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Introduction
There have been multiple incidents of respiratory problems 
reported in Wuhan, Hubei Province, China, following the viral 
outbreak in December 2019.1 Coronavirus disease 2019 
(COVID-19) was later revealed to be induced by a novel coro-
navirus,2,3 which was thereafter labeled severe acute respiratory 
syndrome coronavirus-2 (SARS-CoV-2).4 At the outset of the 
epidemic in China, human-to-human transmission occurred 
mainly between relatives and friends who had close contact 
with patients or carriers;5-7 afterward, community transmission 
was observed.

As the primary infection site, SARS-CoV-2 actively spreads 
in the lungs. This active proliferation causes a flood of inflam-
matory cytokines, which, if not reduced, contribute to the 
worsening of the disease pathology.8,9 The ongoing SARS-
CoV-2 outbreak was declared a pandemic by the World Health 
Organization (WHO) on March 12, 2020.10 As of March 7, 
2023, there had been 759,408,703 reported cases worldwide, 
with 6,866,434 deaths ( John Hopkins Center [ JHC]),11 
whereas Mauritania has declared 63,439 confirmed cases and 
997 deaths. On March 13, 2020, the first case of COVID-19 in 
Mauritania was reported in the country’s capital, Nouakchott, 

from an individual who had traveled to Italy. In less than 
2 weeks (March 15–29, 2020), there was an alarming increase 
in the number of positive polymerase chain reaction (PCR) 
tests as the number of cases increased exponentially. A state of 
health emergency has been declared to combat the spread of 
the virus.

The availability of vaccines and the strategy developed by 
the Ministry of Health to combat the pandemic has shown a 
distinct drop in the number of positive cases detected per day. 
As of April 11, 2023, the number of vaccinated individuals has 
reached 447.82 million who have taken the first dose, 5.11 bil-
lion who have taken the second dose, and 2.74 billion who have 
taken the booster dose.12

The continuing emergence of new variants in the world 
highlights the need to strengthen local sequencing capacity 
and genomic surveillance in low-setting regions for coordi-
nated national and regional responses to SARS-CoV-2 
infection and pandemics. However, there are still limited 
data on the genomic sequence of SARS-CoV-2 variants cir-
culating in such countries, including Mauritania, a country 
on the Atlantic coast of Africa forming a geographic and 
social bridge between North Africa and the westernmost 
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component of sub-Saharan Africa. This study aims to detect 
mutation profiles and phylogenetic lineages of circulating 
SARS-CoV-2 variants in Mauritania as a representative 
country of that region. Our analysis provided genomic evi-
dence for the spread of different lineages of SARS-CoV-2, 
including AY.34.1, B.1.525 (initially detected in Nigeria and 
the United States, and carrying the E484K mutation and 2 
deletions in the spike protein found in the 501Y.V1 variant), 
B.1.620, and B.1.1.318 (with the E484K mutation and a 
substitution in position 681 of the spike protein), in 
Mauritania. This is the first genomic investigation of the 
SARS-CoV-2 virus in this country, which will shed light on 
the patterns of infections that drive the epidemic in the 
North Sub-Saharan Africa transitional region. We per-
formed variant analysis and genome-wide phylogeny of 13 
SARS-CoV-2 strains to better understand the molecular 
epidemiology of the COVID-19 outbreak in Mauritania. All 
samples were isolated from Mauritanian patients in 
Nouakchott from March 3 to May 31, 2021 (Table 1).

Materials and Methods
Sample collection and processing

The Mauritanian-related SARS-CoV-2 genomes used in this 
study were sequenced on an Ion Torrent GeneStudio S5 
Sequencer (Thermo Fisher Scientific, Waltham, MA, USA) at 
The National Institute of Public Health Research laboratory 
(INRSP, Mauritania) and deposited in the GISAID database 
(https://www.gisaid.org/) (Table 1).

Variant analysis, gene alignment, and annotation 
of the SARS-CoV-2 genomes

Variant analysis of the 13 Mauritanian SARS-CoV-2 sequences 
was performed using CoVsurver (https://www.gisaid.org/epi-
flu-applications/covsurver-mutations-app/) by mapping them 
to the Wuhan SARS-CoV-2 sequence reference (WIV04).

Phylogenomic analysis

To find closely related sequences, we used AudacityInstant, and 
the resulting sequences were aligned with the Mauritanian 
sequences using Mafft v2.10.0.13,14 We used Modeltest v0.1.715 
to find the best-fits maximum likelihood model and then fed it 
to iqtree v2.2.0.316 to construct it. ITols v4.3.3.517 was used to 
visualize the phylogenetic tree.

Results and Discussion
Phylogenetic analysis of 13 Mauritanian SARS-
CoV-2 genomes

The complete genomes of SARS-CoV-2 viruses from 13 
Mauritanian patients were sequenced and mapped against the 
EpiCoV Gisaid database, which contained approximately 
9.8 million genomes (April 2022). Using AudacityInstant, we 
found a total of 1017 SARS-CoV-2-related genomes from dif-
ferent countries. It thus allowed us to search the entire EpiCoV 
database for closely related sequences, providing valuable meta-
data about each related sequence, such as clade, lineage, loca-
tion, variant, and collection date (Figure 1).

Table 1.  Metadata of SARS-CoV-2 strains analyzed in this study.

SARS-CoV sample ID GISAID sequence ID Sex Age (years) Collection date Patient status

S1_NKC_04_08 EPI_ISL_11033239 Female 23 15 March, 2021 Released

S2_NKC_04_08 EPI_ISL_11033240 Male 42 16 March, 2021 Alive

S3_NKC_04_08 EPI_ISL_11033241 Male 37 22 March, 2021 Alive

S4_NKC_04_08 EPI_ISL_11033242 Male 39 22 April, 2021 Alive

S5_NKC_04_08 EPI_ISL_11033243 Female 8 22 April, 2021 Alive

S6_NKC_03_08 EPI_ISL_11033244 Male 41 29 May, 2021 Alive

S7_NKC_03_08 EPI_ISL_11033245 Male 33 31 May, 2021 Alive

S8_NKC_03_08 EPI_ISL_11033246 Male 7 months 31 May, 2021 Alive

S9_NKC_25_08 EPI_ISL_11033247 Male 46 31 May, 2021 Alive

S10_NKC_25_08 EPI_ISL_11033248 Male 29 2 June, 2021 Alive

S11_NKC_25_08 EPI_ISL_11033249 Male 57 2 June, 2021 Alive

S12_NKC_25_08 EPI_ISL_11033250 Female 41 16 October, 2021 Released

S13_NKC_25_08 EPI_ISL_11033251 Male 48 23 October, 2021 Hospitalized

Abbreviation: SARS-CoV-2, severe acute respiratory syndrome coronavirus-2.

https://www.gisaid.org/
https://www.gisaid.org/epiflu-applications/covsurver-mutations-app/
https://www.gisaid.org/epiflu-applications/covsurver-mutations-app/
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The expanded family tree is divided into 7 clades that 
accordingly correspond to the major SARS-CoV-2 strain 
types GR, GRY, GH, GK, G, S, V, L, and O. The 3 strain 
types G, GR, and GH are distributed worldwide. They first 
appeared in February 2020, according to GISAID, where the 
G strain is the original clade from which both the GH and 
GR strains descended.18 The analysis showed that the 

Figure 1.  Overview of the closest related SARS-CoV-2 genomes. (A) The different countries that are closely related to the most prevalent SARS-CoV-2 

sequences, including the Mauritanian sequences, the SARS-CoV-2 strains identical to the Mauritanian strains, and the different lineages of the most 

frequent mutations detected in these sequences similar to the Mauritanian strain, which confirms that the Mauritanian strain comes from different origins. 

(B) The interval between the collection date and submission to the GISAID database; the value 0 to 9 indicates the distance between the downloaded 

sequences in time.
GISAID indicates Global Initiative on Sharing Avian Influenza Data; SARS-CoV-2, severe acute respiratory syndrome coronavirus-2.

Figure 2.  Related genomes of Mauritania sequence S1_NKC_04_08.

Figure 3.  Related genomes of Mauritania sequence S2_NKC_04_08.

Figure 4.  Related genomes of Mauritania Sequence S3_NKC_04_08.

Mauritanian isolates were grouped into 4 independent clades. 
The sequence Sample ID: S1_NKC_04_08 (Figure 2) clusters 
with sequences from the USA GISAID ID EPI_ISL_4965219 
in the GR clade.

The Mauritanian sequences (Sample IDs: S2, S3, S4, S5, 
S12, S13) (Figures 2 to 5, 12, and 13), which are grouped 
together in the GK clade, are similar to those from Switzerland/
Zurich (GISAID ID: EPI_ISL_3507737), the United States 
(GISAID ID: EPI_ISL_7236215), Belgium/Antwerpen 
(GISAID ID: EPI_ISL_8202826), and France (GISAID ID: 
EPI_ISL_3477828) (Figures 6 to 8).

In the G-type strain, 4 Mauritanian sequences are clustered 
together (Sample IDs: S6, S7, S8, S9, S11) (Figures 9 to 13) 
with other Mauritanian sequences not included in this study 
(GISAID ID: EPI_ISL_11380685, EPI_ISL_11033244, 
EPI_ISL_11380682), Senegal/Dakar (GISAID ID: EPI_
ISL_8528458), and Cote d’Ivoire/Bouake (GISAID ID: EPI_
ISL_3545640) sequences.
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Figure 5.  Related genomes of Mauritania sequence S4_NKC_04_08.

Figure 6.  Related genomes of Mauritania Sequence S5_NKC_04_08.

Figure 7.  Related genomes of Mauritania sequence S12_NKC_25_08.

Figure 8.  Related genomes of Mauritania Sequence S13_NKC_25_08.

Figure 9.  Related genomes of Mauritania sequence S6_NKC_03_08.

Figure 10.  Related genomes of Mauritania Sequence S7_NKC_03_08.

Figure 11.  Related genomes of Mauritania sequence S8_NKC_03_08.

Figure 12.  Related genomes of Mauritania Sequence S9_NKC_25_08.

Figure 13.  Related genomes of Mauritania sequence S11_NKC_25_08.

Figure 14.  Related genomes of Mauritanian sequence S10_NKC_25_08.
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Another sequence isolated from a patient in Mauritania 
(Sample ID: S10) (Figure 14) was grouped with a sequence 
from Senegal/Dakar (GISAID ID: EPI_ISL_8528001) in the 
GRY clade.

Finally, a comparison of the Mauritanian sequence collected 
on May 21, 2020 (Sample ID: S6) (Figure 9) and the sequence 
collected on February 28, 2021 (GISAID ID: EPI_
ISL_11380685) showed that the strains spread in Mauritania 
did not undergo major mutations, also reconfirming the spread 
of the virus by local community infection (Extended data, 
Phylogenetics Tree).19 Because it was deposited after this work 
was completed, this sequence was not included in the overall 
analysis.

According to phylogenetic analysis, the viral outbreak in 
Mauritania was most likely the consequence of various intro-
ductions. We had several independent Mauritanian presenta-
tions, mainly from Europe and Africa. Robust statistical 
inferences are hampered by the limited number of genomes; 
nonetheless, the findings of this study provide an important 
understanding of the dynamics of the early introductions and 
local transmission of SARS-CoV-2 in Mauritania.

Variant analysis

The analysis of alterations that occurred at the amino acid level 
showed different mutations (Figure 15), of which 0.39% were 
known, whereas 2 unique mutations were found (Table 2): (1) 
F “NSP6_Q208K” mutation, representing a 73-nucleotide gap 
from the “G” clade, ie, the D614G protein spike variant, sug-
gesting increased human host infectivity and virus transmis-
sion efficiency20 and (2) “NSP15_S273T” mutation, consisting 
of a 3-nucleotide insertion with a gap of 13 nucleotides from 
the “GK” clade. NSP15, a coronavirus-specific uridine-specific 
endoribonuclease, is processed to avoid detection by host 

defense mechanisms.21 Recent research suggests that, rather 
than being involved in viral RNA synthesis, NSP15 nuclease 
activity is important in evading host immune responses.22-25 
Yuan et al26 found the same unique mutations that character-
ized the Mauritanian samples, but the positions of the muta-
tions were different.

Effect of Amino Acid Changes on the Spike Protein
Angiotensin-converting enzyme 2 (ACE2) is a functional 
receptor for coronaviruses through interaction with the virus 
spike protein and has been defined as a membrane-bound ami-
nopeptidase.27-29 We evaluated the effect of amino acid 
changes in the newly detected mutations (NSP6_Q208K and 
NSP15_S273T) in the SARS-CoV-2 genomes of strains col-
lected in Mauritania on spike protein conformation and the 
impact of these mutations on the virus-host relationship 
(Figure 15).

Conclusions
Multiple spatiotemporal introductions of SARS-CoV-2 in 
Mauritania were revealed employing phylogenetic analysis and 
variant network analysis of SARS-CoV-2 genome sequences 
isolated from Mauritanian COVID-19 patients, most of which 
originated from Europe and Africa. These findings also 
showed that early community transmission occurred. A total of 
6 lineages have been reported to be present in Mauritania, and 
2 unique mutations have been detected: one in the NSP6 gene 
suggesting significantly increased human host infectivity and 
virus transmission efficiency and one in the NSP15 gene 
involved in the process of avoiding detection by host defense 
mechanisms. However, due to the absence of demographic and 
clinical data on the sequences of the majority of Mauritanian 
isolates, we were unable to draw possible associations between 
mutations and the clinical effects of the strains, whereas the 

K417N, N440K, G446S,S477N, T478K, E484A, Q493R, G496S, Q498R, N505H,L212I,H69delV70del(69) T95IG142D

V143delY144del(143)Y145del(143)N211del A67 V ins21 4EPE G339D S3 71 L S373P S375FT547KD614G H655Y

N679K(674) P681H(674) N764K D796Y N856K D936YQ954H N969K L981F

Figure 15.  The 3-dimensional structure of the SARS-CoV-2 spike glycoprotein in its interaction with human ACE2 reveals key amino acid substitutions. 

The green section depicts the ACE2 receptor and how changes in the spike protein affect the binding affinity between the SARS-CoV-2 spike receptor 

binding domain (RBD) and human ACE2. The structure displays a list of variations (nearest residue if in the loop/termini region). The figure was created 

employing the CoVsurver app from Gisaid.org.



6	 Bioinformatics and Biology Insights ﻿

Ta
b

le
 2

. 
Li

st
 o

f d
iff

er
en

t a
lte

ra
tio

ns
 a

t t
he

 a
m

in
o 

ac
id

 le
ve

l o
f S

A
R

S
-C

oV
-2

 g
en

om
e 

se
qu

en
ce

s 
is

ol
at

ed
 in

 M
au

rit
an

ia
.

S
A

R
S

-C
o

V
 

sample






 ID

G
IS

A
ID

 ID
Length







 
(nt


)

Length






 

(aa


)
%

 
M

utations








%
 U

ni
q

ue


 
mutations










%
 E

x
isting





 

mutations









C

omment








U
ni

q
ue


 

mutation








 list



C

lade




S
1

E
P

I_
IS

L
_1

10
3

32
3

9
29

 8
0

4
97

0
3

0.
29

%
0.

0
0%

0.
29

%
N

S
8

_
E

10
6

st
o

p 
re

su
lts

 in
 1

3.
2%

 tr
un

ca
tio

n 
of

 th
e 

pr
ot

ei
n 

se
qu

en
ce

. W
he

n 
co

m
pa

re
d 

w
ith

 th
e 

re
fe

re
nc

e 
W

IV
0

4 
se

qu
en

ce
, t

he
re

 is
 a

 3
0

-n
u

cl
eo

tid
e 

di
ff

er
en

ce
.

G
R

S
2

E
P

I_
IS

L
_1

10
3

32
40

29
 8

15
97

0
6

0.
3

9%
0.

0
0%

0.
3

9%
W

he
n 

co
m

pa
re

d 
w

ith
 th

e 
re

fe
re

n
ce

 W
IV

0
4 

se
qu

en
ce

, t
he

re
 

is
 a

 3
-n

uc
le

ot
id

e 
in

se
rt

io
n.

 W
he

n 
co

m
pa

re
d 

w
ith

 th
e 

re
fe

re
nc

e 
W

IV
0

4 
se

qu
en

ce
, t

he
re

 is
 a

 1
2-

nu
cl

eo
tid

e 
g

ap
.

G
K

S
3

E
P

I_
IS

L
_1

10
3

32
41

29
 8

23
97

0
6

0.
3

9%
0.

0
0%

0.
3

9%
W

he
n 

co
m

pa
re

d 
w

ith
 th

e 
re

fe
re

n
ce

 W
IV

0
4 

se
qu

en
ce

, t
he

re
 

is
 a

 3
-n

uc
le

ot
id

e 
in

se
rt

io
n.

 W
he

n 
co

m
pa

re
d 

w
ith

 th
e 

re
fe

re
nc

e 
W

IV
0

4 
se

qu
en

ce
, t

he
re

 is
 a

 1
2-

nu
cl

eo
tid

e 
g

ap
.

G
K

S
4

E
P

I_
IS

L
_1

10
3

32
42

29
 8

14
97

0
5

0.
3

5%
0.

0
0%

0.
3

5%
W

he
n 

co
m

pa
re

d 
w

ith
 th

e 
re

fe
re

n
ce

, t
he

re
 is

 a
 1

3
-n

u
cl

eo
tid

e 
g

ap
.

G
K

S
5

E
P

I_
IS

L
_1

10
3

32
4

3
29

 8
22

97
0

5
0.

42
%

0.
0

0%
0.

42
%

W
he

n 
co

m
pa

re
d 

w
ith

 th
e 

re
fe

re
n

ce
 W

IV
0

4 
se

qu
en

ce
, t

he
re

 
is

 a
 3

-n
uc

le
ot

id
e 

in
se

rt
io

n.
 W

he
n 

co
m

pa
re

d 
w

ith
 th

e 
re

fe
re

nc
e 

W
IV

0
4 

se
qu

en
ce

, t
he

re
 is

 a
 1

5
-n

u
cl

eo
tid

e 
g

ap
.

G
K

S
6

E
P

I_
IS

L
_1

10
3

32
4

4
29

 8
0

0
97

0
0

0.
26

%
0.

0
0%

0.
26

%
W

he
n 

co
m

pa
re

d 
w

ith
 th

e 
re

fe
re

n
ce

 W
IV

0
4 

se
qu

en
ce

, t
he

re
 

is
 a

 3
0

-n
uc

le
ot

id
e 

g
ap

.
G

S
7

E
P

I_
IS

L
_1

10
3

32
4

5
29

 7
32

9
6

9
9

0.
22

%
0.

0
0%

0.
22

%
W

he
n 

co
m

pa
re

d 
w

ith
 th

e 
re

fe
re

n
ce

 W
IV

0
4 

se
qu

en
ce

, t
he

re
 

is
 a

 7
3

-n
uc

le
ot

id
e 

g
ap

.
G

S
8

E
P

I_
IS

L
_1

10
3

32
4

6
29

 7
9

9
97

0
0

0.
25

%
0.

0
0%

0.
25

%
W

he
n 

co
m

pa
re

d 
w

ith
 th

e 
re

fe
re

n
ce

 W
IV

0
4 

se
qu

en
ce

, t
he

re
 

is
 a

 3
0

-n
uc

le
ot

id
e 

g
ap

.
G

S
9

E
P

I_
IS

L
_1

10
3

32
47

29
 7

3
3

9
6

9
9

0.
23

%
0.

0
0%

0.
23

%
W

he
n 

co
m

pa
re

d 
w

ith
 th

e 
re

fe
re

n
ce

 W
IV

0
4 

se
qu

en
ce

, t
he

re
 

is
 a

 7
3

-n
uc

le
ot

id
e 

g
ap

.
G

S
10

E
P

I_
IS

L
_1

10
3

32
4

8
29

 8
28

97
0

4
0.

32
%

0.
0

0%
0.

32
%

T
he

 p
ro

te
in

 s
eq

ue
n

ce
 is

 7
8.

5%
 tr

un
ca

te
d 

w
he

n 
N

S
8

_Q
27

 is
 

st
o

pp
ed

. W
he

n 
co

m
pa

re
d 

w
ith

 th
e 

re
fe

re
n

ce
 W

IV
0

4 
se

qu
en

ce
, t

he
re

 is
 a

n 
18

-n
u

cl
eo

tid
e 

g
ap

.

G
R

Y

S
11

E
P

I_
IS

L
_1

10
3

32
49

29
 7

32
9

6
9

9
0.

26
%

0.
01

%
0.

25
%

W
he

n 
co

m
pa

re
d 

w
ith

 th
e 

re
fe

re
n

ce
 W

IV
0

4 
se

qu
en

ce
, t

he
re

 
is

 a
 7

3
-n

uc
le

ot
id

e 
g

ap
.

(N
S

P
6

_Q
20

8
K

)
G

S
12

E
P

I_
IS

L
_1

10
3

32
50

29
 8

21
97

0
6

0.
41

%
0.

01
%

0.
40

%
W

he
n 

co
m

pa
re

d 
w

ith
 th

e 
re

fe
re

n
ce

 W
IV

0
4 

se
qu

en
ce

, t
he

re
 

is
 a

 3
-n

uc
le

ot
id

e 
in

se
rt

io
n.

 W
he

n 
co

m
pa

re
d 

w
ith

 th
e 

re
fe

re
nc

e 
W

IV
0

4 
se

qu
en

ce
, t

he
re

 is
 a

 1
3

-n
u

cl
eo

tid
e 

g
ap

.

(N
S

P
15

_
S

27
3T

)
G

K

S
13

E
P

I_
IS

L
_1

10
3

32
51

29
 6

62
9

6
56

0.
92

%
0.

0
0%

0.
92

%
N

S
7a

_
E

95
 s

to
p 

re
su

lts
 in

 2
2.

3%
 tr

un
ca

tio
n 

of
 th

e 
pr

ot
ei

n 
se

qu
en

ce
. W

he
n 

co
m

pa
re

d 
w

ith
 th

e 
re

fe
re

nc
e 

W
IV

0
4 

se
qu

en
ce

, t
he

re
 is

 a
 6

-n
u

cl
eo

tid
e 

in
se

rt
io

n.
 W

he
n 

co
m

pa
re

d 
w

ith
 th

e 
re

fe
re

n
ce

 W
IV

0
4 

se
qu

en
ce

, t
he

re
 is

 a
 

16
6

-n
u

cl
eo

tid
e 

g
ap

.

G
K

A
bb

re
vi

at
io

ns
: G

IS
A

ID
, G

lo
ba

l I
ni

tia
tiv

e 
on

 S
ha

rin
g 

A
vi

an
 In

flu
en

za
 D

at
a;

 S
A

R
S

-C
oV

-2
, s

ev
er

e 
ac

ut
e 

re
sp

ira
to

ry
 s

yn
dr

om
e 

co
ro

na
vi

ru
s-

2;
 W

IV
04

, W
uh

an
 S

A
R

S
-C

oV
-2

 s
eq

ue
nc

e 
re

fe
re

nc
e.



Abdelmalick et al	 7

lack of access to a large number of local isolates at the moment 
of this analysis hinders robust statistical conclusions. 
Nonetheless, the findings of this study provide intriguing 
insights into how the virus was initiated in Mauritania, as well 
as foundational knowledge for comprehending the dynamics of 
the virus’s early establishment and community transmission in 
Mauritania.
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