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Abstract

Analyzing proteins from single cells by tandem mass spectrometry (MS) has recently become 

technically feasible. While such analysis has the potential to accurately quantify thousands 

of proteins across thousands of single cells, the accuracy and reproducibility of the results 

may be undermined by numerous factors affecting experimental design, sample preparation, 

data acquisition and data analysis. We expect that broadly accepted community guidelines and 

standardized metrics will enhance rigor, data quality and alignment between laboratories. Here we 

propose best practices, quality controls and data-reporting recommendations to assist in the broad 

adoption of reliable quantitative workflows for single-cell proteomics. Resources and discussion 

forums are available at https://single-cell.net/guidelines.

New approaches and technologies for experimental design, sample preparation, data 

acquisition and data analysis have enabled the measurement of several thousand proteins in 

small subpopulations of cells and even in single mammalian cells1-11. These developments 

open exciting new opportunities for biomedical research12, as illustrated in Fig. 1. In some 

systems, subpopulations of molecularly and functionally similar cells can be isolated and 

analyzed in bulk, which allows for deeper proteome coverage. Other systems, however, 

do not allow for such isolation due to continuous (rather than discrete) phenotypic states 

or due to unknown cell states or markers13,14. Such systems require single-cell analysis; 

it is particularly needed for discovering new cell types15 and for investigating continuous 

gradients of cell states, which has already benefited from single-cell MS proteomics6,16-18. 

Furthermore, when a large number of single cells are analyzed, the joint distributions of 

protein abundances enable new types of data-driven analysis (Fig. 1) that may support 

inferences with minimal assumptions12,19.

Despite these promising prospects, single-cell MS is sensitive to experimental and 

computational artifacts that may lead to failures, misinterpretation or substantial biases 

that can compromise data quality and reproducibility, especially as the methodologies 

become widely deployed. To minimize biases and to maximize quantitative accuracy and 

reproducibility of single-cell proteomics, we propose initial guidelines for optimization, 

validation and reporting of single-cell proteomic workflows and results.

The tandem MS methods for single-cell bottom-up proteomics span a range of techniques13, 

including multiplexed and label-free methods, both of which can be performed by 

data-dependent acquisition1,20 and data-independent acquisition (DIA)7,10. The initial 

recommendations presented here are relevant to all these methods, and we will note 
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any exceptions. Our initial recommendations for experimental design, data evaluation and 

interpretation, and reporting are intended to stimulate further community-wide discussions 

that mature into robust, widely adopted practices. Imaging and top–down MS methods are 

also advancing and reaching single-cell resolution21,22, although they differ substantially 

from MS-based bottom–up proteomic methods and are outside the scope of these 

recommendations.

Experimental design

Best practices for single-cell MS proteomics can effectively build on established practices 

for bulk analysis23,24. Common best practices include staggering biological treatments, 

sample processing and analytical batches so that sources of biological and technical 

variation can be distinguished and accounted for during result interpretation. Similarly, 

randomization of biological and technical replicates and batches of reagents during sample 

processing (for example, mass tags for barcoding) are recommended to minimize potential 

artifacts and to facilitate their diagnoses. We also recommend including appropriately 

diluted bulk samples as technical quality controls. The following specific issues are relevant 

for the design of single-cell proteomic measurements.

Single-cell isolation

A primary goal of sample preparation should be to preserve the biological state of cells 

with minimal perturbations. This can be challenging for tissues and for adherent cell 

cultures as cell isolation may require vigorous dissociation or detachment procedures. 

Extracting single cells from tissue samples in some cases may require enzymatic digestion 

of proteins, which may cleave the extracellular domains of surface proteins. Potential 

artifacts arising from these manipulations should be considered and may be minimized 

by using more gentle dissociation procedures, such as chelation of cations stabilizing 

extracellular protein interactions. Dissociated single cells should be thoroughly washed to 

minimize contamination of MS samples with reagents used for tissue dissociation.

While proteins are generally more stable than mRNA25, most good practices used for 

isolating cells for single-cell RNA sequencing (scRNA-seq) and flow cytometry26, such 

as quick sample processing at low temperature (4 °C), are appropriate for proteomics as 

well. Timing and other parameters of the cell-isolation procedure may be impactful and 

therefore should be recorded so that technical effects associated with sample isolation can 

be accounted for in downstream analysis. We recommend collecting as much phenotypic 

information as possible from cells prepared and isolated in the same manner, including 

cellular images and any relevant functional assays that can be performed. Such phenotypic 

data allow for orthogonal measures of cell state to be combined with MS data and thus to 

strengthen biological interpretations. While isolating single cells of interest, we recommend 

also collecting bulk samples from the same cell population (if possible). Having such bulk 

samples will allow for the inclusion of positive controls and for benchmarking; these two 

topics will be discussed more in sections below.
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Many studies have used flow cytometry for isolating cells from a single-cell 

suspension9,10,16,27. Flow cytometry can perform very well, as indicated by the successful 

results of such studies. Yet, in the absence of high-performing sorters and expert operators, it 

may be one of the least robust steps of the workflow5. Thus, verifying the ability to robustly 

isolate individual cells by flow cytometry may save much time from troubleshooting 

downstream analysis steps. Studies have also isolated single cells by cellenONE28,29, and it 

supports gentler and more robust isolation than flow cytometry, which is particularly helpful 

with primary cells18.

When analyzing the proteomes of single cells from tissues, the spatial context should be 

characterized as best as possible, including both the location of each cell in the tissue and 

the extracellular matrix around it. Although a great area of interest, such single-cell MS 

proteomic analyses are in their infancy. Feasible approaches for spatial analysis include 

tissue sectioning by cryotome and laser-capture microdissection (LCM), which can be used 

to extract individual cells30. LCM has been used for spatially resolved extraction and 

subsequent MS analysis of tissue regions31. The application of plexDIA and isotopologous 

carriers7,32 are showing promise to extend this analysis to single cells extracted by LCM33. 

We recommend avoiding the use of protocols that require cleanup from detergents for tissue 

disruption and instead prefer methods using only MS-compatible reagents.

Reducing contamination

Minimizing sources of contaminating ion species that disproportionately affect the analysis 

of small samples is critical for single-cell proteomic measurements. Contaminating ions 

can result from many sources, including reagents used during sample preparation, impure 

solvents, extractables and leachables from sample contact surfaces, and especially carryover 

peptides from previous single-cell or bulk runs that may persist within liquid handling, 

instrument components, capillaries and stationary phases, such as needle-washing solutions 

and column-retained analytes in liquid chromatography (LC) and reservoirs in capillary 

electrophoresis. Typically, only about 1% of peptides persist on C18 column resin following 

a run, and they may appear in subsequent runs as a carryover ‘ghost’ signal34. Fortunately, 

these carryover peptides generally make a quantitatively insignificant contribution to 

consecutive samples of comparable amounts.

However, when bulk samples are interspersed with single-cell runs, carryover peptides from 

these bulk samples may substantially contaminate or even dwarf the peptide content derived 

from the single cells. Thus, contaminants from bulk sample runs are often incompatible with 

quantitative single-cell analysis on the same LC–MS system. Before analyzing single-cell 

samples, analytical columns must be evaluated rigorously and deemed free of carryover, 

as previously described5,27. Other non-peptidic contaminants, such as leached plasticizers, 

phthalates and ions derived from airborne contaminants, often appear as singly charged 

ions and can be specifically suppressed by ion-mobility approaches7,27,35 or, in the case of 

airborne contaminants, by simple air-filtration devices, for example, an active background 

ion reduction device (ABIRD)5.
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Because the ratio of sample-preparation volume to protein content is significantly increased, 

the amount of reagents to protein content is also significantly increased when preparing 

single cells individually. Thus, reducing sample-preparation volumes mitigates the effect 

of contaminant ions originating from reagents such as trypsin or mass tags2,36. Indeed, 

reducing sample-preparation volumes to 2–20 nl proportionally reduces reagent amounts per 

single cell compared to multiwell-based methods, which in turn reduces the ion current from 

singly charged contaminant ions6.

Sample preparation

Ideally, sample preparation should consist of minimal steps designed to minimize sample 

handling, associated losses and the introduction of contaminants. For bottom–up proteomic 

analyses, workflows must include steps of cell lysis–protein extraction and proteolytic 

digestion. Given the picogram levels of protein present in a single cell, it is crucial 

to minimize contaminants and maximize sample recovery for downstream analysis. 

Fortunately, the composition and geometries of single cells isolated from patients and 

animals lend themselves to disruption under relatively gentle conditions, such as a freeze–

heat cycle5,37,38 or nonionic surfactants39,40. Such clean lysis methods are preferable 

over MS-incompatible chemical treatments (for example, sodium dodecyl sulfate or urea) 

that require loss-prone cleanup before MS analysis41. It can be beneficial to miniaturize 

processing volumes to the nanoliter scale to minimize exposure to potentially adsorptive 

surfaces2,6, although such approaches may have limited accessibility. By contrast, sample 

preparations using low-microliter volumes offer broadly accessible options16,37,42 and are 

described in detailed protocols5,38.

Regardless of the selected preparation workflow, it is recommended that cells be prepared 

in batches that are as large as possible to minimize technical variability in sample handling. 

To this end, several liquid-handling tools have been successfully coupled with single-cell 

proteomic workflows to increase throughput and reduce technical variability. In particular, 

the Formulatrix MANTIS and the Opentrons have been adapted for 384-well-plate-based 

sample preparation5,37,42. The cellenONE system has also been employed for several 

automated protocols using microfabricated multiwell chips2,28,43 or using droplets on glass 

slides29. We expect this landscape to continuously evolve toward increased consistency and 

throughput of sample handling.

Maximizing sample delivery to mass analyzers

For sample-limited analyses, it is especially important to maximize ionization efficiency (the 

fraction of gas-phase ions created from solution-phase molecules) and the transmission of 

those ions to the mass analyzer. Lower volumetric flow rates produce smaller, more readily 

desolvated charged droplets at the electrospray source, leading to increased ionization 

efficiency44,45. As such, reducing the flow rate of separations from hundreds to tens of 

nanoliters per minute can increase measurement sensitivity, but currently these gains must 

be achieved with custom-packed narrow-bore columns and may compromise robustness and 

measurement throughput20. Maximizing separation efficiency is also important, as narrower 
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peaks increase the concentration of eluting peptides and simplify the mixture entering the 

mass spectrometer at a given time.

A number of commercial nanoLC systems and columns provide a reasonable combination 

of sensitivity and efficiency for single-cell proteomics, and these are recommended for 

most practitioners. Alternative high-resolution separation techniques employing orthogonal 

separation mechanisms, for example, capillary electrophoresis and ion mobility, as well 

as multidimensional techniques may potentially be employed as front-end approaches in 

MS-based single-cell proteomics11,46. Increasing ion transmission in the mass spectrometer 

is generally the purview of instrument developers and companies, and future gains in this 

area are expected to further benefit single-cell proteomics.

Lastly, when injecting samples for analysis by LC–MS, because of the low protein amount, 

it is often desirable to inject the entire sample. If the samples are resuspended in too small 

of a volume, the autosampler may miss portions of the sample or may inject air into the 

lines, which adversely affects chromatography. Thus, we recommended striking the correct 

balance of suspension volume that prevents air injections and maximizes sample delivery. 

This balance depends partially on the autosamplers, sample vials and their shape and size. 

One implementation shown to perform robustly includes injecting one-microliter samples 

from 384-well plates5,6,18.

Controls

Experimental designs should provide an estimate of quantitative accuracy, precision and 

background contamination. Precise measurements may arise from reproducing systematic 

biases, such as integration of the same background contaminants. Measurement precision 

can therefore be assessed by repeat measurements. By contrast, benchmarking measurement 

accuracy requires positive controls, that is, proteins with known abundances. One approach 

to benchmarking is incorporating into the experimental design samples with known 

quantitative values to assess quantitative accuracy. These controls may be derived from 

independent measurements based on fluorescent proteins or well-validated affinity reagents. 

Other positive controls include spike-in peptides18, proteins or even proteomes in predefined 

ratios as performed for LFQbench experiments47.

When cells from clusters consisting of different cell types can be isolated, the relative 

protein levels of the isolated cells may be quantified with validated bulk assays and 

used to benchmark in silico averaged single-cell estimates, an approach used by multiple 

studies5,9,16,18,29. A positive control for sample preparation may include bulk cell lysates 

diluted to the single-cell level. Estimating protein amounts corresponding to single cells is 

challenging, and thus we recommend starting with cell lysate from precisely known cell 

numbers (for example, estimated by counting cells with a hemocytometer) and performing 

serial dilution to the single-cell level5. Negative control samples, which do not contain single 

cells, should be processed identically to the single-cell samples. Such negative controls are 

useful for estimating cross-labeling, background noise and carryover contaminants.
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When matching between runs (MBR) is used to propagate sequence identification, MBR 

controls should be included. Empty samples contain few ions, if any, that may be associated 

with incorrect sequences. Thus, using empty samples may lead to underestimating MBR 

false discoveries. MBR may be evaluated more rigorously by matching samples containing 

either mixed-species proteomes or samples containing single-species proteomes and then 

estimating the number of incorrectly propagated proteins. Such MBR controls (samples of 

mixed yeast and bacterial proteomes or only yeast proteomes) have been used to benchmark 

sequence propagation within a run7, and similar standards should be used for benchmarking 

MBR. While MBR is best evaluated in each study with samples designed to reflect the 

analyzed proteomes, the field may benefit from preparing community reference samples that 

were analyzed in multiple laboratories and used for benchmarking MBR algorithms.

Batch effects

Systematic differences between groups of samples (biological) and analyses (technical) may 

lead to data biases, which may be mistaken for cell heterogeneity, and thus complicate 

result interpretation or sacrifice scientific rigor. To estimate and correct batch effects, 

treatments and analytical batches must be randomized whenever possible48. We recommend 

that treatment and batches are randomized so that batch effects can be corrected (estimate 

and remove batch effects from data) or modeled (for example, include batch effect as 

a covariate in models). When randomization is not performed, biological and technical 

factors may be fundamentally inseparable. For experiments in which randomization was 

not performed, downstream statistical analyses should include the batch information as 

covariates. These considerations are similar to those for bulk experiments, which have 

been previously described49. Furthermore, we recommend that all batches include the same 

reference sample, which can be derived from a bulk sample diluted close to a single-cell 

level.

Statistical power

Studies should be designed with sufficient statistical power, which depends on effect sizes, 

on measurement accuracy and precision, and on the number of single cells analyzed per 

condition. Simple experiments with large effect sizes, such as analyzing different cell lines, 

can achieve adequate statistical power with a few dozen single cells. Such experiments were 

common as proof-of-principle studies demonstrating analytical workflows. By contrast, 

experimental designs including primary cells, smaller effect sizes (for example, protein 

variability within a cell type6) or multiple treatment groups or patient cohorts require a much 

larger number of single cells and patients to achieve adequate statistical power50-52.

Methods for MS data acquisition

Existing methods can be grouped into label free, which analyze one cell per sample, and 

multiplexed, which analyze multiple cells per sample. Label-free methods benefit from 

simpler sample preparation, while multiplexed methods benefit from analyzing more cells 

per unit time5. When multiplexing is performed by isobaric mass tags, quantification is 

adversely affected by the co-isolation and co-fragmentation of precursors. This co-isolation 
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can be mitigated by targeting the apexes of elution peaks and using narrow isolation 

windows16,18. The co-isolation artifacts on quantification can be overcome by performing 

quantification on peptide-specific and sample-specific ions, as in the case of plexDIA, which 

multiplexes cells with non-isobaric mass tags7,53. Isobaric mass tags have been used in 

combination with a carrier sample, which reduces sample losses and facilitates peptide 

sequence identification54. This approach has raised concerns as high carrier amounts may 

allow confident peptide identification without sampling sufficient peptide copies from the 

single cells to achieve precise quantification55,56. To address these concerns, multiple groups 

have converged on guidelines for balancing the precision and throughput of single-cell 

analysis using isobaric carriers55,56.

Cross-validation using different MS methods

We recommend, when possible, cross-validating protein measurements with different 

methods that share minimal biases. Often, such cross-validation may be performed using 

the same MS instruments, and the results may be directly reported and compared in the same 

paper. Such cross-validation studies are particularly useful for supporting new and surprising 

biological results.

As an example, Leduc et al.6 observed a gradient of phenotypic states and protein 

covariation within a cluster of melanoma calls not primed for drug resistance. The authors 

cross-validated these observations by analyzing biological replicates of the melanoma 

cells both by isobaric multiplexing with pSCoPE18 and by non-isobaric multiplexing with 

plexDIA7. The results from the two methods were directly compared and reported in 

parallel so that the degree of biological and technical reproducibility can be evaluated6. 

Cross-validation analysis can also benefit from using different sample-preparation methods 

or enzymes for protein digestion. In such cross-validation analyses, quantitative trends 

supported by multiple methods and biological replicates are more likely to reflect biological 

signals rather than method-specific artifacts.

Method selection and optimization

The MS methods and their parameters should be selected depending on the priorities of the 

analysis. Maximizing the number of cells analyzed is best achieved with short separation 

times and multiplexed methods57. Maximizing the proteome depth is best achieved with 

longer separation methods, while maximizing the number of copies sampled per protein is 

best achieved with MS1-based methods and longer ion-accumulation times7,36. Multiple 

objectives, such as increased consistency, dynamic range and coverage, may best be 

simultaneously optimized with intelligent data-acquisition strategies18,36,57,58. The size of 

the isobaric carrier used can also help emphasize project priorities, such as depth of 

proteome coverage versus copy number sampled per peptide55,56. Choosing optimal method 

parameters can be time consuming, and software for systematic, data-driven optimization 

can speed up such optimizations59.
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Data evaluation and interpretation

Defining and evaluating reproducibility

Data reproducibility and evaluation can be performed at several levels of increasing 

difficulty, namely, repeating, reproducing and replicating60. Repeating a computational 

experiment or an analysis simply consists of using the exact same data, code, software 

and environment (typically the same computer), assuming that these are still available. 

Reproducing an experiment or analysis is an attempt by a different person that will mimic 

the original setup by downloading data and code, without necessarily having access to the 

same software environment. Replication represents a further challenge in which the results 

are to be obtained using new code, implementation and/or software; it is only possible with 

extensive and detailed description of the performed analyses. This description must include 

the versions of all software and databases used as well as all search parameters, ideally 

saved as structured documents, for example, xml.

Batch effects and cellular uniqueness

Two factors should be considered when reproducing single-cell protein measurements. First, 

no two cells are identical. Thus, we may reasonably hope to reproduce clusters of cells 

and trends (such as protein-abundance differences between cell types or cell states) but not 

the exact molecular levels for each analyzed cell. Second, batch effects may increase the 

apparent level of reproducibility (when biases are shared between replicates, such as peptide 

adhesion losses or co-isolation) or decrease it (when biases differ between replicates, such 

as protein-digestion biases). Thus, assessments and reports of reproducibility need to be 

specific about precisely what is being reproduced and how this may be impacted by batch 

effects originating from all steps, from cell isolation to data processing.

Evaluating quantitative accuracy

Quantitative accuracy is a measure of how closely the measurements correspond to known 

true values, as in the case of proteomes mixed in experimenter-determined ratios (Fig. 

2a). When the true abundances are not known, evaluating accuracy is not possible and 

is sometimes confused with repeatability or precision. Yet, these quantities can be quite 

different as illustrated in Fig. 2a. Similarly, high correlation between replicates may be 

interpreted as evidence that the measurements are quantitatively accurate. This interpretation 

is wrong: many systematic errors may lead to erroneous measurements that are nonetheless 

very reproducible. Thus, reproducibility alone is insufficient to evaluate data quality.

Because single-cell proteomics pushes the limits of sensitivity for MS-based measurements, 

the quality of measurements depends on the number of ions measured from each single-cell 

population55,56. For example, if too few ions are sampled, the stochasticity of sampling 

results in counting noise, that is, low-precision estimates and technical variation in estimated 

protein abundances, which should be clearly distinguished from biological variability36. 

Mixing ratios of 1:1 can be used to evaluate ion sampling and precision but not accuracy 

because this ratio is not sensitive to systematic biases, such as co-isolation and interference. 

Accuracy can be evaluated relative to ground truth ratios, as created by mixing the 

proteomes of different species in known ratios7,47.
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As described in the cross-validation section, MS methods that share minimal biases (for 

example, quantifying precursors at the MS1 level versus quantifying reporter ions at the 

MS2 level) can also help reduce biases. This approach can include relative quantification 

from established bulk methods if the analyzed cell types can be isolated as bulk samples, 

as demonstrated with cell lines7,9,16. On a smaller scale, accuracy may be estimated for 

a limited number of proteins by spiking corresponding peptides at known ratios18 or by 

using measurements that are as independent as possible; such independent measurements 

include fluorescent proteins, the abundance of which is measured fluorometrically1, or 

immunoassays with high specificity, such as proximity ligation assays that enhance 

specificity by using multiple affinity reagents per protein61.

Quantitative precision and accuracy are different metrics, the importance of which is 

highly dependent on the analysis. For example, cell clustering benefits from high-precision 

measurements and may tolerate low quantitative accuracy. By contrast, protein covariation 

analysis6,19 and biophysical modeling12 are more dependent on quantitative accuracy. Thus, 

benchmarks should clearly distinguish between accuracy and precision and focus on the 

metric that is more relevant to the biological goals of the analysis.

Comparisons between absolute protein intensities conflate variance due to protein-

abundance variation across the compared samples (conditions) and across different proteins 

and may result in misleading impressions62. For example, the high correlation between the 

proteomes of T cells and monocytes in Fig. 2b may be interpreted as indicating that the two 

proteomes are very similar. Yet, many proteins differ in abundance reproducibly between 

T cells and monocytes (Fig. 2c). Thus, correlations between estimates of absolute protein 

abundance should not be used as benchmarks for relative protein quantification.

Evaluating quantitative consistency

Outside of carefully designed benchmarking experiments, the true protein abundances are 

unknown, and thus the accuracy of quantification cannot be directly benchmarked. However, 

it is often possible to evaluate the reliability of MS measurements based on comparing the 

quantitative agreement between (1) different peptide fragments from the same peptide (Fig. 

2d) or (2) different peptides originating from the same protein.

For example, the internal consistency of relative quantification for a peptide may be assessed 

by comparing the relative quantification based on its precursors and fragments, as shown 

for single-cell plexDIA data in Fig. 2d. The degree of (dis)agreement may be quantified 

by the coefficient of variation (CV) for these estimates. Similarly, the CV estimated from 

the relative levels of different peptides originating from the same protein may provide a 

useful measure of reliability. This analysis is limited by the existence of proteoforms63,64 

but nonetheless may provide useful estimates of data quality. Note that this CV is very 

different from the CV computed using absolute peptide intensities or the CV computed 

between replicates. In the latter case, when comparing CVs across different analytical or 

experimental conditions, it is imperative to account for varying dataset sizes; that is, a 

rigorous comparison between experimental methods would rely on peptides and proteins 

identified and quantified across all samples, rather than also including peptides and proteins 

identified uniquely in individual experiments59.
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Accounting for biological and technical covariates

Single cells differ in size and thus protein content. Consequently, cell size is a major 

confounder for the differences in protein intensities between cells6. The basic normalization 

strategy here consists of subtracting from log-transformed protein quantities the respective 

medians across the proteins quantified16. However, this normalization can be undermined if 

the subset of quantified proteins varies substantially across single cells. Such variation may 

stem from differences in total protein amounts between cells or experimental variability, 

which may lead to differences in the numbers of missing values and proteins accurately 

quantified. In case of such variation, normalization should be based on a common subset of 

proteins or against a common reference, as described by Franks et al.62. Thus, processing of 

single-cell MS proteomic data is likely to be improved in the future with the development 

of more advanced normalization strategies, which may build upon those developed for 

scRNA-seq experiments65 to mitigate similar challenges. To compensate for imperfect 

normalization, we suggest including a variable representative of the cell size, such as total 

protein content estimated from LC-MS data or forward scatter from flow cytometry, as a 

covariate in downstream analyses.

Managing missing data

One of the common challenges in analyzing single-cell data is handling the presence of 

missing values48,66. These tend to be more prevalent in single-cell proteomics than in typical 

bulk experiments as some proteins may be below the limit of detection (especially in smaller 

cells) or may not be sent for MS2 analysis in every single cell. The latter problems can 

be fundamentally resolved by using DIA or prioritized data acquisition, and such methods 

substantially increase data completeness7,18,32.

The missing data are a source of uncertainty that should be propagated through the analysis 

and ultimately reflected in the final conclusions. Many analyses may be conducted using 

only the observed data (without using imputed values), which assumes that the observed 

data are representative of the missing data. Yet, it is often desirable to impute missing 

values as this enables additional downstream analysis and may allow for explicit modeling 

of the missingness mechanisms. Indeed, imputation should take into account the nature 

of missing data (for example, missing at random or not at random67) in determining 

appropriate imputation methods. The type of missingness is determined by the mechanism 

leading to missing values, which depends on the algorithm for peptide sampling during mass 

spectrometric analysis. Shotgun methods using the topN heuristic introduce missing values 

that are more likely to occur at random, as they originate from the stochastic selection of 

precursors for MS2 scans. By contrast, DIA and prioritized methods send precursors for 

MS2 scans deterministically, and most missing values likely correspond to peptides below 

the limit of detection rather than those missing at random.

Comprehensive imputation methods for single-cell proteomics are yet to be developed 

and benchmarked, but recommendations developed for bulk proteomic methods may serve 

as useful guides67-69. While some recently developed methods for scRNA data may be 

adapted to proteomics, ultimately, the field needs methods that are specifically tailored 

to the mechanisms leading to missing peptides and proteins. Multiple imputation can be 
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used to quantify uncertainty in the results for a given missing data method. Although 

computationally demanding, it is also prudent to impute using different missing data 

models to further characterize the sensitivity of the results to unverifiable assumptions 

about the missingness mechanism. A simple example of this strategy would be to perform 

downstream data analysis, such as principal-component analysis (PCA), on the imputed data 

and compare the results to the analysis performed on the unimputed data16,18. Results that 

are insensitive to different types of imputation models are more reliable, while those that are 

contingent on the validity of a particular assumption about missingness should be viewed 

with more skepticism.

Dimensionality reduction

High-dimensional single-cell data are often projected onto low-dimensional manifolds to 

aid visualization and to denoise data. While such projections can be useful, the reduced 

data representations are incomplete approximations of the full data and often lose aspects 

of the data, as illustrated in Fig. 2e by projecting a three-dimensional dataset into different 

two-dimensional projections. As such, different low-dimensional projections may selectively 

highlight certain aspects of the data while obscuring others (Fig. 2e). At worst, they may 

severely distort the original data70. Thus, we recommend using dimensionality reduction 

as an initial data-analysis step that requires further scrutiny. Conclusions derived from 

reduced data representations, such as clustering of cells, should be validated against the 

high-dimensional data. The validation can be as simple as computing and comparing 

distances between cells in a higher-dimensional space, as demonstrated with macrophage 

clusters defined based on single-cell RNA and protein data71.

While dimensionality-reduction representations can be useful for visualization, clustering 

of cell types in low-dimensional manifolds is inadequate for benchmarking quantification. 

Such representations indicate whether the cells cluster in a low-dimensional space, but they 

indicate little about the factors, whether biological or technical, that could be driving the 

clustering. More fundamentally, low-dimensional data reductions often account for only a 

fraction of the total variance in the data and thus may exclude relevant sources of biological 

variability (Fig. 2e). Some methods, such as PCA, better preserve global distances and are 

thus more amenable to interpretation, as opposed to their non-linear counterparts, such as 

t-distributed stochastic neighbor embedding (t-SNE)72 or uniform manifold approximation 

and projection (UMAP)73; in these two latter methods, the separation between cell types 

is sensitive to various tuning parameters, which may introduce subjectivity. Furthermore, 

only the small distances within clusters are interpretable. Thus, when results, such as cluster 

assignment, are based on a low-dimensional manifold, we additionally recommend showing 

the corresponding distances in higher-dimensional space, for example, as distributions of 

pairwise distances between single cells within and across clusters71.

When dimensionality reduction is used for clustering cells, we recommend including 

positive controls. These controls may be bulk samples composed of purified cell types (if 

such isolation is possible) from the same population as the single cells of interest. Such 

positive controls should be prepared in tandem with the single cells. Next, both positive 

controls and single cells can be projected simultaneously on the low-dimensional manifold. 
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This type of analysis provides useful evidence for evaluating clustering16,18 patterns: the 

degree to which the positive controls and the single cells of the same type cluster together 

indicates the consistency of the measurements. To further determine whether sample 

preparation is driving any clustering, we also recommend evaluating whether principal 

components correlate with technical covariates (such as batches, missing value rate or mass 

tags) and correcting for these dependencies if needed.

Managing and propagating uncertainty

As discussed above, assumptions about missing data and the application of dimensionality-

reduction methods can substantially influence the final conclusions. Thresholds, such as 

filters for excluding single cells due to failed sample preparation or for excluding peptides 

due to high levels of interference, can also influence the results16,48. Such choices should 

be based on objective grounds, such as true and false discovery rates derived from controls. 

For example, negative controls allow establishing objective filters for failed single cells 

as already implemented in multiple pipelines7,16,48. When thresholds are set based on 

subjective choices, this should be explicitly stated, and the choices should be treated as a 

source of uncertainty in the final results. The sensitivity of the results to all experimental and 

methodological choices should clearly be conveyed.

Interpreting features of single-cell proteomic data

Algorithms underlying peptide identification have evolved along with technological 

advances in data generation to use the increasing set of features from bulk proteomic 

data. Features measured at the single-cell level may differ substantially from those of 

corresponding bulk samples as lowly abundant fragments may not be detected and other 

fragments may have lower signal relative to background noise74. Mitigating these challenges 

may benefit from directed efforts dedicated to developing robust models trained on features 

that have the greatest discriminatory power at the single-cell-level input. These models may 

incorporate additional features with search engine results, as implemented by mokapot75 and 

DART-ID76. To guard against false identifications, we recommend scrutinizing any peptides 

identified in single cells but not identified in larger bulk samples from the same biological 

systems. Such identifications are likely incorrect, especially for DIA experiments. Thus 

the spectra supporting them (for example, extracted ion current) should be examined and 

data-analysis methods should be reassessed.

To improve proteome coverage, new search engines may be designed and optimized to 

exploit regular patterns in the data, such as the precisely known and measured mass shifts 

in the precursors and fragments of plexDIA data77,78. Indeed, current single-cell proteomic 

MS methods are capable of measuring tens of thousands of peptide-like features; however, 

only a small fraction (between 1% and 10%) of these features are assigned sequences at 

1% FDR20,56,77. Anticipated models that successfully address these unique challenges will 

enable identification rates to approach those of bulk experiments and extend the utility of 

single-cell proteomics in biomedical research32,77.
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Reporting standards

The goal of reporting is to enable other researchers to repeat, reproduce, assess and build 

upon published data and their interpretation79. While reproduction and replication do not 

guarantee accuracy, they build trust in the analysis process through verifiability, thus 

strengthening confidence in the reported data and results. Replication requires sufficient 

documentation of metadata, and a good starting place for reporting metadata are formats 

developed for bulk MS data23,80, including those specifically for proteomic data81 and those 

prepared by journals82,83 and societies84, as well as for scRNA-seq data85. Nonetheless, 

single-cell MS proteomic data have additional aspects that should be reported, which are 

the focus of our recommendations. Below, we document what we believe is essential 

information needed to provide value to single-cell proteomic data, metadata and analysis 

results.

Experimental design and method description

We recommend that the detailed design of the experiments should be reported, which 

includes treatment groups, number of single cells per group, sampling methods and analysis 

batches (Fig. 3). The experimental design may be reported as a table listing each analyzed 

single cell on its corresponding row and each descriptor in its corresponding column. 

Specifically, columns document biological and technical descriptors, that is, variables that 

describe the biology of the measured cells and technical factors that are likely to influence 

the measurements.

Biological descriptors should contain sample type (such as single cell, carrier, empty or 

control sample) and biological group, such as treatment condition or patient or donor 

identifier, cell line, organism and organ or part of origin (if cells from multiple organisms 

or multiple organs are assayed) and biological characteristics for multisample and/or 

multicondition studies. When available, additional biological descriptors may include the 

cell type and/or cell state (for example, their spatial and temporal information in tissues), 

physical markers (for example, pigmentation, measured by flow cytometry), cell size and 

aspect ratio. These descriptors apply only to single-cell samples and thus will remain empty 

for some samples, such as negative controls. Note that some of these descriptors might 

be known before data acquisition (such as cell types based on different cell cultures or 

following from flow cytometry sorting) or be the results of downstream analyses (such as 

cell types or cell states inferred from clustering or differential abundance analysis).

Technical descriptors should include the raw data file names (Box 1) and acquisition dates, 

as well as variables describing the underlying technical variability. These descriptors include 

all batch factors related to cell isolation, sample preparation, peptide and protein separation 

(chromatography or electrophoresis batches), operator(s) and instruments, and mass tags (in 

case of labeled quantitation). Such a sample metadata table allows for quality control, for 

example, by enabling verification that the number of rows in the table matches the number 

of cells reported in the paper and that the number and names of raw data files extracted from 

the table are compatible with the files in the data repositories (see Box 1). We encourage 

researchers to document additional descriptors when needed, such as variables defining 

subsets of cells pertaining to distinct analyses.
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This sample metadata table should be complemented by a text file (often called README) 

that further describes each of these descriptors and the overall experiment. An example 

README file is included in Supplementary Note 1 to facilitate standardization and data 

reuse. The README file should contain a summary of the study design and the protocols. 

The measurement units of descriptors (such as micrometers for cell sizes) should also 

be documented in the README file, as opposed to encoding them as a suffix in the 

descriptor’s name.

Data and code sharing

Ideally, raw and processed MS data should be shared using open formats, such as 

HUPO Proteomics Standards Initiative community-developed formats dedicated to MS 

data: mzML86 for raw data, mzIdentML87 for search results and mzTab88 or text-based 

spreadsheets for quantitative data. When binary formats from proprietary software are 

provided, they should be converted into an open and accessible format as well when 

possible. Raw data files and search results should be made available through dedicated 

repositories, such as PRIDE81 and MassIVE89.

Code repositories, such as GitLab or GitHub90, are ideal to store and share code, 

scripts, notebooks and, when size permits, quantitative data matrices. When these become 

too large to be stored directly with the scripts that generate them, they should be 

made available in institutional or general-purpose open repositories, such as Zenodo or 

Open Science Framework, or on publicly available cloud storage. The latter, however, 

requires a commitment by the data provider to keep the data public. The README 

file (Supplementary Note 1) containing the description of the experimental design and 

the different locations holding data should be provided in all these locations. The 

manuscript material and method section and/or the supplementary information should 

provide experiment identifiers and links to all the external data and metadata resources.

While these data-sharing recommendations apply broadly to proteomic experiments, some 

are specific to single-cell proteomics (such as single-cell isolation) and some are made more 

important because of the aim to analyze tens of thousands of single cells per experiment57. 

Such sample sizes are required to adequately power the analysis of dozens of cellular 

clusters and states across many treatment conditions and individuals. The large sample 

sizes, in turn, considerably increase the importance of reporting batches, including all 

variations in the course of sample preparation and data acquisition, as well as the known 

phenotypic descriptors for each single cell. These reporting recommendations expand the 

essential descriptors in the metadata. Large study sizes also heighten the importance of 

reporting datasets from intermediate processing steps, such as search results and peptide × 

cell matrices, to reduce the computational burden on reproducing individual steps from the 

analysis.

Sharing data is necessary but insufficient for replication data reuse. Any analysis of data is 

likely to require the associated metadata. Furthermore, the exact processing of data should 

be documented and shared as it can profoundly influence the final results that are used 

to infer biological interpretations. Data processing can hardly (and should not need to) be 
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retro-engineered from the result files. Therefore, annotated scripts or notebooks used to 

process, prepare and analyze the data should be provided with the data.

Using software for standardizing workflows across laboratories facilitates reporting. 

Examples of such workflows include the scp R–Bioconductor package48,91, the sceptre 

Python package9, the SCoPE2 pipeline16,92 or the Scripts and Pipelines for Proteomics93. 

Packages that allow comparing structured and repeatable data processing, including 

evaluating different algorithms for a processing step, provide further advantages48,91. 

Software platforms that support exporting the commands and parameters used should be 

strongly preferred because audit log and/or parameter files can help tracking and later 

reproducing the different processing steps, including software and the versions used at each 

step. We strongly advise against using non-reproducible software given the difficulty in 

capturing their operation.

Result reporting

Given the rapid evolution of the field, specific description of the methods should be favored 

over simply referring to other publications using ‘as previously analyzed in ref.’. When 

reporting results, it should be made clear which data the result refers to. This is, for 

example, crucial when reporting CVs when CVs on log-transformed data are lower than 

those on the linear scale. CVs can be used to quantify very different quantities, such as 

repeatability between MS runs or consistency of protein quantification based on different 

peptides, and thus the exact quantity must be explicitly specified. Similarly, researchers 

should systematically report major features of the data that influence the results and how 

these were observed and addressed throughout the data analysis. These typically include 

missing values and batch effects. Reproducibility requires going beyond the minimalist 

‘material and method’ sections that often fail to describe the processing of samples and data 

to enable their replication.

Often, studies include several sets of raw, identification and quantitation files, addressing 

different research questions, such as different instruments or MS settings, different cell 

types or growth conditions, and different individuals. A single dump of all files makes data 

reuse challenging. In such situations, it is advisable to split the file in different folders, 

following a consistent structure. The high-level README file, already mentioned above, 

should describe what each of these folders correspond to, and each folder should contain its 

own README file describing its content in detail and the specific points that these sets of 

files aim to address.

As described above, data-acquisition strategies are inextricably linked to both the number 

of proteins quantified and the quality of quantitation in single-cell proteomic experiments. 

While the reporting of MS acquisition details is not necessarily required for data reanalysis, 

acquiring similar data could be impractical or impossible if key details are not reported. This 

is even more evident with the rise of intelligent data-acquisition strategies that often have 

more advanced, non-standard parameters or use third-party (non-vendor)-supplied software. 

Luckily, most raw data files report the parameters used for analysis and some vendors 

have enabled method generation from a raw data file. However, for instances in which 

third-party software makes real-time decisions that alter mass spectrometer operation, the 
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software should be made available to the broader research community. Ideally this software 

would be open source. If it needs to be delivered as a compiled executable, the underlying 

algorithms should be described in such a way that others could reproduce a similar method. 

Furthermore, the reporting of parameters relevant to the decisions made in real time as well 

as the output of real-time decisions would ideally be provided. These considerations would 

enable faster implementation in laboratories attempting to replicate published results on their 

own instrumentation.

Conclusions and perspectives

These reporting guidelines might give the impression that a lot of additional work is 

expected when reporting on studies according to our recommendations, many of which 

apply to all proteomic studies. Yet, the recommendations merely highlight good scientific 

practice to be implemented continuously, starting when the research is designed, when 

the data are acquired, processed and eventually interpreted. When so implemented, they 

become habits enabling robust research rather than a burden to be addressed at the end of 

the research project. Data, metadata and analysis documentation and reporting happen at 

different stages of the analysis process and rely on each other. The investment that we are 

suggesting here is simply work that is spread across the research project, rather than extra 

work done at the very end of it94.

We believe that the adoption of guidelines for performing and reporting single-cell 

proteomic studies by the scientific community and their promotion by journals and 

data archives is essential for establishing solid foundations for this emerging field. The 

suggested reporting standards will facilitate all levels of replication and thus promote the 

dissemination, improvement and adoption of single-cell technologies and data analysis. 

Sound data evaluation and interpretation will further promote the reuse of single-cell 

proteomic data and results outside of the laboratories that currently drive the domain and 

increase secondary added value of our experiments and efforts.

We hope and expect that the initial guidelines offered here will evolve with the advancement 

of single-cell proteomic technologies77, the increasing scale and sophistication of biological 

questions investigated by these technologies and the integration with other data modalities, 

such as single-cell transcriptomics, spatial transcriptomics, imaging, electrophysiology, 

prioritized MS approaches and post-translational-modification-level and proteoform-level 

(that is, top–down) single-cell proteomic methods. We invite the community to discuss these 

guidelines and contribute to their evolution. We hope to facilitate such broader contributions 

via an online portal at https://single-cell.net/guidelines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BOX 1

Despite its apparent simplicity, file naming deserves thoughtful 
consideration

Files names should be unique (unlikely to be used in other studies) and linked to the 

measurements in the file; additional good practices are summarized in ref. 96. We suggest 

thinking about file naming and file-naming conventions to easily identify groups of 

files pertaining to specific metadata elements or experiments. A systematic file-naming 

convention allows files to be both machine and human readable and searchable. File 

names should avoid using any special characters and use the same character (such as a 

dash or an underscore, rather than spaces) to separate the different elements of the file 

names. If using dates to list files chronologically, the YYYYMMDD format should be 

used. Finally, these naming conventions and any abbreviations used as part of the file 

names need to be documented in the main README file; see an example provided as 

Supplementary Note 1.
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Fig. 1 ∣. Emerging applications of single-cell proteomics by MS.
Single-cell proteomic measurements can define cell type and cell state clusters9, support 

pseudotime inference, link protein levels to functional phenotypes, such as phagocytic 

activity18, quantify protein covariation and apply it to study protein complexes1,6,19, analyze 

protein conformations95 and quantify protein modifications, such as phosphorylation and 

proteolysis5,6,18. Furthermore, integrating protein and RNA measurements from the same 

biological systems (as in refs.1,16) allows inferring transcriptional and post-translational 

regulation1,16 and investigating the covariation of transcription factors and downstream 

target transcripts16. Dim, dimension; PC, principal component.
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Fig. 2 ∣. Evaluating and interpreting single-cell proteomic data.
a, Quantitative accuracy of protein ratios between samples A and B measured by label-free 

DIA analysis relative to the corresponding mixing ratios denoted by dotted lines7. Some 

proteins are quantified with high precision but low accuracy (for example, ribosomal protein 

L8 (RPL8)), while others are quantified with high accuracy and low precision (for example, 

RelA). E. coli, Escherichia coli. The proteomes of T cells and monocytes correlate strongly 

(b) despite the fact that many proteins are differentially abundant between the two cell 

types (c). Data for b,c are from Specht et al.37. d, Extracted ion chromatograms (XIC) 

from single-cell MS measurements by plexDIA for a peptide from the high mobility group 

protein A1 (HMGA1). Such data allow quantifying peptides at both MS1 and MS2 levels, 

which can be used to evaluate the consistency and reliability of the quantification. This 

example data from Derks et al.7 show that relative levels estimated from precursors (peach 

color) agree with the relative levels estimated from the corresponding summed-up fragments 

(green color). At both MS1 and MS2 levels, three estimates are obtained based on the 

three scans closest to the elution peak apex. The fold changes are between pancreatic 

ductal adenocarcinoma (PDAC) and monocyte (U-937) cells. e, Different dimensionality-

reduction methods approximate the data in different ways. We simulated three-dimensional 

data for three cell states, where one cell state (green) progressively diverges to two 

distinct cell states (blue and red, top left). Projecting the data to two dimensions loses 

information. Specifically, PCA loses the non-linear cycling effect and mixes early (green) 

and intermediate (gray) cells, t-SNE does not correctly capture the distances between the 

three populations, and diffusion maps do not capture the noise in the data and compress the 

early state cells. DC1 and DC2 correspond to diffusion components 1 and 2. The code for 

this simulation is available at github.com/SlavovLab/SCP_recommendations.
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Fig. 3 ∣. Suggested descriptors of single-cell proteomic samples.
Metadata should include the experimental design table with rows corresponding to single 

cells and columns corresponding to the required and optional features listed here (an 

example is provided as source data). Attributes provided in parentheses are given as 

examples or for clarification. The green shading highlights required descriptors, while gray 

shading includes a non-exhaustive list of optional descriptors, which may also include 

spatial (for example, position in tissues) and temporal information for the cells when 

available. The descriptors (and their units, when relevant) should be documented in the 

experiment’s dedicated README file.
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