Model (ENCoM), a sequence-sensitive coarse-grained normal mode analysis model.
Dynamical Signatures represent the fluctuation at every position in the biomolecule and are used as features fed
into machine learning models of the user’s choice. Once trained, these models can be used to predict experimental
outcomes for theoretical variants. The whole pipeline can be run with just a few lines of Python and modest compu-
tational resources. The compute-intensive steps are easily parallelized in the case of either large biomolecules or
vast amounts of sequence variants. As an example application, we use the DynaSig-ML package to predict the mat-
uration efficiency of human microRNA miR-125a variants from high-throughput enzymatic assays.

Availability and implementation: DynaSig-ML is open-source software available at https://github.com/gregorpatof/
dynasigml_package.

1 Introduction

The Elastic Network Contact Model (ENCoM) is the only explicitly
sequence-sensitive coarse-grained normal mode analysis model
(Frappier and Najmanovich 2014). Its sequence sensitivity enables
its use to predict the impact of sequence variants on biomolecular
function through changes in predicted stability (Frappier and
Najmanovich 2015) and dynamics (Teruel et al. 2021). We recently
extended ENCoM to work on RNA molecules and predicted
microRNA maturation efficiency from a dataset of experimentally
measured maturation efficiencies of over 26 000 sequence variants
using LASSO regression (Mailhot et al. 2022). To do so, the
ENCoM Dynamical Signatures, which are vectors of predicted
structural fluctuations at every position in the system, were used as
input variables in a LASSO multiple linear regression model
(Tibshirani 1996) to predict maturation efficiency. To our know-
ledge, this coupling of coarse-grained normal mode analysis to ma-
chine learning in order to predict biomolecular function as a result
of the dynamical impact of mutations is the first of its kind. Here,
we present the DynaSig-ML (‘Dynamical Signatures–Machine
Learning’) Python package, which implements, automates, and

extends that novel protocol. Considering that ENCoM can be used
to study proteins, nucleic acids, small molecules, and their com-
plexes (Mailhot and Najmanovich 2021), DynaSig-ML can be
applied to any biomolecule for which there exist experimental data
linking perturbations (such as mutations or ligand binding) to func-
tion. To demonstrate the use of DynaSig-ML, we predict maturation
efficiencies of miR-125a sequence variants (Mailhot et al. 2022),
exploring gradient boosting, and random forest (RF) regressors in
addition to LASSO regression. An accompanying online step-by-step

tutorial takes users through the necessary steps to generate all results
shown in the present work. DynaSig-ML automatically computes
the ENCoM Dynamical Signatures from a list of perturbed struc-
tures (mutations or ligand binding), stores them as lightweight seri-
alized files, and can then be used to train machine learning
algorithms using the Dynamical Signatures as input features. Any
machine learning algorithm implemented by the popular scikit-learn
Python package (Pedregosa et al. 2011) is supported as a backend
for DynaSig-ML. In the case of LASSO regression or other forms of
regression, the learned coefficients can be automatically mapped
back on the studied structure by DynaSig-ML and visualized in 3D
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with two simple PyMOL (Delano 2002) commands. These coeffi-
cients represent the relationship between flexibility changes at
specific positions and the predicted experimental property so the
mapping can be used to drive new biological hypotheses (Mailhot
et al. 2022). DynaSig-ML also automatically generates graphs show-
ing the performance of each machine learning algorithm test. As
mentioned, the necessary steps to apply DynaSig-ML are docu-
mented online as part of a step-by-step tutorial (https://dynasigml.
readthedocs.io).

2 Implementation

DynaSig-ML runs the ENCoM model within NRGTEN, another
user-friendly, extensively documented Python package (Mailhot and
Najmanovich 2021). The machine learning models are implemented
using the scikit-learn Python package (Pedregosa et al. 2011). The nu-
merical computing is accomplished by NumPy (Oliphant 2006) and
the performance graphs are generated with matplotlib (Hunter 2007),
making these four packages the only dependencies of DynaSig-ML.

3 microRNA-125a maturation efficiencies

microRNAs are short single-stranded RNAs of �22 nucleotides
which regulated gene expression by guiding the RNA-induced
silencing complex to complementary regions within messenger
RNAs. In our recent work, we adapted ENCoM to work on RNA
molecules and used it to study dynamics–function relationships ap-
parent from an experimental mutagenesis dataset (Fang and Bartel
2015) of over 29 000 sequence variants of miR-125a, a human
microRNA (Mailhot et al. 2022). In order to illustrate a typical use

case of DynaSig-ML, we applied it to study dynamics–function rela-
tionships in miR-125a sequence variants, replicating the results
from our work in an automated way. Furthermore, we tested an RF
model and a gradient boosting regressor as the machine learning
backend of DynaSig-ML in addition to the default LASSO regres-
sion. Figure 1 illustrates the whole protocol used to start from the
structure of WT miR-125a predicted with the MC-Fold j MC-Sym
pipeline (Parisien and Major 2008), train the machine learning mod-
els, test their performance, and map the LASSO coefficients back on
the miR-125a structure.

The results reported in Fig. 1 use our inverted dataset previously
describes (Mailhot et al. 2022), in which the training set contains
variants with only one or two mutations and the testing set contains
variants with three to six mutations. It tests the models’ ability to
generalize to variants containing more mutations than what was
seen in training, which is very relevant in the context of using
DynaSig-ML for high-throughput in silico predictions. However,
this dataset does not exclude the possibility that no true dynamical
signal is captured, and the models simply learn sequence patterns
from their impact on the Dynamical Signatures. We developed a so-
called hard dataset to answer this question and confirmed that a
true dynamical signal is captured (Mailhot et al. 2022). A more in-
depth analysis of the results for the three tested ML models, applied
to both inverted and hard dataset and using all combinations of in-
put variables (Dynamical Signatures and/or enthalpy of folding) can
be found in the Supplementary Information. All results presented
can be replicated by following the online DynaSig-ML tutorial and
cloning the accompanying GitHub repository (https://github.com/
gregorpatof/dynasigml_mir125a_example). When combining the en-
thalpy of folding and Dynamical Signatures, we obtain LASSO, gra-
dient boosting (GBR), and RF models reaching respective testing

Figure 1 ENCoM-DynaSig-ML pipeline applied to miR-125a maturation efficiency data. The MC-Fold j MC-Sym (Parisien and Major 2008) predicted 3D structure of WT

miR-125a is used as a template to perform the 29 477 point mutations with experimental maturation efficiency data using the ModeRNA software (Rother et al. 2011), all sub-

sequent steps are performed using DynaSig-ML. For each of the in silico variants, a Dynamical Signature is computed with ENCoM. LASSO regression models with varying

regularization strengths are trained by default, using as input variables the Dynamical Signatures and other user-supplied data (here, MC-Fold enthalpy of folding for each vari-

ant). Other ML models can be user-specified (here, gradient boosting regressor and random forest regressors). In the case of the LASSO regression model, the independence of

the input variables allows the mapping of the learned coefficients back on the miR-125a structure. The color gradient represents each coefficient, from blue for negative coeffi-

cients, to white for null coefficients and red for positive coefficients. The largest absolute value coefficient will have the brightest color. The sign of a coefficient captures the na-

ture of the relationship between flexibility changes at that position and the experimental property of interest (in this case, maturation efficiency). Negative coefficients mean

that rigidification of the position leads to higher efficiency, while positive coefficients mean that softening of that position leads to higher efficiency. The thickness of the car-

toon represents the absolute value of the coefficients, i.e. their relative importance in the model. In the present example, the positive coefficients on the backbone of base pairs

7, 9, and 11 identify the well-known mismatched GHG motif (Fang and Bartel 2015)
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performances of R2 ¼ 0.66, R2 ¼ 0.69, and R2 ¼ 0.69. The enrich-
ment factors at 10%, which are values ranging from 0 to 10 charac-
terizing the relative proportion of the top 10% measured values in
the top 10% predicted values, are 5.67, 6.01, and 6.12 for the
LASSO, GBR, and RF models, respectively.

4 Conclusions

In conclusion, the DynaSig-ML Python package allows the fast
and user-friendly exploration of dynamics–function relationships in
biomolecules. It uses the ENCoM model, the first and only
sequence-sensitive coarse-grained normal mode analysis model, to
automatically compute Dynamical Signatures from structures in
PDB format, stores them as lightweight serialized Python objects,
and automatically trains and tests LASSO regression models to
predict experimental measures, in addition to any user-specified ma-
chine learning model supported by scikit-learn. Moreover, DynaSig-
ML automatically generates performance graphs and maps the
LASSO coefficients back on the input PDB structure. A detailed on-
line tutorial is available to replicate the miR-125a maturation effi-
ciency application presented here (https://dynasigml.readthedocs.io).

Supplementary data

Supplementary data is available at Bioinformatics online.
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