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Abstract

Constant pH molecular dynamics (MD) simulations sample protonation states on the fly according 

to the conformational environment and user specified pH condition; however, the current accuracy 

is limited due to the use of implicit-solvent models or a hybrid solvent scheme. Here we 

report the first GPU-accelerated implementation, parameterization, and validation of the all-atom 

continuous constant pH MD (CpHMD) method with particle-mesh Ewald (PME) electrostatics in 

the Amber22 pmemd.cuda engine. The titration parameters for Asp, Glu, His, Cys, and Lys were 

derived for the CHARMM c22 and Amber ff14sb and ff19sb force fields. We then evaluated 

the PME-CpHMD method using the asynchronous pH replica-exchange titration simulations 

with the c22 force field for six benchmark proteins, including BBL, hen egg white lysozyme 

(HEWL), staphylococcal nuclease (SNase), thioredoxin, ribonuclease A (RNaseA), and human 

muscle creatine kinase (HMCK). The root-mean-square deviation from the experimental pKa′s
of Asp, Glu, His, and Cys is 0.76 pH units, and the Pearson’s correlation coefficient for the 

pKa shifts with respect to model values is 0.80. We demonstrated that a finite-size correction or 

much enlarged simulation box size can remove a systematic error of the calculated pKa′s and 

improve agreement with experiment. Importantly, the simulations captured the relevant biology 

in several challenging cases, e.g., the titration order of the catalytic dyad Glu35/Asp52 in HEWL 

and the coupled residues Asp19/Asp21 in SNase, the large pKa upshift of the deeply buried 

catalytic Asp26 in thioredoxin, and the large pKa downshift of the deeply buried catalytic Cys283 

in HMCK. We anticipate that PME-CpHMD offers proper pH control to improve the accuracies 

of MD simulations and enables mechanistic studies of proton-coupled dynamical processes that 
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are ubiquitous in biology but remain poorly understood due to the lack of experimental tools and 

limitation of current MD simulations.

Graphical Abstract

1 Introduction

Accurate and efficient molecular modeling of proton-coupled dynamic processes is 

important, as biological functions and material properties often depend on protonation 

and deprotonation. For example, many secondary active membrane transporters utilize pH 

gradient and proton coupling to drive the conformation transitions for function.1 Many 

enzymes have pH-dependent catalytic activities, e.g., the active site of SARS-CoV-2 

main protease collapses upon protonation of a conserved histidine residue.2,3 Well known 

examples of pH-dependent materials include aminopolysaccharide chitosan which self 

assembles into hydrogels in response to a small increase in solution pH.4 The ability 

to model proton-coupled dynamic processes is also important for studying protein-ligand 

binding, as upon protein-ligand association, the protonation state of the protein and the 

ligand may change.5

Unlike the conventional molecular dynamics (MD) that assumes fixed protonation 

states, constant pH MD allows protonation states to evolve with time according to the 

conformational environment and a preset solution pH. Currently, perhaps the most popular 

constant pH approaches are based on λ dynamics and the hybrid Monte-Carlo (MC)/MD 

scheme (also known as the stochastic titration method6). The former7–11 uses continuous 

titration coordinates to propagate protonation states based on an extended Lagrange 

approach called λ dynamics,12 while the latter6,13–15 combines MD with periodic MC 

sampling of discrete protonated and deprotonated states. Hereafter, we will refer to the 

former as the continuous and the latter as the discrete constant pH methods. The details 

of these techniques can be found in the recent reviews.16,17 Although the first (discrete) 

constant pH method6 is based on a hybrid-solvent scheme (see later discussion), the early 

implementations of the constant pH methods are solely based on the implicit-solvent 

generalized Born (GB) models, i.e., both conformational and protonation state sampling 

is conducted in implicit solvent.7,8,13 The use of the implicit-solvent models significantly 
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reduces system size and allows faster sampling of solute conformational states relative to 

simulations with explicit water models. However, for many biologically relevant systems, 

e.g., transmembrane proteins (with heterogeneous dielectric environment), nucleic acids 

(highly charged), and protein-ligand and protein-protein bound states, implicit-solvent 

models are not sufficiently accurate. This has motivated the development of explicit-solvent 

constant pH methods, which include the hybrid-solvent scheme and the all-atom approaches.

In a hybrid-solvent constant pH scheme, the MC sampling of protonation states or λ
dynamics propagation of titration coordinates is conducted in implicit solvent, while 

MD is conducted in explicit water. The first hybrid-solvent constant pH method was 

developed by Baptista and Soares, who combined MD in explicit solvent with MC sampling 

based on Poisson-Boltzmann (PB) calculations.6 This method was first implemented in 

GROMOS9618 and later improved and implemented19 in GROMACS.20 Following the 

aforementioned work and making use of the state-of-the-art GB models, the hybrid-solvent 

continuous21 and discrete14 constant pH methods were developed and implemented in 

CHARMM22 and Amber.23 Compared to the purely GB based constant pH methods, the 

hybrid-solvent approaches demonstrated significantly improved accuracy for conformational 

dynamics and consequently better agreement with the experimental pKa′s.14,21,24,25 

Importantly, the hybrid-solvent approach allowed the investigations of pH-dependent 

mechanisms of a variety of systems that are (due to inaccuracy) unfeasible to model with 

implicit-solvent models, e.g., proteins in mixed solvent,26 phase transition of surfactants,27 

polysaccharides,4 and lipid bilayers,28 proteins at the water-membrane interface,29 as well 

as transmembrane proteins30 and peptides inserted in the membrane.31 Nonetheless, a 

drawback is that the Hamiltonian cannot be expressed in a hybrid scheme (semigrand 

canonical ensemble), and thus energy conservation is not proven to hold. In terms of 

applications, hybrid-solvent simulations of protein-ligand complexes are challenging, as the 

implicit-solvent description for ligand is not very accurate and the effects of explicit water 

and ions which play significantly roles cannot be fully modeled.32

To overcome the limitations of the hybrid-solvent scheme, much effort has been made in 

the development of all-atom constant pH methods over the past decade. The CHARMM 

program22 contains the CPU implementations of the all-atom continuous constant pH 

method with generalized reaction field33,34 or particle-mesh Ewald (PME) electrostatics 

for λ dynamics,10 and the multiple site λ dynamics (MSλD)35 based constant pH method.9,36 

These methods have been validated using pKa calculations for a number of proteins9,10,34 as 

well as RNAs.36 The λ dynamics based constant pH method was also implemented in the 

GROMACS program,20 although only the single-site titratable model was considered and 

performance for proteins remains to be demonstrated.11 The NAMD program37 contains an 

implementation of the all-atom constant pH method based on a non-equilibrium MD-MC 

approach,15 which overcomes the issue of low acceptance of MC moves due to a large 

energy change resulting from a sudden switch in protonation state, as in the aforementioned 

hybrid MC/MD constant pH approaches.14,19

The aforementioned all-atom continuous constant pH methods9,10,33,36 are promising; 

however, the CPU implementations limit the simulation time scale and system size 

that can be studied. Recently, the Brooks group developed the basic lambda dynamics 
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engine (BLaDE) which enables GPU acceleration for MSλD based alchemical free energy 

calculations and constant pH simulations.38 In this work, we report the development and 

validation of the GPU all-atom continuous constant pH method in the pmemd.cuda engine 

of Amber program (version 2020).39 Following the discussion of the model parameterization 

and validation, we present the data from the pKa calculations of benchmark proteins, 

including BBL, HEWL, SNase, RNase A, BACE 1, thioredoxin, and HMCK. In addition 

to comparison to experimental pKa values, we will discuss the coupled titration of catalytic 

residues, pH-dependent response of solvent exposure, titration of deeply buried sites. 

Finally, we will discuss the finite-size effects and project future directions.

2 Methods and Implementation

The all-atom PME continuous constant pH MD (CpHMD) method.

In contrast to the conventional MD, the continuous constant pH MD (CpHMD) method 

treats the protonation states of titratable sites as dynamic variables λα  and propagates them 

simultaneously with the spatial coordinates using an extended Hamiltonian,7,40

ℋ ri , λα = 1
2 ∑

i
miṙi

2 + 1
2 ∑

α
mαλ̇α

2 + U ind ri

+Uhybr ri , λα + ∑
α

U∗ λα ,
(1)

where ri  and λα  refer to the spatial and titration coordinates, respectively. A deprotonated 

state is represented by the λ values close to 1 (λ > 0.8 in this work), whereas a protonated 

state is represented by the λ values close to 0 (λ ≤ 0.2 in this work). In order to impose the 

boundaries 0 and 1 for λ, we express it as10,21,40

λ = sin2θ, (2)

where the θ variable is allowed to assume any real value, as with the spatial coordinates. 

Therefore, θ is the actual coordinate in the integrator. However, for the convenience of 

discussion, we will write all equations in terms of λ.

The two first terms in the Hamiltonian (Eq. 1) describe the kinetic energies of the real atoms 

and λ particles. The λ particles are assigned a fictitious mass, which is similar to a heavy 

atom (10 amu). Uind represent the λ-independent bonded energies (see later discussion) and 

non-bonded energies. For the all-atom CpHMD method, Uhybr is a sum of the λ-dependent 

Lennard Jones and electrostatic energies.10 The last term U∗ in the Hamiltonian (Eq. 1) 

represents three biasing potentials that are only dependent on λ,

U∗ λα = − Umod λα + Ubarr λα + UpH λα . (3)

Umod represents the potential of mean force (PMF) for titrating a model compound or 

peptide in solution, which can be obtained from the traditional free energy simulations such 
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as thermodynamic integration (TI). Ubarr is a quadratic barrier potential centered in the 

middle of the λ coordinate to prolong the residence times of the end states (λ close to 0 or 1):

Ubarr λα = 4β λα − 1/2 2, (4)

where β is a parameter affecting the barrier height. In the current implementation, it is set to 

2.0 kcal/mol for all types of residues, similar to our previous work.10 UpH represents the free 

energy added to the deprotonation reaction due to a change in solution (infinite proton bath) 

pH

UpH λα = ln10 ⋅ kBT pH−pKa
mod λα (5)

where kB is the Boltzmann constant, T  is the system temperature, and pKa
mod is reference pKa

of the model compound or peptide.

When λ = 0, the proton is present and fully interacts with its environment, and when λ = 1, 

it is treated as a ghost particle without non-bonded interactions with its environment. 

The partial charges on the titratable residue are linearly scaled between the protonated 

and deprotonated states, as in the original CpHMD framework.7,40 This differs from the 

multi-site λ dynamics35 dynamics based MSλD CpHMD method,9,36 which scales potential 

energies. Formally, the λ-dependent Lennard-Jones interaction energy between a titratable 

hydrogen i and another non-titratable atom j is given by

U ij
LJ λi = 1 − λi Uij

LJ, (6)

where λi is the titration variable associated with the titratable hydrogen, and Uij
LJ is the 

Lennard-Jones interaction energy between atoms i and j when the hydrogen is present. 

Similarly, the Lennard-Jones interaction energy between two titratable hydrogens is given by

U ij
LJ λi, λj = 1 − λi 1 − λj Uij

LJ . (7)

The charge of atom j in the titratable residue α is given by

qj λα = 1 − λα qj(0) + λαqj(1), (8)

where qj(0) is the charge appropriate to the protonated form of the residue, and qj(1) is the 

charge appropriate to the deprotonated form.

The implementation presented in this paper uses fully explicit water molecules and treats 

the nonbonded electrostatic interaction energy between atoms with particle-mesh Ewald 

(PME) electrostatics. Because the λ values are treated as dynamic coordinates of the system, 

the derivatives of the energy with respect to the λ values are required. In the pmemd 
implementation23 of PME electrostatics, this interaction energy is separated into several 

terms,

V Coulomb = V direct + V reciprocal + V self + V plasma, (9)
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where

V direct = 1
2 ∑

n
∑
i, j

natoms

qiqj
erfc αrij, n

rij, n
(10)

is the short-range component of the electrostatic energy, where n enumerates the copies of 

each atom from the neighboring periodic cells. This summation is performed only over those 

atom pairs i, j for which rij falls within a small cutoff distance.

V reciprocal = 1
2πν ∑

m ≠ 0

exp −(πm/α)2

m2 S(m)S( − m) (11)

is the reciprocal space energy, where v is the volume of the unit cell, m is reciprocal lattice 

vector, and S(m) is the structure factor,

S(m) = ∑
i = 1

natoms

qiexp 2πim × ri , (12)

which can be approximated by

S(m) ≈

∑
k1, k2, k3

Q k1, k2, k3 exp 2πi m1k1

K1
+ m2k2

K2
+ m3k3

K3

= F (Q) m1, m2, m3 ,

(13)

where Q k1, k2, k3  is a matrix constructed by interpolating the charge distribution in the 

simulation cell to a grid with the same dimensions k1, k2, k3, and F (Q) m1, m2, m3  is the fast 

Fourier transform of the Q matrix.

The V reciprocal can then be written as

1
2πν ∑

m ≠ 0

exp −(πm/α)2

m2 F (Q)(m)F (Q)( − m), (14)

V self = −α
π ∑

i = 1

natoms

qi
2, (15)

is a term that removes the self-interaction energies contained in V reciprocal, and

V plasma = − π
2V α2 ∑

i
qi

2
, (16)

where V  is the volume of the unit cell is a term that counterbalances any net charge on the 

system.
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Implementation in the pmemd.cuda engine.

As in our previous CPU implementation of the PME-CpHMD method in CHARMM,10 

the derivatives of U ij
LJ λi  with respect to the titration variables can be derived from Eqs. 

6 and 7, and computing them requires changes to be made to the Lennard-Jones forces 

between titratable atoms. In the present implementation, these modifications were made 

by making appropriate changes to the direct-force CUDA kernel in pmemd.cuda where 

the Lennard-Jones forces are computed. This kernel was also modified to compute the 

Lennard-Jones contributions to the forces on the λ titration variables. The electrostatic 

spatial forces on the atoms can be made to depend on the λ values by using the normal 

force calculations with the charges given in Eq. 8 according to the instantaneous values 

of the λ titration variables. Since V self and V plasma are independent of the spatial coordinates 

of the atoms, they are not computed during standard MD runs in pmemd.cuda. However, 

because these energies do depend on the λ titration coordinates, their derivatives with respect 

to the titration coordinates are required in CpHMD. The calculation of these derivatives 

was added to the kernel that interpolates the λ-dependent atomic partial charges, which 

was previously implemented by us for the generalized Born based CpHMD method.41 This 

kernel otherwise required minimal changes for the present implementation. The derivatives 

of V direct with respect to λ are computed through appropriate changes to the direct-force kernel 

in pmemd.cuda. The derivatives of V reciprocal with respect to λ are computed with a new kernel 

that computes the derivatives given by Eq. 14 using the same method as outlined in our 

previous CPU implementation in CHARMM.10

Modification of the force field parameters.

The current constant pH methods are based on single topology, i.e., titration is represented 

by switching on/off the charge and Lenard-Jones interactions of the dummy hydrogen as 

well as by transforming between the protonated and deprotonated forms of sidechain partial 

charges.16 The latter is straightforward to implement for the CHARMM force fields,42 as 

the backbone partial charges are independent of the side chain. This is however not the 

case for the Amber force fields,43,44 in which the backbone charges are dependent on the 

side chain protonation state. Due to the 1–4 interactions between the backbone and adjacent 

sidechain, this dependency makes it impossible to use a single reference scheme, i.e., one 

model for one type of sidechain. To circumvent this problem, we adopted the scheme used 

in the discrete constant pH implementation in Amber13 by fixing the backbone charges to 

the values of one protonation state (charged Asp/Glu and neutral His in our implementation) 

and absorbing the residual change in charge (ranging from 0.10 to 0.14 e for Asp, Glu 

and His) onto the Cβ atom. Such a scheme is not ideal and might introduce potential 

artifacts to conformational dynamics; thus, we only adopted it for titration dynamics. For 

conformational dynamics, the partial charges are unmodified and the charge interpolation 

between the protonated and deprotonated states is made to both backbone and sidechain 

atoms. Here we note that in our approach the conformational dynamics and titration 

dynamics are treated on an equal footing, with both sets of coordinates propagating 

together. We don’t separate these into separate phases of the simulation. Simply, we use 

different charge sets for the forces on the titration and spatial coordinates. By doing so, the 

conformational dynamics from the optimized force field is preserved.
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Another compromise and approximation we made is in the bonded terms, which are not 

scaled between two protonation states as in the early CpHMD implementations.7,40 For Asp 

and Glu, the bonded parameters for the protonated and deprotonated forms are different 

in both CHARMM and Amber force fields.42,44 The parameters of the deprotonated forms 

(which are most common at physiological pH) were used except for those related to the 

dummy hydrogens, which were taken from the protonated forms. For His, the bonded 

parameters for the protonated and deprotonated forms are the same in the Amber ff14SB44 

and CHARMM c2242 force fields. Including the bonded terms in the calculation would 

require significant modifications to the code, and as such is deferred to the future work. 

However, from a large number of application studies we have conducted, no artifacts have 

been observed, which may be due to our choice of adopting the dominant form (e.g., 

charged Asp/Glu). Therefore, we believe that the improvement with adding the bonded term 

perturbation may be minimal.

Finally, the use of two dummy hydrogens for Asp/Glu introduces an issue, namely, once 

an uncharged (ghost) dummy hydrogen rotates to the anti configuration, it loses the ability 

to titrate. This is because a ghost proton in the anti position is unfavorable to protonate, 

and due to zero force it is unlikely to move until it is protonated, as noted in the early 

developments of constant pH methods.7,13 Following our previous work,40 the rotation 

barrier of the C-O bond in the carboxylate group of Asp/Glu was increased to 6 kcal/mol 

to keep the dummy hydrogens in the syn configuration. This is a limitation, as the anti 
configuration might become favorable in some protein, although it is unfavorable in the 

peptide.45 One solution is to include both anti- and syn-positions for each oxygen as 

implemented in the discrete constant pH methods in Amber.13,14 This solution however 

is difficult to implement for CpHMD methods, as it would add additional variables which 

makes the analytic form of the model PMF impossible to derive (Eq. 18). To complicate 

the case, experimental evidence of syn vs. anti configuration is lacking. This is a topic that 

warrants future investigation.

Potential of mean force functions for model titration.

The linear response theory states that the charging free energy of an ion in polar solvent 

is quadratic in the charge perturbation.46 Thus, the PMF for protonation/deprotonation of a 

single-site titratable group (e.g., Cys and Lys) in explicit solvent can be approximated as a 

quadratic function in terms of λ.10,34

Usingle
mod (λ) = A(λ − B)2 . (17)

Following our previous work,40 for residues with two titratable sites such as carboxylic acids 

and histidines an additional variable x is introduced to represent the tautomer states. The 

underlying variable θx which is defined in analogy to θ (Eq. 2) is dynamically propagated 

on the same footing as θ. For carboxylic acids Asp and Glu which have two equivalent 

protonation sites (carboxyl oxygens), the model PMF function can be written as8 16,40

UAsp/Glu
mod (λ, x) = R1λ2 + R2λ + R3 x + R4

2 + R5λ2 + R6λ (18)
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where R1, …, R6 are parameters that can be determined by one-dimensional fitting of 

the corresponding mean forces (∂U / ∂θ) θx and ∂U / ∂θx θ calculated using thermodynamic 

integration (TI) at different combinations of θ and θx values. The detailed derivation and 

protocol are given in Ref.8,16

The model PMF function for His titration can be written as8

Umod = A10λ2x2 + 2 A1B1 − A0B0 λx
+2 A0B0 − A1B1 − A10B10 λ2x
+A1λ2 − 2A1B1λ .

(19)

The parameters in Eq. 19 are those in the one-dimensional PMF functions, where either λ or 

x is fixed at one of the end points (1 or 0).8

UHis
mod(λ, 0) = A0 λ − B0

2 (20)

UHis
mod(λ, 1) = A1 λ − B1

2 (21)

UHis
mod(1, x) = A10 x − B10

2 (22)

Detailed protocols for obtaining the parameters are given in Ref.8,16

Finite-size corrections to the calculated pKa values for proteins.

In our previous work,10 we proposed a correction for the pKa′s calculated from the all-atom 

PME constant pH simulations under periodic boundary conditions. According to the analysis 

of Hünenberger and colleagues, the finite-size errors for the ligand charging free energies 

arise from four physical effects, among which the discrete solvent effect dominates when 

the protein’s net charge is neutralized by counter-ions.47 The discrete solvent effect arises 

from a homogeneous, constant potential that is applied to offset the potential generated by 

isotropically tumbling solvent molecules so that the average potential over the simulation 

box is zero.47 This “offset” potential is positive for typical three-site water models, and 

needs to be corrected when calculating ligand charging free energies.47 Hünenberger and 

colleagues developed an analytic correction to the ligand charging free energy47

ΔGcorr(charging) = − 2π
3 kγsQNs

V , (23)

where k is the electrostatic constant, γs is the quadrupole moment trace of the solvent model 

relative to a van der Waals interaction site. γs is calculated as 0.764 e ⋅ Å2 for TIP3P water 

model.10 Q is the charge (−1 for charging to −1 e and +1 for charging to +1 e), Ns is the 

number of solvent molecules, and V is the simulation box volume. We note, the correction in 

Eq. 23 is very similar to that proposed by Roux and coworkers.48
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Now we consider the deprotonation reactions of protein titratable residues, which refers 

to the charging process of an acidic sidechain, e.g., aspartic acid, Asp Asp−, or the 

discharging process of a basic sidechain, e.g., histidine, His+ His. Based on Eq. 23 

(correction for the charging free energy), we obtain the correction for the deprotonation 

free energy of a titratable residue in a protein in reference to a model system

ΔΔGcorr(deprot) = 2π
3 kγs Np

s

V p
− Nm

s

V m
, (24)

where Np
s /V p and Nm

s /V m refer to the solvent number density in the protein and model 

systems, respectively. Note, the minus sign in Eq. 23 and Q are absorbed due to the fact 

that Q is −1 for acidic residues, and for basic residues ΔG(deprot) = − ΔG(charging). The 

corresponding pKa correction is

ΔpKa
corr(deprot) = ΔΔGcorr(deprot)

ln(10)RT (25)

where R is the ideal gas constant, T  is the temperature. Since the solvent number density is 

higher in the model system than in the protein system, the pKa correction is negative for both 

acidic and basic sites.

3 Simulation Protocols

Preparation of model peptide systems.

Capped pentapeptides ACE-AAXAA-NH2 (X = Asp, Glu, His, Cys, or Lys) were used 

to parameterize and validate the model PMF functions. First, each peptide structure was 

generated and placed in a cubic water box using CHARMM scripts (version c38b2).22 The 

minimum distance between the heavy atoms of the peptide and the edges of the box was set 

as 10 Å. Next, to neutralize the system at pH 7.5, one Cl− counterion was added to the Lys 

pentapeptide system, and one Na+ counterion was added to the Asp and Glu pentapeptide 

systems. The peptides were represented by the CHARMM c22,42 Amber ff14SB,44 or 

Amber ff19SB49 force field. Water was represented by the TIP3P water model.50

Thermodynamic integration and titration simulations of the model peptides.

We carried out an energy minimization in each pentapeptides system applying a force 

constant of 100 kcal mol−1 Å−2 to the peptide heavy atoms for 200 steps of SD followed by 

300 steps of conjugate gradient method. Then, the system was heated from 100 to 300K 

using Langevin thermostat and a force constant of 5 kcal mol−1 Å−2 on the heavy atoms. 

After heating, three stages of equilibration were performed with 250 ps each, whereby the 

force constant was 2 and 1, and 0 kcal mol−1 Å−2. Finally, thermodynamic integration (TI) 

simulations were conducted for the model pentapeptides under constant NPT conditions at 

fixed θ or θx values of 0.2, 0.4, 0.6, 0.7854, 1.0, 1.2, and 1.4. Each simulation lasted 10 

ns. The TI simulations gave the mean forces, ∂U / ∂θ θx  and ∂U / ∂θx θ , which were used 
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to obtain parameters in the PMF functions (Eq. 17, 18, and 19). The detailed protocols are 

given in a recent tutorial.16

As validation of the model parameters, titration simulations were conducted for the model 

peptides at independent pH conditions, which were placed at 0.5-pH intervals in the range 

of 2–5.5 for Asp, 2.5–6 for Glu, 4.5–8 for His, 6.5–10 for Cys, and 8–11.5 for Lys model 

peptides. The equilibration and production runs of the peptide systems followed the same 

protocols as the protein simulations (see latter discussion). The production run at each 

pH lasted 20 ns and was repeated three times. With the CHARMM c22 force field,42 we 

also performed pH replica-exchange simulations of 10 ns/replica for Asp, His, and Lys 

model peptides with the same pH conditions. Additional pH replica-exchange simulations 

were also performed with the hydrogen mass repartition scheme51,52 and 4-fs timestep. The 

simulation length was 10 ns/replica.

Preparation of the protein systems.

For protein simulations, the following PDB files were downloaded: 1W4H (peripheral 

subunit-binding domain protein BBL),53 2LZT (hen egg white lysozyme or HEWL),54 

3BDC (Staphylococcus nuclease or SNase),55 7RSA (ribonucleas A or RNaseA),56 1ERU 

(thioredoxin),57 and 1I0E (human muscle creatine kinase or HMCK).58 The coordinates 

were first processed using the convpdb.pl script from MMTSB Toolset59 to remove hetero 

atoms, ions, water, ligands, and hydrogen atoms. The CHARMM c22 protein force field 

and CHARMM modified TIP3P water model were used to represent the protein and water, 

respectively.42 The following steps were performed using the CHARMM package (c38b2).22 

The proteins were embedded in a preequilibrated cubic TIP3P water box with at least 10 

Å cushion between the protein heavy atoms and the edges of the box. Sodium and chloride 

ions were added to neutralize the systems (assuming model pKa′s and pH 7.5) and to provide 

a physiological (0.15 M) or experimental salt concentration (0.1 M for SNase, 0.5 M for 

thioredoxin, and 0.06 M for RNase A). Using the HBUILD facility, missing hydrogens 

were added, and a custom CHARMM script is used to add two dummy hydrogens on 

the carboxylate oxygens.8 The protein structures were energy minimized using 50 steps of 

steepest descent (SD) method with a harmonic force constant of 50 kcal ⋅ mol−1Å−2 on the 

heavy atoms followed by 100 steps of adoptive basis Newton-Raphson (ABNR) method.

Equilibration of the protein systems at independent pH conditions.

The CHARMM22 topology and parameter files were converted to the Amber compatible 

format with the command chamber in ParmEd.60 With the Amber input files prepared, a last 

round of minimization was performed in Amber22,23 using 200 steps of SD followed by 300 

steps of conjugate gradient method, whereby a force constant of 100 kcal mol m−1 Å−2 was 

applied to the protein heavy atoms. Keeping the same restraint and with a time step of 1 

fs, the system was then heated for 100 ps from the initial temperature of 100 K to 300 K 

using Langevin thermostat). Following heating, two stages of equilibration was performed. 

The first stage consisted of two runs of 250 ps each performed at pH 7, whereby the 

harmonic force constant was 100 and 10 kcal ⋅ mol−1 Å−2. The second stage of equilibration 

was performed at the individual pH conditions of the replica-exchange simulations. Here, 

Harris et al. Page 11

J Chem Theory Comput. Author manuscript; available in PMC 2023 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



four runs of 500 ns were performed using a time step of 2 fs. The heavy-atom force constant 

was gradually reduced from 10.0 to 1.0, 0.1, and 0.0 kcal mol−1 Å−2.

Production CpHMD simulations of proteins with pH replica-exchange.

For CpHMD production runs, the asynchronous pH replica exchange algorithm61 was 

employed to accelerate sampling convergence of conformational and protonation states and 

accelerate pKa calculations.21 2 NVIDIA GTX 2080 Ti GPU cards were used. The pH range 

of the protein simulations was extended at least 1 pH unit below or above the lowest or 

highest experimental pKa values, and the pH spacing was 0.5 pH unit. Additional pH replica 

at 0.25 pH units were added in some cases to increase the probabilities of replica exchange. 

The exchanges between adjacent pH replicas were attempted every 2 ps (1000 MD steps). 

Each replica in the simulations of BBL, HEWL, SNase, thioredoxin, RNase A, and HMCK 

was run for 34, 40, 40, 50, 40, and 30 ns, respectively. The simulation length was sufficient 

to converge the pKa′s of all titratable sites (for HMCK we were only interested in Cys283). 

For SNase, additional simulations with larger box sizes were carried out. In these systems, 

the distance between the protein and edges of the water box was increased from the default 

10 Å to 12, 14, and 18 Å, and the corresponding simulations lasted 20, 20, 60, and 75 ns per 

replica, respectively. All settings in the CpHMD are identical to our previous work.10,41

Settings in the MD.

Unless otherwise noted, the integration timestep in the production runs was 2 fs. Lennard 

Jones energies and forces were smoothly switched off over the range of 10–12 Å. For long-

range electrostatics, the PME method was used with a real-space cutoff of 12 Å and grid 

spacing of 1 Å. Each pH replica simulations was performed under constant NPT conditions, 

where the pressure was maintained at 1 atm by the Berendsen barostat with a relaxation time 

of 0.1 ps and the temperature was maintained at 300 K by the Langevin thermostat with a 

collision frequency of 1.0 ps−1.23

pKa calculation.

λ coordinates from the titration simulations were post-processed to calculate pKa values. 

Following our previous definition of protonated and deprotonated states,41 λ ≤ 0.2 and 

λ ≥ 0.8 represent the protonated and unprotonated states, respectively, while 0.2 < λ < 0.8
is considered unphysical and discarded. The unprotonated fractions S at all simulation 

pH conditions were collected and the data were fit to the Hill (or generalized Henderson-

Hasselbalch) equation

S = 1
1 + 10n pKa − pH , (26)

where pKa and n are the fitting parameters, and S is defined as S = Nunprot/Nunprot + Nprot, where 

Nunprot and Nprot refer to the number of λ values representing the unprotonated and protonated 

states, respectively.
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For two residues experiencing linked titration, the average number of protons bound to 

the two residues ( P ) are calculated at all simulation pH, and fit to the following coupled 

titration model to determine the macroscopic stepwise pKa′s,33,62

P = 10pKa2 − pH + 2 ⋅ 10pKa1 + pKa2 − 2pH

1 + 10pKa2 − pH + 10pKa1 + pKa2 − 2pH (27)

where pKa1 and pKa2 are the two stepwise pKa′s.

Finite-size corrections.

A finite-size correction (Eq. 25) was applied to the calculated pKa′s. For the pKa′s in Table 

2 (i.e., a minimum of 10 Å distance between the protein and the edge of the water box), 

the corrections are: BBL (Asp: −0.33, Glu: −0.39, His: −0.30); HEWL (Asp: −0.63, Glu: 

−0.70, His: −0.61); SNase (Asp: −0.70, Glu: −0.77, His: −0.67); thioredoxin (Asp: −0.96, 

Glu: −1.02, His: −0.93); RnaseA (Asp: −0.66, Glu: −0.72, His: −0.63); creatine kinase (Cys: 

−0.64). Corrections for the simulations with larger box sizes (Table 3) are given in Table 

S1. At a first glance, it may seem odd that these corrections differ by residue type. This 

is because the corrections for the model pKa′s are different. In the future, these differences 

can be eliminated by using larger solvent boxes for the model simulations. Additionally, the 

reference pKa′s can be adjusted to account for the pKa corrections which can be calculated at 

the simulation set up by using lattice parameters.10

4 Results and Discussion

4.1 Model parameterization and validation

Parameterization of the model potential of mean functions for 
titrating model pentapeptides.—First, TI simulations of model pentapeptides 

CH3CO‐Ala‐Ala‐X‐Ala‐Ala‐CONH2 (X=Asp, Glu, His, Cys or Lys) were performed to obtain 

the mean forces, ∂U / ∂θ θx and/or ∂U / ∂θx θ), which were then fit to the analytic functions 

(derivatives of Eqs. 17, 18, and 19 expressed in θ) to obtain the parameters. The fitting was 

generally very good (see an example fitting of His in Fig. 1), suggesting that the linear 

response theory holds, consistent with the results of both the GRF-based and PME-CpHMD 

in CHARMM.10,34 Integration of the mean forces followed by coordinate transformation 

gives the PMF as a function of λ (see examples in Ref34). We note, the parameters are more 

accurate when they are derived from fitting the mean forces (as in our early work21,40 rather 

than the PMF (as in the PME-CpHMD implementation in CHARMM10).

Table S2 gives the parameters in the model PMF functions of Asp, Glu, and His (Eq. 18 

and 19) for the CHARMM c22,42 Amber ff14sb,44 and ff19sb49 force fields. The model 

PMF parameters for Cys titration were also obtained for the CHARMM c2242 and Amber 

ff14sb44 force fields (Table S2). In the rest of the paper, we focused on the CHARMM c22 

force field63 to facilitate comparisons with our previous PME-CpHMD10 and the Brooks’ 

lab’s MSλD CpHMD implementations9,35 in CHARMM.22 A force field comparison study 

will be conducted in the near future.
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Independent pH and replica-exchange simulations of model pentapeptides.—
The PMF function obtained from the TI simulations describes the free energy change along 

λ, and the difference between the two end points (λ = 1 and 0) gives the deprotonation free 

energy. If the latter is reproduced by the CpHMD simulation, λ should sample two end 

(protonated and deprotonated) states with equal probabilities when pH is set to the reference 

pKa value. In other words, the pKa calculated from the titration simulation should be the same 

as the reference pKa. To test it, we carried out titration simulations of model pentapeptides 

at 8 independent pH conditions. Three replica runs of 20 ns each were performed at each 

pH. The unprotonated fractions at all pH conditions are converged (see time series analysis 

in Fig. S1). Fitting the unprotonated fractions to the Henderson-Hasselbalch equation (Eq. 

26) gave the pKa′s of 3.4±0.04, 4.2±0.02, 6.5±0.12, 8.4±0.03, and 10.3±0.01 for Asp, Glu, 

His, Cys, and Lys, respectively (Fig. 2). Fitting to the generalized Henderson-Hasselbalch 

equation gave identical pKa′s and error estimates, but revealed a small underestimation of 

the Hill coefficient for all but Cys model peptides. Except for Asp, the calculated pKa′s are 

within 0.1 unit of the target experimental values (Table 1). His has two titratable nitrogens 

and hence three protonation states: the doubly protonated Hip (charge +1) and two neutral 

tautomers, with a proton on either Nδ or Nϵ, These tautomer are respectively named Hid and 

Hid in Amber23 or HSD and HSE in CHARMM.22 The calculated pKa′s of Nδ (Hip Hie)
and Nϵ (Hip Hid) are 7.0±0.11 and 6.7±0.12, respectively. These values are also within 0.1 

units from the values estimated by Tanokura based on NMR data of a model compound.64 

The titration of Asp and His is nosier than Glu, Cys, and Lys, as evident from the larger 

uncertainties of the unprotonated fractions at pH conditions near the pKa value, consistent 

with the larger bootstrap errors (0.09 and 0.12, see Table 1). Trajectory analysis showed 

that the Asp and His sidechains can form hydrogen bonds (h-bonds) with the neighboring 

backbone group, resulting in meta-stable states. The carboxylate group of Asp is stabilized 

by h-bonding with the neighboring backbone amide, which contributes to the 0.3-unit 

underestimation of the target pKa value. This behavior was previously observed in both the 

GB and PME-CpHMD simulations in CHARMM.8,10

To investigate if the proton-coupled conformational dynamics is adequately sampled for Asp 

and His in the independent pH simulations, we compared the results with those from three 

sets of pH replica-exchange simulations. The latter were conducted with the asynchronous 

pH replica-exchange scheme that was recently implemented for Amber simulations.61 

The previous work of us10,21,41 and others9,14 demonstrated that the pH replica-exchange 

protocol significant accelerates protonation state and conformational sampling. Indeed, the 

pKa convergence is significantly accelerated; the unprotonated fractions generally plateau 

after about 5 ns, compared to more than 10 ns in the independent pH simulations (Fig. 

S2 and S3). Interestingly, the resulting pKa′s (3.3 and 6.5) of Asp and His are very similar 

to those from the independent pH titration, which suggests that sampling is sufficient in 

the latter (Fig. S2 and S3). Note, to account for the (∼0.3 unit) difference between the 

calculated and target pKa′s of Asp pentapeptide, we changed the Asp reference pKa (from the 

experimental value of 3.7 to 4.0 in the CpHMD parameter file (charmm22 pme.parm) for 

protein simulations.
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In order to further accelerate simulations, we tested the sensitivities of pKa′s for 4-fs timestep 

in conjunction with the hydrogen mass repartitioning (HMR) scheme.51,52 Three sets of pH 

replica-exchange simulations of 10 ns/replica were conducted for the five model peptides 

with HMR/4-fs timestep. All simulations converged within 5–10 ns/replica, representing a 

twice speed up relative to the standard 2-fs simulations. The calculated pKa is 3.6±0.07 for 

Asp, 4.3±0.02 for Glu, 6.3±0.03 for His, 8.6±0.01 for Cys, and 10.0±0.01 for Lys. These 

pKa′s deviate from the 2-fs simulations by 0.1–0.3 units. Notably, the pKa′s of the basic 

residues are lower, by 0.2 units for His and 0.3 units for Lys. The latter is surprising, given 

the rapid convergence (less than 5 ns/replica) and small random error (bootstrap error of 

0.01). Trajectory analysis showed that the solvent accessible surface area (SASA) of the Lys 

sidechain with HMR has similar pH response, i.e., slightly decreasing with pH; however, the 

value for all pH conditions are higher by about 4% compared to the 2-fs simulations (data 

not shown). This might be related to the slightly increased diffusion constant and decreased 

order parameter with the 4-fs timestep, as demonstrated by a recent benchmark study.66 We 

note, evaluation of the 4-fs/HMR scheme for CpHMD simulations of proteins is not in the 

scope of the present work and will be conducted in the near future.

4.2. Titration simulations of proteins

Overall comparison of the calculated and experimental pKa values.—To test 

the accuracy of the PME-CpHMD method for modeling protonation states of proteins, we 

calculated the pKa′s of Asp, Glu, His, and Cys residues in BBL, HEWL, SNase, RNase 

A, thioredoxin, and creatine kinase (HMCK) proteins, which have been previously used to 

benchmark CpHMD methods.10,41,67,68 For a total of 67 residues, the root mean square 

error (RMSE) and the mean unsigned error (MUE) of the calculated pKa′s are 0.76 and 

0.61, respectively, while the Pearson’s correlation coefficient r is 0.85 (Figure 3). A more 

stringent test of the pKa prediction accuracy is to correlate the calculated and experimental 

pKa shifts (ΔpKa) with respect to model values, as the ΔpKa range is much smaller than the 

pKa range, exposing potentially problematic cases. Encouragingly, the r value for ΔpKa′s is 

0.80, similar to the the r value for absolute pKa′s, suggesting that a good correlation with 

experimental is achieved and consistent for different residue types (see later discussion).

Comparison of the calculated pKa′s with the all-atom CpHMD implementations 

in CHARMM.—The pKa′s of BBL, HEWL, and SNase have been previously calculated 

using the all-atom PME-CpHMD implementation in CHARMM (Table S4).10 The r value 

of ΔpKa′s (from correlation with experiment) for these proteins from the present work is 

0.80, which is nearly identical to that (0.78) using the CHARMM PME-CpHMD titration.10 

A comparison between the individual pKa′s shows that most pKa values agree within 0.2–

0.3 units (Table S4); the agreement is especially remarkable for the pKa′s of the catalytic 

dyad in HEWL, which differ by 0.2 units for Glu35 and are identical for Asp52.10 Note, 

the previous CHARMM PME-CpHMD simulations were run for 10 ns/replica,10 whereas 

the present Amber PME-CpHMD simulations were run until full convergence for 30–40 ns/

replica. This analysis suggests that the pKa drift is small over time and the replica-exchange 

CpHMD simulations offer pKa calculations with good precision, consistent with our previous 
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observations.10,21 We further compared the calculated pKa′s of BBL and HEWL, which were 

previously reported with the MSλD method in CHARMM (Table S4).9 Note, the MSλD
simulations in Ref. used a force-based cutoff for long-range electrostatics in λ dynamics 

and therefore we did not apply a finite-size correction for the pKa′s.9 For BBL, the order of 

the two His pKa′s are in agreement between the MSλD and and CpHMD results. Although 

the pKa′s from MSλD are 0.6–0.8 units higher, in better agreement with experiment, the 

simulation length was only 5 ns/replica and no finite-size correction was applied (which 

downshifts the pKa′s). As to HEWL, the RMSE from MSλD9 is nearly identical to the current 

work.

Comparison of the calculated and experimental pKa′s of different residue 

types.—The Asp pKa′s vary the most in this dataset. Encompassing both down- and 

upshifted pKa′s, the experimental pKa range for Asp is 1.2 to 8.1, similar to the calculated 

range of 1.5 to 7.7 (Fig. 3a, magenta). The experimental pKa′s of Glu also display both the 

down- and upshifts, but the range is smaller than Asp, from 2.6 to 6.1, compared to the 

calculated range of 1.0 to 6.9 (Fig. 3a, cyan). The overall accuracy of the pKa calculation 

for Asp is slightly worse than Glu (RMSE of 0.76 and 0.69 respectively), but the r value for 

Asp (0.87) is somewhat larger than for Glu (0.72), which may be attributed to the larger pKa

range. There are only 9 experimental pKa′s for His in the current dataset, which has a range 

of 5.2–6.5 and do not include upshifted values (Fig. 3a, blue). The calculated His pKa range 

is 4.2–6.6 (Fig. 3a, blue), and there is a trend of systematic overestimation of pKa downshifts 

(Fig. 3c, right). In contrast, there is no clear trend for the pKa errors of Asp and Glu (Fig. 3c, 

left and middle). The RMSE (0.92) for His pKa′s is larger than those for Asp (0.76) or Glu 

(0.9).

pKa calculation for BBL: pH-dependent solvent exposure of His166.—BBL is 

a miniprotein with 45 residues and 8 titratable sites. The RMSE of the calculated pKa′s is 

0.62 units, with His166 showing the largest error of 1.2 units, representing an overestimation 

to the experimentally observed pKa downshift (Table 2). The pKa downshift of His166 can 

be attributed to solvent exclusion and lack of hydrogen bonding (h-bonding) or electrostatic 

interactions (Fig. 4a). As pH decreases from 6 to 4, His166 undergoes a sigmoidal transition 

(Fig. 4b) from the deprotonated fraction of 1 (singly protonated neutral state) to 0 (doubly 

protonated charged state). As expected, the fraction of the fully buried state also decreases 

(i.e., solvent exposure increases); however, the decrease does not appear to be sufficient, 

i.e., at low pH values the buried fraction doe not plateau (Fig. 4c). This analysis suggests 

that while the PME-CpHMD method is able to reproduce the experimental pKa downshift by 

capturing the pH-induced decrease in solvent exclusion or increase in solvent exposure of 

His166, sampling of the exposed state at low pH may be insufficient, which contributes 

to the pKa underestimation. Another potential contributor is an overestimation of the 

desolvation penalty by the CHARMM c22 force field.42 Note, our previous CHARMM 

PME-CpHMD simulations gave a similarly underestimated pKa for His166 (by 1.3 units),10 

and the MSλD simulations underestimated the pKa by 0.6 units (analysis of conformational 

sampling was not given).9
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pKa calculation for HEWL: titration order of the catalytic dyad.—HEWL is a 

small protein with 129 residues and 10 titratable sites; it is a popular test system for 

pKa prediction methods due to the abundance of experimental data.71 The RMSE of the 

calculated pKa′s is 0.83 units. The two largest errors are for Asp52 and His15; the calculated 

pKa′s are 2 units over- and 1 unit underestimated, respectively (Table 2). Despite the 

overestimation, the calculated pKa of Asp52 is 1.4 units lower than that of Glu35 (the second 

catalytic residue, Fig. 5), which indicates that Glu35 is a general acid and Asp52 is a general 

base in catalysis, in agreement with experiment (Table 2). Consistent with the CHARMM 

PME-CpHMD as well as the hybrid-solvent CpHMD simulations,75 the titration events of 

Glu35 and Asp52 are uncoupled, as evident from the nearly identical stepwise pKa′s (7.0 and 

5.5) from fitting to the two-proton titration model (Eq. 27; figure not shown). The lack of 

coupled titration is due to the relatively large distance between the carboxylate sidechains 

(>6.5 Å between the nearest carboxylate oxygens at any pH). Note, the calculated dyad pKa′s
are nearly the same as the values from the CHARMM PME-CpHMD simulations.10 The 

MSλD method in CHARMM gave a nearly identical pKa for Glu35, but a 1.1-unit lower pKa

for Asp52.9

To understand the pKa order of the catalytic dayd Glu35/Asp52 and the possible factors for 

the pKa overestimation of the latter, we compared the pH profiles of the solvent exposure, 

h-bonding and electrostatic interactions of the dyad residues with the pH-dependent titration 

curves (Fig. 5b–d). Both residues are partially buried. As Glu35 switches from being fully 

unprotonated to fully protonated in the pH range 7 to 10, the solvent exposure decreases 

from about 30% to just under 20% (Fig. 5b and c, blue). Asp52 has a similar behavior, 

except that the titration and change in solvent exposure are shifted to a lower pH range 7 to 

4 (Fig. 5b and c, red). Now we turn to h-bonding and electrostatic interactions that are also 

physical determinants of pKa shifts.76 Glu35 does not form h-bonds below pH 7.5, and above 

pH 7.5, occasional salt-bridge interaction with Arg114 was observed, with an occupancy 

less than 20% (Fig. 5d, blue). In contrast, the carboxylate group of Asp52 can accept 

h-bonds from the sidechains of Asn46 and Asn59, and the occupancy increases to nearly 2 

with increased deprotonation of Asp52 (Fig. 5d, red). The analysis of solvent exposure and 

h-bond suggests that the latter is the major determinant for the lower pKa value of Asp52 

relative to Glu35, in agreement with our previous work using the hybrid-solvent as well 

as the PME-CpHMD in CHARMM.75 It is noteworthy that despite the correlation between 

charging of Asp52 and the increase in solvent exposure and h-bond formation, the pH 

profiles of solvent exposure and h-bond occupancy are more gradual than the titration curve, 

which may indicate that the pH-dependent conformational changes might be undersampled, 

contributing the overestimation of the pKa of Asp52.

pKa calculation for SNase: partially buried residues and coupled titration of 

Asp19 and Asp21.—SNase has a large number of engineered mutants, which are popular 

model systems for testing pKa prediction methods.76 Here we used the hyperstable, acid-

resistant form of SNase Δ+PHS (hereafter referred to as SNase)55 which is only slightly 

(14 residues) larger than HEWL, but has 9 more titratable sites. The pKa′s of SNase are 

more challenging to predict than HEWL due to the fact that most titratable sites are partially 
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buried.21 The calculated pKa′s have a RMSE of 0.76 units, similar to the RMSE of 0.80 from 

the CHARMM PME-CpHMD simulations.10 The largest error is for Glu129, for which the 

experimental pKa is 0.4 units down- and the calculated pKa is 0.8 units upshifted relative 

to the model value of 4.2. Curiously, simulation also fails to reproduce the direction of 

the experimental pKa shifts of Glu52, Glu57, and Glu101, although the magnitude of the 

errors is smaller (0.4, 0.7, and 0.4 respectively). Analysis showed that all these residues are 

partially buried, suggesting that desolvation penalty contributes to the pKa upshift. Based 

on the analysis of BBL’s His166 and HEWL’s Asp52, we hypothesized that simulation 

overestimates the desolvation penalty due to inadequate sampling of the solvent exposed 

state. To test this, we plotted the fractional SASA values vs. pH for Glu52, Glu57, Glu101, 

and Glu129 (Fig. S4). Deprotonation of glutamic acid is expected to induce larger solvent 

exposure. This is indeed the case for the more exposed residues Glu52 and Glu57 (fractional 

SASA about 60% at low pH), although the degree of increase is small. However, solvent 

exposure change with pH for the more buried residues Glu101 and Glu129, for which the 

fractional SASA values remain at about 40 and 20% throughout the entire pH range (Fig. 

S4). These data support the hypothesis that the solvent exposed state may be inadequately 

sampled, contributing to the desolvation related pKa upshift for Asp and Glu.

The NMR data55 as well as our previous work75 based on the hybrid-solvent and PME-

CpHMD simulations in CHARMM suggest that the titration Asp19 and Asp21 is coupled. 

The current simulations confirmed the strong coupling as a result of h-bond formation 

between the two residues (Fig. 6a). Fitting the titration data to a two-proton coupled 

equation (Eq. 27) gives the stepwise macroscopic pKa′s of 2.5 and 5.6 (Fig. 6b), which 

are in good agreement with the experimental values of 2.2 and 6.5.55 To assign the stepwise 

pKa′s to individual residues, we examine the pH-dependent probabilities of four microscopic 

states, doubly protonated (HH), singly protonated with proton on D19 (H−) or Asp21 (−H), 

and doubly deprotonated (−−) states (Fig. 6c). Above pH 7, Asp19/Asp21 are in the –– state 

(Fig. 6c, blue). As pH decreases from 7 to 5, the probability of –– decreases, while that 

of the −H or H− increases. Since the −H state (cyan) is more probable than the H– state 

(magenta) as protonation first occurs, Asp21 receives a proton first, which means the higher 

pKa should be assigned to Asp21. As pH further decreases from 5 to 2, both −H and H− 

states are possible; however, their combined probability decreases, while the probability of 

the HH state increases (Fig. 6c, red). Below pH 2, the latter state dominates. Analysis of 

h-bonding and electrostatic interactions (Fig. 6a) shows a network among Asp19, Asp21, 

Thr22, Thr41, and Arg35, consistent with the CHARMM hybrid-solvent and PME-CpHMD 

simulations.41

pKa calculation for thioredoxin: the deeply buried Asp26 and Asp58.—

Thioredoxin has 105 residues with 18 titratable sites. The RMSE of the calculated pKa′s
is 0.71. We first consider Asp26, which has one of the highest measured pKa′s of any 

carboxylic acids in proteins. Encouragingly, the calculated pKa of Asp26 is 7.7, in excellent 

agreement with the NMR-derived value of 8.1. The large pKa upshift of nearly 4 units can 

be attributed to the extremely low fraction of solvent exposure (below 7% at all pH, Fig. 

S5). Trajectory analysis showed that Asp26 does not form h-bonds with nearby residues. 
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The only factor that may stabilize the deprotonated form is the salt-bridge formation with 

Lys39; however, the salt bridge is only formed above pH 8 and the solvent exposure is 

very low (<20% at pH 8, Fig. S5). A previous experimental study72 suggested that the 

protonated Asp26 may be stabilized by donating a h-bond to the nearby Ser28; however, 

in the simulation the average distance from the hydroxyl oxygen of Ser28 to the nearest 

carboxylate oxygen of Asp26 is about 4.9 Å at pH 7, similar to the distance of 4.7˚ Å
in the X-ray structure (PDB˚ 1ERU). Thus, the dry environment, along with lack of polar 

interactions, results in the very large pKa upshift of Asp26.

The largest error in the calculated pKa′s of thioredoxin is for Asp58, whose direction of pKa

shift is reproduced but the magnitude is 1.6 units too large (Table 2). Analysis showed that 

the Asp58 is also deeply buried, with ∼20% solvent exposure below pH 5, which explains 

the pKa upshift relative to the model. However, the solvent exposure only slightly increases 

to ∼30% at pH 8 before increasing steeply to over 50% at pH 10 (Fig. S6). H-bond analysis 

showed that the deprotonated Asp58 can accept h-bonds from the backbones of neighboring 

Asp60 and Asp61, which can stabilize the deprotonated state; however, the pH profile of the 

h-bond occupancy is irregular, showing a nearly 50% decreased occupancy in the pH range 

4–8 (Fig. S6). The latter indicates a sampling issue, which explains the overestimation of the 

pKa of Asp58.

pKa calculation for RNase A: the deeply buried His12.—RNase A has 124 residues 

with 14 titratable sidechains. The RMSE for the calculated pKa′s is 0.81, and the largest error 

is for His12 (Fig. 7a). The experimental pKa of His12 is 0.5 units downshifted relative to 

the model, and the simulation overestimated the downshift by 1.7 units (Table 2). Analysis 

showed that His12 titrates over the pH range 3 to 6 (Fig. 7b), and the titration is correlated 

with two physical determinants, an increase in solvent exposure (decreased buried fraction) 

at lower pH (Fig. 7c) and an increase in h-bond formation at higher pH (Fig. 7d). However, 

unlike in the previous GB-41 or hybrid-solvent21 CpHMD simulations, the pH profiles of 

the buried fraction and the h-bond occupancy do not fully match the titration curve. Above 

pH 6, His12 is over 90% buried, and the decrease in the buried fraction at lower pH does 

not follow an expected sigmoidal curve. The buried fraction decreases by about 5% as pH 

decreases from 9 to 5 and remains constant between pH 4.5 and 2, before further decreasing 

to 80% at pH 0 (Fig. 7c). A major h-bond partner is the neighboring Asn11, which can 

donate a h-bond from its carboxamide group to the ϵ nitrogen of His12 to stabilize its 

deprotonated form (Fig. 7a). As pH increases from 3 to 6, the occupancy of the h-bond 

increases from zero to about 60%, and it further increases to nearly 100% at pH 8. Based on 

the above analysis, we suggest that the h-bond formation and solvent exposure of His12 may 

be insufficiently sampled in the pH range 3–6. The under-sampling of the solvent exposed 

state (buried fraction remains unchanged between pH 2 and 4.5) is particularly evident, 

which may be a major factor for the overestimation of pKa downshift of His12.

pKa calculation for HMCK: a buried active-site cysteine.—To test the accuracy of 

Cys titration, we calculated the pKa of Cys283 in the active site of HMCK, which has a 

NMR measured pKa of 5.6,74 one of the lowest in the literature.77 Our simulations correctly 
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reproduced the direction of the pKa shift relative to the model; however the downshift 

is 1.1 units underestimated compared to the experiment (Table 2). Analysis showed that 

Cys283 is buried and does not have nearby cationic residues; however, once deprotonated 

it can accept h-bonds from the sidechains and backbones of Ser285 and Asn286 (Fig. 

8a and b), consistent with the GB-based CpHMD titration simulation.68 Based on the 

structural analysis of the thioredoxin family of proteins,78 Roos and Messens hypothesized 

that hydrogen bonding rather than electrostatics plays a major role in stabilizing Cys 

thiolates. Our current data and recent GB-based CpHMD simulations of a large number 

of proteins68,77,79,80 are in support of this hypothesis.

As Cys283 becomes deprotonated in the pH range 6 to 9, the total h-bond occupancy 

increases and plateaus at 1; however, the exposed fraction does not increase and instead 

remains at about 40% (Fig. 8c and d). Since solvent exposure promotes the charged thiolate 

state and decreases the pKa, we suggest that insufficient sampling of the solvent-exposed 

conformations may contribute to the overestimation the pKa of Cys283.

Finite-size effect and corrections.—Following the work of Hünenberger and 

colleagues, 47 we previously proposed an analytical pKa correction (Eq. 25) to correct for 

the effect of an offset potential introduced in PME simulations under periodic boundaries.10 

For the current simulations, the pKa corrections for Asp, Glu, His, and Cys are between −0.3 

and −1.0 pH units (see Methods). To assess the effectiveness of the corrections and better 

understand the finite-size effect, we performed additional titration simulations of SNase with 

increased box sizes, i.e., adding more water to the simulation system. Table 3 summarizes 

the raw and corrected pKa′s using four different boxes, which have 10 (default), 12, 14, or 18 

Å cushion space between the protein and edges of the box (minimum dis-˚ tance between the 

heavy atoms of protein and water oxygens on the box edges). The corresponding cubic box 

lengths are 68, 71, 76, and 84 Å, respectively.

We first examine the raw calculated pKa′s from simulations with different box sizes. As 

expected, with increasing box size the raw pKa′s decrease for all but four residues (Fig. 9a). 

Increasing box size also leads to better agreement with the experimental pKa′s; the RMSEs 

of the raw pKa′s are 1.0, 1.0, 0.97 and 0.76 for boxes with 10, 12, 14, and 18 Å cushion 

space, respectively (Table 3 and Fig. 9a). The MUE also decreases from 0.86 (10 Å cushion) 

to 0.81 (12 Å cushion), 0.80 (14 Å cushion), and 0.62 (18 Å cushion) (Table 3). Comparison 

of the raw pKa′s between the smallest (10 Å cushion) and largest (18 Å cushion) boxes 

shows that the pKa changes due to box size increase vary (Table 3, last column). Excluding 

the four residues (Asp19, Asp21, H121, and Glu135) that show very little pKa changes, 

the pKa′s mostly decrease by 0.3 to 0.7 units, as compared to the finite-size corrections of 

−0.70 to −0.8 units for the smallest box. The effect of box size is not clear for the coupled 

residues Asp19/Asp21, which have the raw calculated pKa′s of 3.2/6.3 with the smallest box; 

however, the pKa′s increase to 3.6/6.5 and 3.4/7.1 with the larger boxes (12 and 14 Å cushion 

space), and then decrease back to 3.1/6.4 with the largest box (18 Å cushion). Increasing box 

size has negligible effect on the downshifted pKa of His121. With the increasing box sizes, 

its raw pKa changes from 5.7 to 6.1, 5.7, and 5.8. Box size also shows little effect on the pKa
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of Glu135, which has the raw calculated pKa′s of 3.0, 3.4, 3.0, and 3.0 with the increasing 

box sizes.

Now we examine the pKa corrections for the different simulation boxes. It is apparent that 

application of the finite-size correction removes the systematic overshift error (Fig. 9b). As 

the box size increases, the solvent number density increases and therefore the magnitude of 

the correction decreases (Eq. 24). The magnitude of the corrections decreases by about 0.4 

pH units going from the smallest to the largest box. Interestingly, this difference is roughly 

the same as the average difference between the raw pKa′s (of all but the aforementioned 

four residues) calculated with the smallest and largest box (Table 3, last column), which 

suggests that the finite-size correction is valid. Another interesting observation is that the 

increasing box size does not significantly reduce the RMSE of the finite-size corrected pKa′s. 
The RMSE’s are 0.76, 0.80, 0.80, and 0.70 with the increasing box sizes (Fig. 9b), which is 

another piece of evidence supporting the validity of the finite-size corrections.

5 Concluding Discussion

We presented the first implementation, parameterization, and validation of the GPU-

accelerated continuous constant pH particle-mesh Ewald molecular dynamics method in 

Amber22 (hereafter referred to as Amber PME-CpHMD). Titration parameters for three 

force fields (CHARMM c22,42 Amber ff14SB,44 and ff19SB49) were derived and validated 

using model pentapeptides AAXAA, where X represents Asp, Glu, His, Cys, or Lys. To 

benchmark the performance and accuracy for constant pH simulations of proteins, we 

carried out titration simulations with the c22 force field for 6 proteins, including BBL, 

HEWL, SNase, RNase A, thioredoxin, and HMCK, which have NMR derived pKa values of 

Asp, Glu, His, and Cys residues. The asynchronous pH replica-exchange algorithm61 was 

employed to enhance sampling of protonation and conformational states. The simulations 

were run for 30–50 ns per pH replica until all pKa′s were converged. The resulting RMSE 

and MUE with respect to the experimental pKa′s are 0.76 and 0.61, respectively, and the 

largest pKa deviation is 2 units. The Pearson’s correlation coefficients for the calculated vs. 

experimental pKa′s and pKa shifts are 0.85 or 0.80, respectively. Importantly, the titration 

simulations quantitatively reproduced the experiment pKa orders of the catalytic dyad in 

HEWL and the coupled residues in SNase. Simulations also quantitatively captured one of 

the largest upshifted pKa′s of a deeply buried Asp in thioredoxin as well as the downshifted 

pKa of an active-site Cys in HMCK.

We compared the current validation data with those based on the CHARMM22 CPU all-

atom PME-CpHMD10 and MSλD9 simulations with the same c22 force field.42 The Asp, 

Glu, and His pKa′s calculated from the CHARMM PME-CpHMD simulations of 10 ns per 

replica (much shorter than the present work) are in close agreement with the present work, 

suggesting that the pKa drifts over prolonged simulation time are small. Comparing to the 

calculated pKa′s of HEWL and the two His residues in BBL based on the MSλD simulations 

of 5–20 ns per pH replica (with a 12-Å electrostatic cutoff), 9 the overall RMSE is similar, 

and the pKa orders of the catalytic Glu35/Asp52 in HEWL and His142/His166 in BBL are 

consistent with the present simulations.
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In agreement with the previous CHARMM PME-CpHMD simulations10 the present data 

demonstrated that the finite-size effect needs to be taken into account for the accurate 

calculation of titration free energies with lattice sum methods under periodic boundary 

conditions. Applying the pKa correction10 to account for a positive offset potential due to 

TIP3P water in periodic boxes, a systematic pKa upshift error in the calculated pKa′s was 

removed, and the overall agreement with experiment was improved. We note, in the revision 

stage of the current paper, the work from the Roux group81 was published which used a 

similar pKa correction to account for the (Gavani) offset potential.48

To further examine the finite-size effect and the validity of the correction, the pKa′s of SNase 

were calculated from simulations with four different box sizes. Consistent with the negative 

sign of the correction, increasing box size lowers the raw pKa′s of all but four residues that 

do not show significant changes. The RMSE of the raw pKa′s decreases from 1.0 with the 

smallest box to 0.76 with the largest box; the latter is identical to the RMSE (0.76) of the 

corrected pKa′s obtained from the simulation with the smallest box. The quantitative validity 

of the correction is also supported by a good agreement between the change in the finite-size 

correction and the average change of the raw pKa′s going from the smallest to the largest 

box size. As expected, the finite-size correction decreases with increasing box size, and 

consistently, the reduction in RMSE due to the correction also decreases. Using the 18-Å
cushion space, the correction is 0.3–0.4, and the RMSE (0.70) of the corrected pKa′s is only 

slightly smaller than the RMSE (0.76) of the raw pKa′s. This suggests that the box size effect 

may start to become negligible with this size of water box.

Although the overall box-size dependent trend of pKa′s is consistent with the positive offset 

potential being the dominant factor,10 there are exceptions. The simulations of SNase 

showed that box size has negligible effect on the coupled pKa′s of Asp19 and Asp21 as 

well as the downshifted pKa′s of His121 and Glu135. We note that the effect of the offset 

potential and the corresponding pKa correction deal with an ideal situation in which a single 

residue titrates in a neutral background. Thus, it is possible that the correction is not valid for 

coupled pKa′s. However, with regards to the pKa′s of His121 and Glu135, the cause for the 

box size independence is difficult to speculate. An alternative approach to the finite-size pKa

correction is to enforce system charge neutrality i.e., by including titratable water as in our 

previous work.10 We tested this approach on the BBL protein; however, due to the slower 

convergence and small pKa differences compared to the simulations without titratable water, 

studies of other proteins were not pursued. We defer a more thorough investigation of the 

finite-size effects to a future work.

We analyzed the pH-dependent solvent exposure and formation of hydrogen bonds as 

well as electrostatic interactions of catalytic residues and those that exhibit larger pKa

deviations from experiment. These analyses suggested while PME-CpHMD captures 

the proton-coupled conformational rearrangements, charging-induced increase of solvent 

exposure for buried residues is inadequate. This may be a major contributor to the pKa errors, 

including the overestimated pKa downshifts for buried His residues, e.g., His166 in BBL 

and His12 in RNaseA; the overestimated pKa upshifts for buried carboxyl residues, e.g., 
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Glu57 in SNase and Asp58 in thioredoxin; and the overestimated pKa upshift for buried 

Cys, e.g., Cys283 in HMCK. Undersampling of the solvent-exposed state may also be 

related to the combination of c22/TIP3P force field,42 which slightly biased solutesolute 

over solute-solvent interactions.82 Overestimation of desolvation penalty may also be a 

source of error, which can be attributed to the low dielectric constant in the protein interior 

as a result of the lack of polarization in simulations with additive force fields.83 Lack of 

polarization in the interior of protein may also lead to overly strong salt bridges, which may 

explain the overestimation of the pKa downshifts of Asp140 and Glu135 in SNase. While 

the use of polarizable force field for both protein and water is desirable, it may not be 

currently feasible due to speed. One intriguing idea worth exploring is to mix a polarizable 

water model such as OPC3-pol84 with an additive force field to improve solute-solvent 

interactions. The present study did not examine the potential dependence on the additive 

force field. The force field related topics as well as the evaluation of PME-CpHMD for 

model proton-coupled conformational dynamics of catalytic residues in larger proteins (e.g., 

BACE167) will be explored in a future work.

By removing the reliance on the implicit-solvent model, the PME-CpHMD method can 

be applied to any system that has a force field representation. We anticipate the GPU 

accelerated PME-CpHMD to become a powerful tool for the investigation of a variety 

of proton-coupled dynamical phenomena that are poorly understood due to the current 

limitations in experimental and MD techniques, for example, secondary transport of 

ions/substrates across membrane transporter proteins and pH-dependent self-assembly of 

materials. Another important application of PME-CpHMD is to offer proper pH control, for 

example, by allowing protein and ligand to titrate while binding and unbinding,5 or allowing 

His residues to fluctuate among the doubly protonated and two singly protonated tautomer 

states, which has been shown to affect the ligand binding mechanism and kinetics.85,86
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Figure 1: Nonlinear fitting of the mean forces to obtain the model PMF parameters for His 
titration.

a) and b) Fitting ∂U / ∂θ  at θx = 0 (a) or at θx = π/2 (b) to 2A0 sin2θ − B0 sin2θ gives A0 and B0

(a) or A1 and B1 (b), respectively. c) Fitting ∂U / ∂θx  at θ = π/2 to 2A10 sin2θx − B10 sin2θx gives 

A10 and B10. The fitting equations are derivatives of Eqs. 20, 21, and 22. The red curves are 

the best fits.

Harris et al. Page 29

J Chem Theory Comput. Author manuscript; available in PMC 2023 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Simulated titration plots of model peptides ACEAAXAANH2 (X=Asp, Glu, His, Cys, 
and Lys) at independent pH conditions.
Top panel: unprotonated fractions of Asp, Glu, and His at different pH. Bottom panel: 

unprotonated fractions of Cys and Lys at different pH. At each pH, three simulation runs 

were performed starting from different initial velocity seeds. The pKa, Hill coefficient 

(n), and fitting error are given. The boot strap errors are given in Table 2. The fitting 

was performed on all data points using the generalized Henderson-Hasselbalch equation. 

Performing the fits against the Henderson-Hasselbalch equation yields identical pKa values 

and error estimates.
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Figure 3: Comparison between the calculated and experimental pKa′s and pKa shifts of the 
benchmark proteins.
a) Calculated pKa′s vs. experimental pKa′s. b) Calculated vs. experimental pKa shifts with 

respect to the experimental model peptide pKa′s (Table 1). The data for Asp, Glu, His, 

and Cys are shown in magenta, cyan, blue, and orange, respectively. Pearson’s correlation 

coefficient (r) and RMSE are given. The solid black lines represent the linear regression. 

The shaded region indicates the calculated pKa′s within the overall RMSE (0.76 units) of 

the experimental values. To guide the eye, the dashed diagonal line (x = y) is shown. c) 

Histograms of the deviations between the calculated and experimental pKa′s for Asp (left), 

Glu (middle), and His (right) residues.
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Figure 4: Protonation of His166 in BBL is correlated with the pH-dependent increase in solvent 
exposure.
a) Structure of BBL protein with His166 explicitly shown (PDB ID: 1W4H).53 b) 

Deprotonated fraction of His166 at different pH. c) Buried ratio of His166 at different 

pH, defined as 1-fSASA, where fSASA (fraction of solvent accessible surface area) was 

calculated as SASA of the sidechain atoms relative to that in the model pentapeptide.
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Figure 5: Factors influencing the pKa′s of the catalytic dyad in HEWL.

(a) A representative snapshot at pH 7.5 showing the h-bonding and salt bridge environment 

of Glu35 and Asp52. (b) The unprotonation fractions of Glu35 and Asp52 at different 

pH. (c) Fractions of the sidechain solvent exposure (SASA value relative to the model 

pentapeptide) of Glu35 and Asp52 at different pH. (d) The h-bond and salt bridge 

occupancies of Glu35 and Asp52 at different pH.

Harris et al. Page 33

J Chem Theory Comput. Author manuscript; available in PMC 2023 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: Linked titration of Asp19 and Asp21 in SNase.
(a) A snapshot from the pH 4 simulation showing the h-bonding environment of Asp19 and 

Asp21. (b) Total number of protons of Asp19/Asp21 at different pH. The stepwise pKa′s are 

obtained from the best fit (black curve) to the two-proton coupled equation (Eq. 27). (c) 

The pH-dependent probabilities of four microscopic states: two protons (HH, red); proton on 

Asp19 (H−, magenta) or Asp21 (−H, cyan); zero proton (—, blue).
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Figure 7: Protonation of His12 in RNaseA is correlated with the decreased solvent exclusion and 
hydrogen bonding.
a) A zoomed-in view of the hydrogen bonding between His12 and Asn11 in RNase A. 

The snapshot was taken from the simulation at pH 7. b) Unprotonated fraction of His12 at 

different pH. c) Buried fraction of His12 at different pH. Definition of the buried fraction 

is given in the caption of Fig. 4. d) Occupancy of the h-bond between His12 and Asn11 at 

different pH.
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Figure 8: Factors influencing the pKa of Cys283 in HMCK.

(a) A zoomed-in view of the h-bond environment of Cys283 (from simulation at pH 7.5). 

Cys283 thiolate can form h-bonds with the backbones and sidechains of Ser285 and Asn286. 

(b) Unprotonated fraction of Cys283 at different pH. (c) Exposure fraction (SASA relative to 

that of the model pentapeptide) at different pH. d) Occupancy of the total h-bond formation 

of Cys283 thiolate with Ser285 and Asn286 at different pH.
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Figure 9: Effect of box size on the calculated pKa′s.

The errors of the raw (a) and finite-size corrected (b) pKa of SNase with different solvent 

cushion spaces, 10 (magenta), 12 (orange), 14 (green), and 18 Å (cyan). The corresponding 

RMSE values are shown next to the legends.

Harris et al. Page 37

J Chem Theory Comput. Author manuscript; available in PMC 2023 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Harris et al. Page 38

Table 1:

Calculated and target experimental pKa values of model pentapeptides

Calc (IN)
a

Calc (REX)
b

Calc (HMR)
c

Expt
d

Asp 3.4±0.09 3.3±0.10 3.6±0.07 3.7

Glu 4.2±0.04 4.3±0.02 4.2

His 6.5±0.12 6.5±0.02 6.3±0.03 6.5

Hie
e 7.0±0.11 7.1±0.02 6.9±0.01 7.0

Hid
f 6.7±0.12 6.7±0.03 6.4±0.03 6.6

Cys 8.4±0.03 8.6±0.01 8.5

Lys 10.3±0.01 10.3±0.01 10.0±0.01 10.4

a
Independent pH simulations, whereby each simulation was conducted for 20 ns and repeated three times.

b
Three sets of pH replica-exchange simulations of 10 ns/replica.

c
Three sets of pH replica-exchange simulations of 10 ns/replica with the HMR scheme and 4-fs timestep. All pKa′s and errors were calculated 

from bootstrap.

d
Expt refers to the NMR derived pKa′s of the model pentapeptides from Thurlkill et al.65 The His tautomer pKa′s are those estimated by 

Tanokura based on the NMR data of a model compound.64

e
Hie refers to the pKa associated with Hip Hid.

f
Hid refers to the pKa associated with Hip Hie.
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Table 2:

Calculated and experimental pKa′s of benchmark proteins
a

Residue Expt Calc CHM Residue Expt Calc CHM Residue Expt Calc Residue Expt Calc

BBL SNase Thioredoxin RNase A

Asp129 3.9 3.5 3.7 His8 6.5 6.6 n.d. Glu6 4.9 4.1 Glu2 2.6 1.0

Glu141 4.5 4.0 4.3 Glu10 2.8 2.9 3.2 Glu13 4.4 4.0 Glu9 4.0 4.3

His142 6.5 5.8 5.4 Asp19* 2.2 2.5 3.3 Asp16 4.2 3.8 His12 6.0 4.3

Asp145 3.7 3.2 3.4 Asp21* 6.5 5.6 6.0 Asp20 3.8 3.1 Asp14 1.8 2.3

Glu161 3.7 4.0 4.0 Asp40 3.9 2.6 2.9 Asp26 8.1 7.7 Asp38 3.5 2.8

Asp162 3.2 2.9 2.7 Glu43 4.3 3.6 4.1 His43 n/d 5.4 His48 6.1 6.5

Glu164 4.5 4.0 4.3 Glu52 3.9 4.3 4.7 Glu47 4.3 4.1 Glu49 4.7 4.1

His166 5.4 4.2 4.1 Glu57 3.5 4.2 4.1 Glu56 3.2 3.4 Asp53 3.7 3.4

RMSE 0.62 0.66 Glu67 3.8 3.4 4.0 Asp58 5.2 6.8 Asp83 3.3 3.4

HEWL Glu73 3.3 3.0 3.6 Asp60 2.7 3.5 Glu86 4.1 5.1

Glu7 2.6 2.9 3.2 Glu75 3.3 3.1 2.7 Asp61 3.9 4.2 His105 6.5 5.9

His15 5.5 4.3 4.0 Asp77 <2.2 −0.2 <−0.0 Asp64 3.2 2.3 Glu111 3.5 3.6

Asp18 2.8 2.7 2.9 Asp83 <2.2 0.3 0.0 Glu68 5.1 4.0 His119 6.5 5.7

Glu35 6.1 6.9 7.1 Asp95 2.2 3.4 3.0 Glu70 4.8 3.8 Asp121 3.0 2.9

Asp48 1.4 1.5 0.9 Glu101 3.8 4.2 4.7 Glu88 3.6 2.9 RMSE 0.81

Asp52 3.6 5.6 5.6 His121 5.2 5.0 / Glu95 4.1 3.9 HMCK

Asp66 1.2 1.5 1.1 Glu122 3.9 3.6 4.4 Glu98 3.9 3.8 Cys283 5.6 6.7

Asp87 2.2 2.3 2.3 Glu129 3.8 5.0 5.5 Glu103 4.5 4.0

Asp101 4.5 5.0 5.2 Glu135 3.8 2.2 2.9 RMSE 0.71

Asp119 3.5 2.9 3.5 RMSE 0.76 0.80

RMSE 0.83 0.92 All Max
2.0

RMSE
0.76

MUE
0.61

a
CHM column contains the pKa′s from the CHARMM PME-CpHMD simulations with finite-size corrections for Asp, Glu, and His (∼−0.5 for 

BBL; ∼−0.9 for HEWL/SNase).10 Experimental data are taken from ref69,70 for BBL, ref71 for HEWL, ref55 for SNase, ref72 for thioredoxin, 

ref73 for RNaseA, and ref74 for HMCK. Glu56 of thioredoxin has two reported pKa′s, 3.2 and 5.1, and former was used to calculate the error. For 

coupled residues (indicated by an asterisk), the macroscopic stepwise pKa′s (from experiment and simulations) are listed.
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Table 3:

Effect of simulation box size on the calculated pKa values of SNase
a

Residue Expt Raw Corr Raw Corr Raw Corr Raw Corr ΔBox

Lcus(Å)
Lbox(Å)

10
67.6

12
70.6

14
75.5

18
83.5

H8 6.5 7.3 6.6 7.1 6.5 7.0 6.5 7.0 6.7 −0.3

E10 2.8 3.7 2.9 3.5 2.8 3.5 2.9 3.1 2.7 −0.6

D19 2.2 3.2 2.5 3.6 3.0 3.4 3.0 3.1 2.8 −0.1

D21 6.5 6.3 5.6 6.5 5.9 7.1 6.6 6.4 6.1 0.1

D40 3.9 3.3 2.6 2.9 2.3 2.5 2.0 2.6 2.3 −0.7

E43 4.3 4.4 3.6 4.4 3.7 4.3 3.7 4.1 3.7 −0.3

E52 3.9 5.1 4.3 5.2 4.5 4.9 4.3 4.8 4.4 −0.3

E57 3.5 5.0 4.2 5.1 4.4 5.2 4.6 4.4 4.0 −0.6

E67 3.8 4.2 3.4 4.1 3.4 4.0 3.5 3.7 3.3 −0.5

E73 3.3 3.8 3.0 3.6 3.0 3.3 2.8 3.1 2.7 −0.7

E75 3.3 3.9 3.1 3.3 2.6 3.9 3.3 3.4 3.0 −0.5

D77 <2.2 0.5 −0.2 0.6 0.0 0.5 −0.1 0.4 0.1 -

D83 <2.2 1.0 0.3 2.1 1.5 <0.0 <0.0 <0.0 <0.0 -

D95 2.2 4.1 3.4 4.1 3.5 3.8 3.3 3.2 2.9 −0.9

E101 3.8 5.0 4.2 4.9 4.2 4.7 4.2 4.6 4.2 −0.4

H121 5.2 5.7 5.0 6.1 5.6 5.7 5.2 5.8 5.5 0.1

E122 3.9 4.4 3.6 4.1 3.4 4.1 3.5 4.1 3.7 −0.3

E129 3.8 5.8 5.0 5.8 5.1 5.5 5.0 5.4 5.0 −0.4

E135 3.8 3.0 2.2 3.4 2.7 3.0 2.5 3.0 2.6 0.0

RMSE 1.0 0.76 1.0 0.80 0.97 0.80 0.76 0.70

MUE 0.86 0.61 0.81 0.67 0.80 0.60 0.62 0.58

a
Box size is represented by the solvent cushion space (Lcus), i.e., minimum distance (10, 12, 14, and 18 Å) between the protein heavy atoms and 

edges of the water box, and the length of a cubic box (Lbox) converted from the average system volume. The columns Raw and Corr refer to 

the pKa′s before and after the finite-size corrections (see Methods). The column ΔBox refers to the raw pKa difference between the largest and 

smallest boxes.
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