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Few studies have demonstrated reproducible gene–diet
interactions (GDIs) impacting metabolic disease risk fac-
tors, likely due in part to measurement error in dietary in-
take estimation and insufficient capture of rare genetic
variation.We aimed to identify GDIs across the genetic fre-
quency spectrum impacting the macronutrient–glycemia
relationship in genetically and culturally diverse cohorts.
We analyzed 33,187 participants free of diabetes from 10
National Heart, Lung, and Blood Institute Trans-Omics for
Precision Medicine program cohorts with whole-genome
sequencing, self-reported diet, and glycemic trait data.
We fit cohort-specific, multivariable-adjusted linear mixed
models for the effect of diet, modeled as an isocaloric sub-
stitution of carbohydrate for fat, and its interactions with
common and rare variants genome-wide. In main effect
meta-analyses, participants consuming more carbohy-
drate had modestly lower glycemic trait values (e.g., for
glycated hemoglobin [HbA1c], 20.013% HbA1c/250 kcal
substitution). In GDI meta-analyses, a common African
ancestry–enriched variant (rs79762542) reached study-
wide significance and replicated in the UK Biobank

cohort, indicating a negative carbohydrate–HbA1c associ-
ation among major allele homozygotes only. Simulations

ARTICLE HIGHLIGHTS

• We aimed to identify genetic modifiers of the dietary
macronutrient–glycemia relationship using whole-
genome sequence data from 10 Trans-Omics for Pre-
cision Medicine program cohorts.

• Substitution models indicated a modest reduction in
glycemia associated with an increase in dietary carbo-
hydrate at the expense of fat.

• Genome-wide interaction analysis identified one African
ancestry–enriched variant near the FRAS1 gene that
may interact with macronutrient intake to influence he-
moglobin A1c.

• Simulation-based power calculations accounting for
measurement error suggested that substantially larger
sample sizes may be necessary to discover further
gene–macronutrient interactions.
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revealed that >150,000 samplesmay be necessary to iden-
tify similar macronutrient GDIs under realistic assump-
tions about effect size and measurement error. These
results generate hypotheses for further exploration of
modifiable metabolic disease risk in additional cohorts
with African ancestry.

Diet is an established modifiable factor associated with
risk of type 2 diabetes (T2D) and related cardiometabolic
diseases (1). However, evidence is mixed regarding the
ideal dietary macronutrient composition for risk reduc-
tion. Dietary interventions with differing proportions of
energy from carbohydrates versus fat have shown varied
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efficacy for T2D risk reduction and substantial between-
person heterogeneity in effects on cardiometabolic risk fac-
tors (2–4). Further, acute glycemic responses to meals with
specific macronutrient composition are reproducible within
individuals (5,6). Genetically different mouse strains have
varying sensitivity of glycemic biomarkers to a high-fat diet
(7) and to human-relevant dietary patterns (8). Retrospec-
tive analysis of human trials manipulating macronutrient
intake has found genetic modifiers of glycemic response
(9). Taken together, such studies suggest that genetics
could be a key contributor to variability in the association
between dietary macronutrient composition and glycemic
health.

Gene–diet interaction (GDI) studies aim to identify ge-
netic variants that modify the association between dietary
behaviors and health. Furthermore, GDI studies support
differential associations of dietary factors with glycemic
traits according to genotypes, using both hypothesis-driven
(10) and hypothesis-free (11,12) strategies. However, in
general, discovery and replication of GDI with T2D risk has
been poor, possibly due to measurement error in assessing
habitual diet, low statistical power for interaction analysis,
and biological and behavioral heterogeneity across popula-
tions (13). Additionally, to date, there has been little explo-
ration of GDIs involving rare genetic variants, which affect
a smaller proportion of the population but may have larger
effect sizes (14).

Our primary aim was to discover novel putative genetic
modifiers for the association between dietary macronutri-
ent composition and glycemic traits. To this end, we per-
formed a GDI analysis using common and rare genetic
variants in >30,000 individuals with diverse ancestral
backgrounds from the National Heart, Lung, and Blood
Institute (NHLBI) Trans-Omics for Precision Medicine
(TOPMed) program. We focused on modeling a dietary
carbohydrate–fat exchange, which can be reasonably as-
sessed via self-reported diet questionnaires and can be
straightforwardly modified in the context of a healthful
diet. Furthermore, the use of whole-genome sequencing
(WGS) permitted the analysis of rare variants using set-
based association tests. As a secondary aim, we sought to
inform subsequent GDI research by exploring the impact
of dietary exposure measurement error on statistical power
in the context of realistic effect size estimates.

RESEARCH DESIGN AND METHODS

WGS
WGS was conducted through the NHLBI TOPMed program
(Freeze 8 data release). Sequencing and alignment to the
GRCh38 reference genome was performed at seven centers
across the U.S.: Broad Institute of MIT and Harvard,
Northwest Genomics Center, New York Genome Center, Il-
lumina Genomic Services, Psomagen (formerly Macrogen),
Baylor College of Medicine Human Genome Sequencing
Center, and McDonnell Genome Institute at Washington
University. Data harmonization and joint variant discovery

and genotype calling were performed within the TOPMed
Informatics Research Center at the University of Michigan.
Sequence quality control filters were as follows: estimated
DNA sample contamination <10% and at least 95% of the
genome having coverage of at least 10 times. After geno-
typing, variants were further filtered for Mendelian incon-
sistency (based on a support vector machine classifier) and
excess heterozygosity. Additional sample quality control was
performed within the Data Coordinating Center at the Uni-
versity of Washington, including: matching sex as annotated
and inferred from WGS, concordance of WGS genotypes
with prior array-based “fingerprints,” and agreement of in-
ferred relatedness with expectations based on pedigrees. Ad-
ditional details on the processing steps are available at:
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-
methods-freeze-8.

Global measures of ancestry and relatedness were cal-
culated on the entire TOPMed Freeze 8 sample by the
TOPMed Data Coordinating Center. Genetic principal
components reflecting ancestry were calculated using the
PC-AiR method (allowing for related individuals) (15),
and kinship matrices were calculated using the PC-Relate
method (accounting for principal components) (16), both
from the GENESIS R package. A sparse genetic relation-
ship matrix containing only relationships of degree four
or closer was extracted for analysis. Samples were grouped
into race/ethnicity categories based on cohort-reported
values. Some individuals are represented in multiple stud-
ies in the TOPMed program (e.g., Jackson Heart Study
and Atherosclerosis Risk in Communities [ARIC] study);
in such cases, one individual from each duplicate pair was
removed prior to analysis.

Harmonization of Glycemic Traits
Phenotypes were harmonized across the 10 studies based
on a protocol developed within the TOPMed Diabetes
Working Group. Glycemic traits, including fasting glucose
(FG; millimoles per liter), fasting insulin (FI; picomoles per
liter), and glycated hemoglobin (HbA1c; percentage), were
collected where available. Fasting (for FG and FI) was de-
fined as at least 8 h without food or drink. FG measure-
ments made in blood rather than plasma were adjusted by
multiplying by a correction factor of 1.13. When multiple
values were available for a given participant, blood draws
were chosen to favor measurements made at study base-
lines and to maximize overlap with time points at which di-
etary data were collected. Participants were excluded if their
glycemic trait blood draw was >1 year before or after diet
measurement or if they had diabetes (defined as any of:
taking antidiabetic medication, FG $7 mmol/L, or HbA1c
$6.5%). See Supplementary Fig. 1 for a participant inclu-
sion flowchart. Further study-specific details are available in
the Supplementary Methods. Phenotype data harmoniza-
tion and all other post–genome-wide analyses and visualiza-
tions were conducted using R version 4.1.1 (17). Unless
otherwise noted, all analyses including harmonization were
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performed on the NHLBI BioData Catalyst cloud computing
platform (18).

Harmonization of Dietary Data
Estimates of dietary intake were derived from self-reported
diet questionnaires, either food frequency questionnaires,
diet history, or 24-h recalls. Reported quantities of food
and beverage consumption were converted into daily nutri-
ent intake estimates via standard nutrient databases (see
Supplementary Methods for study-specific details), with en-
ergy and macronutrients (carbohydrate, protein, and total
fat) expressed in kilocalories per day. Participants were ex-
cluded if responses were deemed implausible, based on
having total caloric intake <600 kcal/d or >4,800 kcal/d.
Nutrient intake values were analyzed in units of kilocalories
per day and Winsorized at 3 SDs from the mean within
each cohort. Dietary fiber was represented in grams per day,
and alcohol intake was reported as number of drinks per
day. Diet questionnaires were completed at the same time
point as blood draws for glycemic trait measurement, with
the exception of a 3-year gap between diet and HbA1c mea-
surement in the ARIC study (see Supplementary Methods
for details).

Genome-wide GDI Scans
For each cohort and glycemic trait, four genome-wide GDI
scans were performed to identify diet-interacting loci: one
for common variants and three gene-based aggregate tests
for rare variants using different variant masks (described
below). Mixed linear models were used to allow for ran-
dom effects of kinship capturing close family relationships
(degree four relatives or closer). The linear model setup
was as follows:

FG=lnFI=HbA1c � g 1 CHO 1 g*CHO 1 c 1 covariates

where g is the genotype at the variant of interest, CHO is
dietary carbohydrate intake (kilocalories per day), and c is
a random effect governed by a sparse kinship matrix. Gen-
eral covariates included sex, age, age2, five genetic principal
components to capture genetic ancestry, cohort-reported
race/ethnicity to capture potential confounding by ethnic-
ity-related dietary behavior, and additional study-specific
covariates (Supplementary Table 2). Dietary protein intake
and total energy (also expressed in kilocalories per day)
were included as covariates to set up an isocaloric substitu-
tion model in which increases in carbohydrate were implic-
itly exchanged for decreases in dietary fat. Dietary fiber
(grams per day), alcohol intake (standard drinks per day),
and BMI (kilograms per meter squared) were included as
additional covariates to account for further lifestyle-related
confounding. Though the inclusion of dietary fiber as a co-
variate impacts the interpretation of the carbohydrate
term of interest, we found in preliminary analyses that its
inclusion substantially decreased cross-study heterogeneity
in parameter estimates, possibly due to a reduction in the
confounding mentioned above. During null model fitting,

heterogeneous variances were allowed within each cohor-
t-reported race/ethnicity group (equivalent to including a
random effect for this grouping variable). For variants on
the X chromosome, male genotypes were coded as (0, 2).

Genome-wide interaction analysis was performed using
the MAGEE package (19). Single-variant analysis (glmm.gei
function) was conducted for variants with minor allele
frequency (MAF) >1%. METAL (20) was used to perform
fixed-effects meta-analysis across cohorts. Specifically, the
2-df joint meta-analysis patch was used (21), with genetic
main effect and interaction P values derived downstream
based on the resulting effect and SE estimates.

Gene-centric, set-based rare-variant analysis (MAGEE func-
tion) was conducted for variants with MAF <1%. Variant an-
notations derived from the WGSA v0.8 and WGSAParsr
v6.3.8 were retrieved from the National Center for Biotech-
nology Information Database of Genotypes and Phenotypes
(dbGaP). A genome-wide interaction meta-analysis was con-
ducted for each of three variantmasks: loss of function variants
(VEP_ensembl_Consequence has terms transcript_ablation, spli-
ce_acceptor_variant, splice_donor_variant, stop_gained, frame-
shift_variant, stop_lost, start_lost or transcript_amplification),
missense variants (VEP_ensembl_Consequence has the term
missense_variant), and a broad coding and noncoding filter
(containing high-confidence loss-of-function variants,missense
variants, protein-altering variants, synonymous variants, var-
iants overlapping enhancers, and variants overlapping pro-
moters). MAGEE calculates three interaction P values: an
adjusted variance component-like test, a burden test (assuming
a consistent direction of effect for all variants), and a hybrid
test (which combines the first two P values using the Fisher
method). P values from the hybrid test were used in this study
to balance the increased power of the burden test with the
possibility that its assumption of homogeneous effect direc-
tions is violated. Meta-analysis was then performed using a
fixed-effects strategy.

Linear mixed models without genotype terms, meant to
understand the marginal dietary effects prior to consider-
ing genetic effects, were fit in R using analogous models to
those with diet–genotype interaction terms. Diet–genetic
principal component interaction terms were excluded from
these models, and individuals in cohort-reported race/eth-
nicity groups with less than five members were excluded.
Fixed-effect meta-analysis of the carbohydrate association
(implicitly modeling an exchange with fat due to the addi-
tional dietary covariates) was conducted using the meta
package.

Variant Follow-up
Sensitivity analysis was conducted to understand the im-
pact of modeling choices on the interaction effect esti-
mates derived in the genome-wide analysis. These linear
mixed models were fit in R, with G × CHO interaction
terms subject to fixed-effects meta-analysis using the meta
package as with the models without genotype effects. Some
of these involved subsets of the population: male and
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female subsets were tested separately, as well as subsets
without obesity (BMI <30 kg/m2) and with and without
prediabetes (defined as FG >5.6 mmol/L or HbA1c >5.7%
[39 mmol/mol]). Additional models included adjustment
for smoking status (never/former/current, coded as 0/1/2
and analyzed as a continuous variable), the Alternative
Healthy Eating Index 2010 (22) (a diet quality score), or a
categorical coding of alcohol intake (none, modest [less
than 1 drink per day for females or less than two drinks
per day for males], or high), where available. These models
with additional covariate adjustments also included adjust-
ment for their interactions with genotype. Finally, a model
including genotype interaction terms for other main dietary
components and lifestyle confounders (total energy, protein,
fiber, and alcohol) was included. This type of residual con-
founding by genotype–covariate interaction terms has been
previously documented (23), but would have decreased sta-
tistical power if included in the genome-wide analysis, espe-
cially for lower-frequency variants.

Variant rs79762542 was investigated in greater depth
as the only variant reaching study-wide significance. Based
on its expression quantitative trait locus (eQTL) relation-
ship impacting FRAS1 gene expression in thyroid from the
Genotype-Tissue Expression (GTEx) v8 data set (https://
gtexportal.org/), we tested for colocalization of this signal
with the carbohydrate interaction signal impacting HbA1c.
Interaction summary statistics were retrieved in a window
of 1 Mb around the index variant rs79762542, and all thy-
roid-specific cis-eQTL summary statistics related to FRAS1
were retrieved from GTEx. Colocalization was tested using
the coloc package for R, assuming a single causal variant
(coloc.abf function). Visualizations used the carbohydrate-
to-fat ratio (simple ratio of kcalories from carbohydrate to
kcalories from fat) as a summary variable to capture the
modeled carbohydrate–fat exchange in a single variable for
stratification. Tertiles of this ratio were defined in the en-
tire pooled study cohort (with nonmissing HbA1c values).

Replication Analysis in the UK Biobank
UK Biobank (UKB) is a large prospective cohort with both
deep phenotyping and molecular data, including genome-
wide genotyping, on >500,000 individuals aged 40–69
years living throughout the U.K. between 2006 and 2010
(24). Genotyping, imputation, and initial quality control
on the genetic data set have been described previously
(25). Analyses were conducted on genetic data release ver-
sion 3, with imputation to a joint reference panel including
the Haplotype Reference Consortium and the 1000 Ge-
nomes Project under UKB application 27892. This work
was conducted under a Not Human Subjects Research de-
termination (NHSR-4298 at the Broad Institute of MIT
and Harvard).

Ancestry group labels, genetic principal components,
and labels defining an unrelated subset of individuals
were retrieved from the Pan-UKB project (https://pan
.ukbb.broadinstitute.org/; data retrieved from UKB return

of results number 2442). Only unrelated individuals were
used for analysis, with additional removal of individuals
who were pregnant or had diabetes at the study center
visit. Two glycemic traits were available for testing in
UKB: HbA1c (provided in units of millimoles per mole and
transformed after regression to units of HbA1c percentage
by dividing by 10.929) and glucose (collected as a random
glucose measurement with subsequent removal of non-
fasting individuals). Outliers for both traits (defined as
more than 5 SDs from the mean) were removed. Dietary
data came from one or more Oxford WebQ 24-h dietary
assessments (26) completed at the study center or during
online follow-up over the course of 2 years. Daily nutrient
intake estimates (calculated centrally by the UKB) were
averaged across all questionnaires for each individual and
Winsorized at 3 SDs from the mean. After all exclusions,
178,352 individuals without diabetes had available geno-
type, biomarker, and dietary data.

Regression analysis in the UKB mirrored that of the
primary analysis, replacing cohort-reported race/ethnicity
with genetically defined ancestry groups as defined by the
Pan-UKB project. Given the larger sample size available,
gene–covariate interactions were included for dietary co-
variates (total energy, protein, fiber, and alcohol). When
analyzing glucose, only the subset of individuals with re-
ported fasting times of at least 8 h were included, reduc-
ing the sample size to 5,183. Due to the African-ancestry
specificity of some of the top variants, a second replica-
tion analysis was performed in the African-ancestry sub-
set of UKB.

Power Calculations
Interaction test power calculations were performed using the
ESPRESSO.GxE R package, which uses a simulation-based ap-
proach to calculate empirical power estimates (given some
sample size) and sample size requirements (to achieve 80%
power). The following parameters were fixed for this analy-
sis, chosen to mimic an analysis of HbA1c: random seed = 1;
significance threshold = 5 × 10�8; phenotype mean = 5.5;
phenotype SD = 0.5; phenotype reliability = 1; genetic main
effect = 0.1; exposure mean = 0; exposure SD = 1; and ex-
posure main effect = 0.2. The following parameters were
varied: interaction effect {0.025, 0.0375, 0.05, 0.0625,
0.075, 0.0875, 0.1}, MAF {0.01, 0.05, 0.1, 0.5}, and expo-
sure reliability {0.25, 0.5, 0.75, 1}. In this study, reliability
is used to quantify the simulated measurement error of the
phenotype and exposure and is equivalent to an intraclass
correlation coefficient (ratio of between-subject variance to
total [between-subject plus measurement error] variance).

To enable simulation-based power calculations for aggre-
gate tests of rare variants while accounting for exposure
measurement error, we developed an extension of the ES-
PRESSO.GxE package, called ESPRESSO.GxE.RV. In this ex-
tension, the basic structure of the simulations remains the
same, but an additional parameter allows the user to spec-
ify a number of variants (M) to test in aggregate. Within
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each simulation run, M variants are simulated, with some
portion having equal interaction and main effects on the
outcome (according to a user-specified causal variant frac-
tion) and the rest generated randomly. The final P value
from that simulation is calculated using the Fisher method
on the full set of M P values. The following parameters were
given different values for this set of simulations: interaction
effect {0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2} and
MAF {0.0025, 0.005, 0.0075, 0.01}. Other parameters were
specific to rare-variant tests: number of variants per aggre-
gate test {1, 5, 10, 20} and causal fraction {0.1, 0.25, 0.5, 1}.
Code for this extension of the package can be found on
GitHub: https://github.com/kwesterman/ESPRESSO.GxE.RV.

To provide context for realistic GDI effect sizes despite
few well-replicated examples of such interactions for gly-
cemic traits in the literature, we retrieved results from
variants reaching significance in a recent trans-ancestry
genome-wide association studies for HbA1c (27) and an
estimated effect for the carbohydrate–HbA1c relationship
from a recent nutritional epidemiological analysis (28).

Data and Resource Availability
The TOPMed study data that support the findings of this
study are available from the National Center for Biotechnol-
ogy Information dbGaP, which were used under license for
the current study and, therefore, are not publicly available.
UKB data are available through a process described at: https://
www.ukbiobank.ac.uk/enable-your-research/apply-for-access.
No applicable resources were generated or analyzed during
the current study.

RESULTS

We analyzed data from 33,178 individuals without diabe-
tes (based on FG, HbA1c, or medication use) from 10
TOPMed program cohorts. Participants had diverse co-
hort-reported race/ethnicities, including: African American
(N = 6,158), American Indian (N = 35), Asian (N = 124),
White (N = 19,721), and Hispanic/Latino (N = 7,114). Die-
tary carbohydrate and fat as a percentage of total energy
intake on average were 50.5% (SD 8.5%) and 32.2%
(6.9%), respectively, in the full pooled sample, estimated
using validated food frequency questionnaires or 24-h die-
tary recalls. Cohort-specific carbohydrate intake estimates
(as percent of total energy [percent kilocalories]), glycemic
trait values (FG, FI [or log-transformed (lnFI)], and HbA1c),
and additional population characteristics are presented in
Supplementary Table 1 and Supplementary Fig. 2.

We first modeled the main association of macronutrient
compositions with each of the glycemic traits. By adjusting for
total energy and energy from protein, resulting regression es-
timates for carbohydrate represented a macronutrient ex-
change (increased 250 kcal from carbohydrate replacing an
equivalent 250 kcal from fat; see Research Design and Meth-
ods). Meta-analysis of the individual cohorts indicated that a
higher proportion of kcal from carbohydrate at the expense of
fat was associated with lower FG (�0.030 mmol/L/250 kcal;

P = 2.2 × 10�6), lnFI (�0.008 log[pmol/L]/250 kcal; P = 0.15),
and HbA1c (�0.012% [�0.13 mmol/mol] HbA1c/250 kcal;
P = 0.029). Forest plots of these results are shown in
Supplementary Fig. 3.

Common Variant Interactions
We sought to identify macronutrient GDIs with the maxi-
mal sample available in TOPMed program cohorts to pro-
vide a baseline for discovery and evaluate our assumptions
about expected effect sizes. Common variants (MAF >1%)
were analyzed in a primary, single-variant analysis of gene–
carbohydrate interactions, with the same regression adjust-
ments as above. This GDI analysis produces interaction esti-
mates for the difference in the macronutrient–glycemic
trait association per alternate allele at the variant of inter-
est. After genome-wide, cohort-specific analysis and cross-
cohort meta-analysis, one variant reached a study-wide sig-
nificance threshold of 1.67 × 10�8 (5 × 10�8/3 glycemic
traits). Two additional variants passed a standard genome-
wide threshold of 5 × 10�8 (Table 1). We note that this
threshold is liberal given the greater testing burden in-
volved in the analysis of multiple ancestry groups (29). Of
these three, none had evidence of a genetic main effect on
the associated trait. Results are visualized in Supplementary
Fig. 4 for all variants and shown in Supplementary Table 3
for variants with interaction P < 10�5.

As the only variant reaching study-wide significance in
the primary analysis, we looked deeper into the biological
function of rs79762542 and the functional form of its in-
teraction. Variant rs79762542 is observed on African-
ancestry haplotypes and was discovered with respect to
HbA1c. The variant does not have known regulatory activ-
ity based on epigenomic assays in RegulomeDB, but there
is evidence for a role in regulating expression of the
nearby gene FRAS1, especially in thyroid, where this gene
is most strongly expressed (GTEx project). Colocalization
analysis did not support a shared causal signal between
our interaction results and thyroid-specific eQTL signal
(posterior probability of shared causal variant = 0.003%).

In genotype-stratified meta-analysis, HbA1c showed a
modest negative association with increasing carbohydrate
relative to fat intake in major allele homozygotes (�0.033%
[�0.36 mmol/mol] HbA1c/250 kcal; P = 0.004) versus a posi-
tive association inminor allele carriers (0.10% [1.1mmol/mol]
HbA1c/250 kcal; P = 0.42) that may not have reached sig-
nificance due to the much lower sample size in this group
(N = 1,055 across all studies) (Fig. 1A). This genetic effect
modification was moderately consistent across cohorts, as
visualized through stratification by genotype and carbohy-
drate/fat ratio (Fig. 1B; identical visualization in the African
American race/ethnicity subset in Supplementary Fig. 5). Fi-
nally, with respect to the other glycemic traits in our analysis,
interaction effects were directionally consistent but did not
reach nominal significance (0.02mmol/L/allele/250 kcal; P =
0.07 for FG and 0.003 log[pmol/L]/allele/250 kcal; P = 0.74
for lnFI).
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Lookups for the other two variants passing P < 5 × 10�8

revealed potential functional roles for these variants. Variant
rs1288694 (common in multiple ancestries) impacted FG in
our analysis. The variant is intronic to the FOXP1 gene and
may regulate splicing of the same gene (GTEx project).
FOXP1 has a demonstrated role in hepatic gluconeogenesis
(30). Variant rs782681704 is observed on African-ancestry
haplotypes and was discovered with respect to FI in our

analysis. The variant is intronic to BRCC3 and has likely reg-
ulatory activity (RegulomeDB score of 0.59), but does not
have clear evidence as an eQTL for BRCC3.

We explored these three prioritized single-variant
loci through sensitivity analysis (Supplementary Figs. 6
[rs79762542] and 7 [all three variants]). Interaction ef-
fects were robust in population subsets: only males, only
females, and individuals without obesity. Exclusion of

Table 1—Top variants interacting with carbohydrate intake from the common-variant genome-wide interaction study
Trait rsID Chromosome Position Effect allele Average EAF Main effect estimate Interaction estimate Pinteraction

HbA1c rs79762542 4 77979164 G 0.03 �0.013 (�0.038 to 0.012) 0.048 (0.031–0.064) 1.1 × 10�8

FG rs1288694 3 71275429 C 0.61 �0.003 (�0.011 to 0.004) 0.016 (0.01–0.022) 1.9 × 10�8

lnFI rs782681704 X 155084576 G 0.01 �0.049 (�0.209 to 0.11) 0.284 (0.182–0.385) 4.6 × 10�8

Interaction estimates with 95% CIs are given in units of (trait units/allele/250 kcal carbohydrate). All variants passed a significance
threshold of Pinteraction < 5 × 10�8. EAF, effect allele frequency.

Figure 1—Exploration of the rs79762542 interaction and replication. A: Genotype-stratified dietary main effect estimates. B: Stratified
plots (one for each cohort with HbA1c available) display residualized HbA1c within strata defined by both genotype at rs79762542 (none
vs. any minor alleles) and tertile of carbohydrate/fat ratio. This ratio was defined in the pooled data set on a caloric basis and is used to
provide a visual representation of the modeled macronutrient exchange. C: Similar stratified plots for the UKB replication cohort. For B
and C, the y-axis displays residuals after regressing the relevant trait (HbA1c or FG) on the set of covariates used in the replication analysis.
Error bars indicate 95% CIs for the effect estimates (A) or mean residual values after stratification (B and C).
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individuals either with or without prediabetes (beyond
the predefined exclusion of individuals with diabetes) par-
tially attenuated the interaction signal; this might be ex-
pected due to the removal of a substantial portion of the
glycemic trait spectrum. Further, adjustment for either a
diet quality score (Alternative Health Eating Index 2010)
or smoking status (along with their genotype interac-
tions) did not meaningfully impact estimates. Interaction
estimates were also generally consistent in the African
American race/ethnicity subset, indicating that the inter-
actions for African ancestry–specific variants do not solely
reflect population stratification.

Common Variant Replication
For the three prioritized single-variant loci, we tested for
replication of these signals in the UKB [N = 178,352 with
24-h dietary assessment data (26) and glycemic biomarkers;
see Research Design and Methods]. Of these, 5,183 individuals
were included in FG analyses (based on fasting for at least
8 h prior to the associated blood draw). In the full multian-
cestry group (Supplementary Table 5), we saw nominal repli-
cation of the interaction at rs79762542 with respect to both
HbA1c (the discovery trait; P = 0.025) and FG (P = 0.013)
(Fig. 1C). The interaction effect size with respect to HbA1c
(0.07% [0.77 mmol/mol] HbA1c/allele/250 kcal) was of a
similar magnitude to that from the primary meta-analysis
(0.048% [0.52 mmol/mol] HbA1c/allele/250 kcal). Because
most of the prioritized variants were specific to African-
ancestry individuals, we conducted a similar replication in
just this subgroup of the UKB (Supplementary Table 6). This
analysis revealed an even closer HbA1c effect size to that
of the meta-analysis despite a lack of significance (0.05%
[0.55 mmol/mol] HbA1c/allele/250 kcal; P = 0.29) and sup-
ported the rs79762542 interaction influencing FG (P = 0.046).

Rare Variant Interactions
Rare variants (MAF <1%) were analyzed in gene-centric,
set-based tests, which help to overcome power limitations
for low-MAF variants by aggregating signal across multi-
ple variants annotated to the same gene. We used three
variant aggregation strategies to define sets: selecting mis-
sense variants, loss-of-function variants, or a broader cod-
ing plus noncoding variant set annotated to each gene
(see Research Design and Methods). No rare-variant interac-
tion signals showed genome-wide significance (P < 0.05/
28,111 total genes = 1.78 × 10�6) (Supplementary Table 4
and Supplementary Fig. 8).

Since the set of rare variants used does not overlap with
those from the common-variant tests, these gene-based tests
can provide orthogonal evidence supporting common-variant
signals while further clarifying potential effector genes. Each
of the three prioritized single-variant findings were annotated
to one or more genes based on proximity and/or eQTL data.
None of these pairings showed supporting gene-based signals
for the corresponding glycemic trait, though the single study-
wide significant variant (rs79762542, discovered in relation

to HbA1c) showed a nominal corresponding signal from the
gene-based test of FRAS1 impacting FG (P = 0.028).

Power Calculations Incorporating Measurement Error
Given the modest discovery of GDIs despite the use of
the maximal sample available within TOPMed cohorts
and substantial harmonization effort, we sought to better
understand the necessary power to detect expected GDI
effects using literature-based anchors for context-specific
expected effect sizes (Fig. 2A). Simulation-based power
calculations for single-variant tests were conducted with
added noise to account for the known random measure-
ment error in dietary data. Assuming a conservative but
realistic dietary measurement reliability of 0.5 (see Re-
search Design and Methods for details), we established that
a sample size of >150,000 would be required to detect a
GDI effect of 0.025% (0.27 mmol/mol) HbA1c/allele/SD
carbohydrate at genome-wide significance for a variant
with an MAF of 0.1 (Fig. 2B and C). As previously explored
in the literature (31,32), power scaled approximately line-
arly with exposure measurement fidelity. If we alternatively
assume perfect dietary exposure measurement, the associ-
ated sample size to detect the same effect was reduced to
80,000, indicating the importance of accounting for this
measurement error. The necessary sample size, given realis-
tic measurement reliabilities, increased even further for
lower-frequency variants (e.g., 1.2 million for MAF = 1%).

We extended this simulation-based power calculation
approach to test multiple variants jointly, mimicking the
variant set-based test implemented for rare variants. As-
suming similar measurement fidelity and effect sizes as
for single variants and fixing the sample size to match
the full sample used in this study (�35,000), an aggregate
test of 20 rare variants with a causal fraction of 50% and
MAF of 0.25% had negligible power (Fig. 2D). Power in-
creased somewhat but remained low when incorporating
larger effect sizes (as are known to be present for rare-
variant main effects on cardiometabolic traits) (33). For
example, using an effect size of 0.1, approximately equal
to the largest genetic main effect on HbA1c reported by
Wheeler et al. (27), power increased to 0.16. The full set
of power simulation results is provided in Supplementary
Tables 7 and 8 for single variants and set-based rare var-
iants, respectively.

DISCUSSION

Our goal was to investigate genotype-related variability in
the association of dietary macronutrient composition with
glycemic traits. Importantly, this was based on a regression
strategy modeling an isocaloric increase in dietary carbohy-
drate at the expense of fat (34). We conducted our compre-
hensive analyses in cohorts with racial/ethnic diversity
with data for both common and rare variants from WGS.
We examined multiple single variants with potential modi-
fying roles for the relationship of carbohydrate intake with
glycemic traits but did not find substantial evidence from
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gene-based tests for a role of rare variants in modifying
this diet–glycemia relationship. Furthermore, our simula-
tion-based power analysis highlighted the impact of dietary
measurement error on statistical power for the GDI tests.

Dietary main effect models indicated that an increase
in carbohydrate at the expense of dietary fat was associ-
ated with lower FG and HbA1c. The impact of this

macronutrient exchange on glucose homeostasis and dia-
betes risk is complex and likely depends on the respective
macronutrient quality. Prior studies suggest null associa-
tions of total carbohydrate to total fat exchange on diabe-
tes risk (35,36). However, an exchange of animal-sourced
fat for carbohydrate or vegetable fat appears to have fa-
vorable associations with HbA1c (37,38).

Figure 2—Power calculations for gene–environment interaction incorporating exposure measurement error. For all plots above, HbA1c is used
as a basis for parameter choices. A: Genetic and dietary effect sizes on HbA1c for reference for potential interaction effects. Bars are annotated
with the source study, either Churuangsuk et al. (28) or Wheeler et al. (27). B: Simulation-based empirical power estimates are shown as a func-
tion of the interaction effect (x-axis), MAF (panels left to right), and diet measurement reliability (colors). C: Bar plots show the estimated sample
size needed to achieve 80% statistical power. Panels and colors are as in B. D: As in A, but modeling empirical power for simulated aggregate
tests of 20 rare variants with a causal fraction of 0.1 or 0.5 (indicated in panel labels). Additional assumptions for these simulations (full details in
Research Design andMethods):N = 35,000; phenotype mean of 5.5; phenotype SD of 0.5; exposure mean of 0; exposure SD of 1; genetic main
effect of 0.01; and environmental main effect of 0.2.

diabetesjournals.org/diabetes Westerman and Associates 661

https://diabetesjournals.org/diabetes


Our primary genome-wide common-variant interaction
analysis yielded an interaction between a 250-kcal carbohy-
drate–fat substitution and HbA1c with the African-ancestry
rs79762542 variant, which was validated in themultiancestry
UKB. Genotype-stratified analyses suggested that minor allele
carriers generally had a small negative association between
carbohydrate and HbA1c (�0.033% [�0.36 mmol/mol]
HbA1c/250 kcal; P = 0.004) versus a larger but nonsignificant
association in minor allele carriers, where the sample size was
much lower (�0.10% [�1.1 mmol/mol] HbA1c/250 kcal;
P = 0.42). However, this precise pattern was not observed in
all cohorts, possibly due to the low sample size of minor allele
carriers in the populations studied. These results warrant fur-
ther exploration in additional cohorts with African-ancestry
individuals and dietary intervention studies to examine
whether glycemic traits amongminor allele carriersmay bene-
fit from higher-fat and lower-carbohydrate diet composition.
This primary discovery was made with HbA1c as an outcome,
but our results from set-based rare variant analysis and the
UKB replication suggest similar patterns with respect to other
traits, such as FG.

Beyond GDI discovery, the genome-wide interaction study
results provided an opportunity to inform and evaluate the
effect size assumptions used in the power calculations. For
example, the rs79762542 interaction had an effect size of
0.048% (0.52 mmol/mol) HbA1c/allele/250 kcal carbohy-
drate, or 0.068% (0.74 mmol/mol) HbA1c/allele/SD carbohy-
drate. This effect size is comparable to the relevant anchor
for the power analysis [the referenced main effect association
of carbohydrate with HbA1c (28)].

This analysis leveraged WGS data along with multivariant
set-based tests to better incorporate rare variants (MAF
<0.01). While these variants do not contribute substantially
to the overall population variance of glycemic or other
traits, they tend to have larger effect sizes and thus may be
important for the specific individuals carrying them (14).
For example, phenylketonuria, a well-known inborn error of
metabolism, acts through a rare-variant GDI in which se-
vere adverse effects of phenylalanine intake are seen only
in individuals with a particular genotype (39). In our study,
despite helping to reinforce common-variant signals, the
rare-variant analysis did not contribute additional findings
after aggregation at the gene level. Substantially larger sam-
ple sizes will likely be necessary to uncover macronutrient
GDIs involving rare variants.

We explored the statistical power for these interaction tests
through simulations incorporating random dietary measure-
ment error using available simulation-based power calculation
software [ESPRESSO.GxE (40) for single variants] with addi-
tional extensions to allow for aggregate rare-variant tests. We
estimated that substantially higher sample sizes (almost five
times that used in this study) are required for sufficient power
to detect macronutrient–gene interactions at expected effect
sizes obtained from genetics and nutrition literature. This
prompts two directions of further inquiry. First, it suggests
the importance of complementary approaches that assess

where there is any whole-genome contribution to the diet–
glycemia association, at least in observational data sets. These
whole-genome analyses trade resolution for statistical power
(41) and have a precedent for GDIs in smaller study samples
(42). Second, it reinforces the importance of collecting dietary
intake data in the growing group of large-scale biobanks and
cohorts. Improvements in study design, data collectionmeth-
ods, and analysis that can improve quality of dietary assess-
ments are also warranted. For example, conducting rigorous
validation studies of the data collection tools and approaches
and ascertaining repeated dietary data can greatly improve
the precision of these measurements on a population level.
Advancements in objectively quantifying habitual diet from
biospecimen samples are also underway and have potential
to improve discovery for genetic analyses.

An important strength of this study is the breadth of
ethnic and cultural diversity of the sample (increasing the
likelihood that findings are robust) and of genetic variation
(with WGS data enabling exploration of ancestry-specific
genetic variation across the frequency spectrum). We also
conducted a systematic investigation into the available sta-
tistical power while incorporating both realistic degrees of
measurement error and evidence-based estimations of realis-
tic effect sizes for gene–macronutrient interactions. However,
the diversity of the included study sample also introduces het-
erogeneity that may be problematic. For example, the cohorts
used different dietary assessment tools to capture habitual
intake, leading to differences in the degree and direction of
random and systematic measurement error. This is com-
pounded by general, culturally driven differences in food in-
take across race/ethnicity groups. Furthermore, heterogeneity
arises from the time of data collection; the perceptions of car-
bohydrate intake have trended as more and less healthful in
recent decades, potentially resulting in differential confound-
ing between diet and other health-related behaviors depend-
ing on the time of data collection (43). Future work can step
beyond broad macronutrient categories by harmonizing in-
takes of specific foods or dietary patterns and analyzing mac-
ronutrient subtypes (e.g., added sugar and specific fatty acids).
These approaches, combined with improved methods for de-
tecting rare-variant gene–environment interactions, will help
use the increasing volume of WGS data to discover new GDIs
relevant formetabolic disease risk.
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