

HHS Public Access

Author manuscript Ann N Y Acad Sci. Author manuscript; available in PMC 2023 April 26.

Published in final edited form as:

Ann N Y Acad Sci. 2020 February ; 1461(1): 104–126. doi:10.1111/nyas.14211.

Incretins in obesity and diabetes

Chee W. Chia, M.D.,

Josephine M. Egan

Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland

Abstract

Incretins are hormones secreted from enteroendocrine cells after nutrient intake that stimulate insulin secretion from β cells in a glucose-dependent manner. Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the only two known incretins. Dysregulation of incretin secretion and actions are noted in diseases such as obesity and diabetes. In this review, we first summarize our traditional understanding of the physiology of GIP and GLP-1, and our current knowledge of the relationships between GIP and GLP-1 and obesity and diabetes. Next, we present the results from major randomized controlled trials on the use of GLP-1 receptor agonists for managing type 2 diabetes, and emerging data on treating obesity and prediabetes. We conclude with a glimpse of the future with possible complex interactions between nutrients, gut microbiota, the endocannabinoid system, and enteroendocrine cells.

Keywords

incretins; GIP; GLP-1; obesity; diabetes

Introduction

The study of incretins has undergone tremendous growth over the past 50 years culminating in the use of incretin-based therapy for managing and treating two of the most pressing global public health crises: obesity and type 2 diabetes. The ability of crude extract from porcine upper intestine to lower blood glucose in humans was first reported in 1902.^{1,2} In 1932, La Barre and colleagues coined the *incretin* concept to describe as yet unknown humoral factors released from the intestine that lowered blood glucose in response to a meal.^{3,4} However, a quantitative demonstration of this phenomenon was not possible until the development of radioimmunoassay technology to assay circulating insulin three decades later.⁵ McIntyre and colleagues observed that for the same amount of glucose, the oral route of administration induced a much greater insulin secretion than did the intravenous route.^{6,7} The first incretin was described in 1973 when glucose-dependent insulinotropic polypeptide (GIP) was found to potentiate glucose-induced insulin secretion.⁸ Glucagon-like peptide-1

Address for correspondence: Chee W. Chia, M.D., Intramural Research Program, National Institute on Aging, National Institutes of Health, 3001 S. Hanover Street, NM-533, Baltimore, MD 21225. chiac@mail.nih.gov.

Competing interests

The authors declare no competing interests.

(GLP-1), the second incretin, was discovered later in 1987.^{9–11} In 1979, Creutzfeldt gave the criteria necessary to classify a substance as being an incretin: (1) has to be a gastrointestinal factor, (2) must be released by nutrients, and (3) must stimulate insulin secretion in a glucose-dependent manner at physiological levels.¹² To date, GIP and GLP-1 are the only two enteroendocrine hormones that satisfy these criteria.

In this report, we first review the classical view of the physiology of GIP and GLP-1 and the enteroendocrine cells that secrete them. We then summarize the current knowledge of the relationships between GIP and GLP-1 with obesity and diabetes, and we follow with a review of the results from major randomized controlled trials on the use of GLP-1 receptor (GLP-1R) agonists for managing type 2 diabetes and obesity. The recent advances in the area of dual incretin (GLP-1 and GIP) receptor coagonism are also addressed. We conclude with a glimpse of where this exciting field is headed with the latest findings in the possibility of the same enteroendocrine cell switching hormone expression pending local cues; and the likely complex interactions among nutrients, gut microbiota, the endocannabinoid system, and enteroendocrine cells.

Physiology of incretins

Where do GIP and GLP-1 come from and what do they do? The classical view is that when digested food reaches the intestine, it stimulates GIP and GLP-1 secretion from K and L cells, respectively. GIP and GLP-1 in turn stimulate glucose-dependent insulin secretion from β cells. Incretins are estimated to account for 50–65% of total insulin secretion after a meal.^{13,14}

Glucose-dependent insulinotropic polypeptide

Where is GIP found and how is it secreted?—GIP is a 42-amino-acid peptide first isolated from intestinal extract of pigs in 1971 and was initially named gastric inhibitory peptide for its property in dogs of inhibiting acid and pepsin secretion.¹⁵ Later, GIP was found to potentiate glucose-induced insulin secretion in rodents and humans, which was considered to be the more important function of the hormone; hence, the alternative name of "glucose-dependent insulinotropic polypeptide" was introduced.^{8,16} GIP is localized to enteroendocrine K cells mainly within the crypts and mid-zones of glands in the duodenum and to a lesser extent in the jejunum.^{17–19} The K cell density in human duodenal mucosa has been estimated at about 13 per 1000 total duodenal cells.²⁰ In addition to enteroendocrine cells, GIP protein has also been found in mammalian pancreatic α cells in the form of GIP_{1–30NH2} and is speculated to have a paracrine effect modulating islet development and function.²¹ GIP gene expression has been detected in mammalian salivary glands, eye, and brain.^{22–25} GIP secreted from cells outside of the intestinal tract is unlikely to contribute significantly to the circulating GIP levels.

In the enteroendocrine K cells, GIP secretion is regulated by intraluminal nutrients, neural stimuli, and hormones. Glucose, fat, and protein given orally or intraduodenally increase GIP secretion in a dose-dependent manner.^{26–32} Fat was found to be a more potent GIP secretagogue than isocaloric glucose.³³ Exactly how GIP secretion is regulated is still an area of active research. Perfusion studies of isolated rodent intestine showed that K

cells detect carbohydrates via the sodium-dependent glucose transporter 1 (SGLT-1).^{34,35} GIP secretion is inhibited by the SGLT inhibitor phloridzin,³⁵ while increased by alpha-methylglucopyranoside (aMG), a substrate of SGLT-1.³⁶ Taste receptor subunit agustducin, a key G-protein involved in taste sensing, was discovered in human duodenal L cells and L/K cells.³⁷ Up to 75% of enteroendocrine cells in duodenum contain both GIP and GLP-1 (K/L cells).³⁸ More than 90% of L cells contain a-gustducin, but <50% of K cells did so.³⁷ Furthermore, a-gustducin knockout mice are characterized by deficiencies in GIP and GLP-1 secretion with associated decrease in insulin responses and impaired glucose tolerance.^{37,39} Glucose and low-calorie sweeteners were reported to induce GIP secretion from enteroendocrine L cells, the NCI-H716 cell line, and GLUTag cells.^{37,39} However, human studies investigating the possible induction of GLP-1 and GIP secretion by low-calorie sweeteners have shown negative results. Most human studies have been single exposure experiments in which low-calorie sweetener is given once in the form of diet soda.^{40–43} Recently, in an observational study, regular consumption of low-calorie sweeteners was associated with greater increase in GIP secretion following an oral glucose load in humans.⁴⁴ Direct links between low-calorie sweetener use and enteroendocrine hormones in humans have not been systematically investigated, and interactions between low-calorie sweetener and gut microbiota may be involved.⁴⁵

Dietary fat, through lipid receptors, such as G_{aq} -coupled lipid receptors (GPR40 and GPR120) and G_{as} -coupled lipid receptors (GPR119), have also been shown to play an important role in regulating incretin secretion.^{46–48} Additionally, the autonomic nervous system plays a role in regulating GIP secretion because vagotomy and pyloroplasty are associated with higher GIP secretion.⁴⁹ However, altered gastric emptying following vagotomy or pyloroplasty as a cause of altered GIP secretion cannot be ruled out.⁵⁰ GIP secretion may also be under hormonal influence. Somatostatin-containing D cells are located in close proximity to K and L cells and somatostatin has been shown to inhibit GIP secretion *in vitro*⁵¹ and *in vivo*.^{52,53} Insulin and glucagon infusion has been shown to reduce intraduodenal and oral glucose-stimulated GIP secretion.^{54,55} Recently, cannabinoid receptors (CBRs) were shown to exert tonic control over GIP secretion in humans because a CBR agonist significantly increased the fasting levels of GIP in healthy men, and thus raises the possibility that gut hormones are influenced by endocannabinoids.⁵⁶

Once secreted into the circulation, GIP is degraded by dipeptidyl peptidase-4 (DPP4), which cleaves the first two amino acids (Tyr and Ala) at the N-terminus of GIP into a biologically inactive metabolite.^{57,58} DPP4 is also bound to endothelial cells of blood vessels of gut and liver, and to lymphocytes and is present in the circulation in soluble form.^{59,60} The half-life of intact GIP is 5–7 min in humans.⁵⁷ Kidney is the major site of GIP elimination.^{56,61} Intact biologically active GIP levels in both healthy subjects and diabetic subjects are similar at about 55% of the "total" GIP concentrations after a mixed meal ingestion.⁶²

Biological actions of GIP.—Once secreted, GIP activates specific GIP receptors (GIPR) on target tissues to induce physiological effects. GIPR gene expression has been found in pancreas, stomach, small intestine, adipose tissue, adrenal cortex, pituitary, heart, testis, endothelial cells, bone, trachea, spleen, thymus, lung, kidney, thyroid, and different regions of the central nervous system.^{50,59,60} In humans, high concentration of GIPR expression is

found in β , α , and pancreatic polypeptide cells.^{63,64} Global GIPR gene knockout (*Gipr^{-/-}*) mice exhibit impaired oral glucose tolerance.⁶⁵ However, pancreatic β cell-specific *Gipr^{-/-}* mice on low-fat diet were reported to have lower meal-related insulin secretion, decreased adipocyte mass, and better insulin sensitivity and glucose tolerance when compared to controls. On high-fat diet, these β cell-specific *Gipr^{-/-}* mice exhibited similar insulin profiles, glucose tolerance, and adipocyte mass compared to those of control mice.⁶⁶

The glucose-dependent property of GIP regulation of insulin secretion is well documented using hyperglycemic clamps. Under basal euglycemic state with plasma glucose around 5 mM (90 mg/dL), GIP infusion did not induce insulin secretion. With progressive hyperglycemia, GIP stimulated insulin secretion that occurred in a glucose concentrationdependent manner. Insulin secretion progressively increased when plasma glucose was increased from basal euglycemic level to 54 mg/dL above basal followed by 143 mg/dL above basal.⁶⁷ Furthermore, GIP released in response to the oral ingestion of fat does not stimulate insulin secretion unless simultaneous intravenous glucose is given to increase plasma glucose levels.^{68,69} In addition to inducing insulin secretion from β cells, GIP has been shown to increase glucagon secretion from pancreatic a cells. In isolated perfused rat pancreas, GIP increased glucagon secretion at glucose concentration less than 5.5 mM (100 mg/dL), while it increased insulin secretion at glucose levels greater than 5.5 mM.⁷⁰ Similar results have been reported in healthy humans, where GIP was found to dose-dependently stimulate glucagon secretion at basal euglycemia.⁷¹ In type 2 diabetes, however, GIP administered at a concentration five times that of physiological levels increased glucagon secretion, which offset any glucose-lowering effects of GIP through insulin secretion.⁶³

GIP has other physiological effects in addition to its insulinotropic action as suggested by the presence of GIPR on rat adipocytes and 3T3-L1 cells.⁷² GIP has been shown to increase plasma triglyceride clearance following meals, to increase lipoprotein lipase activity, and to promote fat storage by adipocytes.^{73–75} Blocking GIP signaling by genetic means as occurs in *Gipr^{-/-}* mice causes preferential oxidation of fat and results in less triglyceride deposition in liver, which eventually contributes to the suppression of hepatic glucose output and improvement in insulin sensitivity.^{75,76} However, recent data suggest that GIP may have antiobesity effects. Transgenic mice overexpressing GIP were shown to not only have improved β cell function and glucose tolerance, but also have enhanced insulin sensitivity, and were protected from high-fat diet-induced obesity.⁷⁷ Furthermore, in human adipose tissues, GIPR gene expression was negatively correlated with adiposity and positively correlated with insulin sensitivity.⁷⁸ The molecular mechanisms of action of GIPR have been reviewed in detail.^{79,80}

Glucagon-like peptide-1

Where is GLP-1 and how is it secreted?—GLP-1 is a 30-amino-acid peptide first discovered in anglerfish in 1982.^{9,10,81} In 1987, meal-induced GLP-1 secretion was found in humans, rats, and pigs.^{9,11,81} GLP-1 exists in two equally bioactive forms, glycine-extended GLP-1 (GLP-1 (7–37)) and amidated GLP-1 (GLP-1 (7–36)).^{82,83} GLP-1 is localized to L cells mainly within the crypts and mid-zones of glands with increasing density from the duodenum to the colon.⁸⁴ In addition to enteroendocrine L cells, GLP-1 protein has also

been found in the nucleus of the solitary tract of the brain stem of rats, monkeys, and humans, and in taste cells within taste buds.^{85–87} Additionally, GLP-1 production occurs in α cells within islet of Langerhans.⁸⁸

Similar to GIP, GLP-1 secretion from enteroendocrine L cells is regulated by intraluminal nutrients, neural stimuli, and hormones, and, similar to GIP, the underlying mechanisms of its secretion are still an area of active research. Oral carbohydrates and fat induce GLP-1 secretion, whereas protein does not appear to be as effective.⁸⁹ Following the ingestion of nutrients, a rise in the plasma concentration of GLP-1 is observed within minutes.⁹⁰ In healthy subjects, fasting levels of plasma GLP-1 range from 5 to 10 pmol/L and increase by two-to three-fold after meal ingestion.⁹¹ GLP-1 levels peak about 20 min after oral glucose and about 60–90 min after mixed meal ingestion, and the levels subsequently gradually decline toward fasting levels.^{60,92}

Similar to GIP, glucose-induced GLP-1 secretion involves SGLT-1, and GLP-1 secretion is ablated by SGLT inhibitor phlorizin.93 Taste receptor subunit a-gustducin, a key G-protein involved in taste sensing, was discovered in human duodenal L cells and L/K cells. As mentioned earlier, more than 90% of L cells contain a-gustducin, and a-gustducin gene knockout mice are characterized by deficiencies in GIP and GLP-1 secretion with associated decrease in insulin responses and impaired glucose tolerance.^{37,39} Glucose and low-calorie sweeteners were reported to induce GLP-1 secretion from enteroendocrine L cells, and from the NCI-H716 cell line and GLUTag cells.^{37,39} However, similar to GIP, human studies investigating the possible induction of GLP-1 secretion by low-calorie sweeteners have shown negative results. Several G protein-coupled receptors (GPCRs) have been identified in L cells: GPR40, GPR41, GPR43, GPR 119, and GPR120 are a few of the notable ones.⁸⁹ However, the role of these GPCRs in regulating GLP-1 secretion and their therapeutic potential for regulating GLP-1 secretion in humans are not clear and are an area of active research.⁸⁹ Autonomic nervous system also plays a role because both vagotomy and pharmacological ablation of vagus nerve by muscarinic receptor antagonists abolished nutrient-induced GLP-1 secretion.^{94,95} Hormones also regulate GLP-1 secretion. For example, somatostatin inhibits GLP-1 secretion.96 Intravenous infusion of GIP does not stimulate GLP-1 release in humans and at supraphysiological doses, it actually leads to the suppression of GLP-1 secretion.63,97,98

Just as with GIP, once secreted, GLP-1 is rapidly degraded by DPP4.⁵⁸ The half-life of GLP-1 is only 1–2 minutes.^{58,99} DPP 4 cleaves the N-terminal dipeptides (His⁷–Ala⁸) from GLP-1 (7–36) and renders the resulting major metabolite GLP-1 (9–36) insulinotropically inactive.^{58–60,100} Only 10–15% of endogenously released GLP-1 reaches the systemic circulation.⁸² Intact biologically active GLP-1 levels in both healthy subjects and diabetic subjects are similar at about 40–50% of the "total" GLP-1 concentrations after a mixed meal ingestion or oral glucose challenged.^{56,62} And again, analogous to GIP, GLP-1 and its metabolites are rapidly cleared via the kidneys.¹⁰¹

Biological actions of GLP-1.—Once secreted, GLP-1 exerts its activities through the GLP-1R in multiple tissues, including the pancreas, kidney, heart, lung, adipose, and smooth muscle, as well as in specific nuclei in the central nervous system. The widespread

distribution of the GLP1R throughout different tissues suggests that GLP1 has other physiological effects in addition to glucose regulation. In the pancreas, GLP-1R is expressed on β , δ , and likely a subset of α cells.^{102–104} GLP-1 stimulates insulin secretion in a glucose concentration-dependent manner at glucose level above 4.3 mmol/L (77 mg/dL).¹⁰⁵ Furthermore, GLP-1 also increases insulin gene transcription, insulin biosynthesis, and increases β cell mass by stimulating β cell proliferation and suppressing β cell apoptosis, at least in young rodents.^{106,107} Unlike GIP, GLP-1 is a strong inhibitor of glucagon secretion. This glucagon-suppression effect is also glucose concentration dependent and only occurs at glucose concentration above 3.7 mM,¹⁰⁵ and likely mediated through the direct effect on pancreatic α cells and also indirect effects through increase in somatostatin and insulin levels from neighboring δ and β cells.^{82,83}

Similar to global *Gipt*^{-/-} mice, global GLP-1R gene knockout (*Glp1t*^{-/-}) mice exhibited impaired glucose tolerance and insulin secretion following oral glucose challenge.¹⁰⁸ Following 12 weeks of high-fat diet, the impairment of glucose tolerance in *Glp1t*^{-/-} mice was more severe than that of *Gipt*^{-/-} mice.⁷⁶ β cell-specific GLP-1R knockdown mice had normal glucose tolerance after oral glucose challenge, but the response was blunted by GLP1R antagonism suggesting a role of extrapancreatic GLP-1R in glucose homeostasis.¹⁰⁹ In addition, double incretin receptor knockout mice were not impacting insulin levels during oral glucose challenge after 12 weeks of high-fat diet.⁷⁶ The complex molecular mechanism of action of GLP-1R has recently been reviewed.^{79,89,110}

In addition to the effect on the endocrine pancreas, GLP-1 has several extrapancreatic effects. Most notably and unlike GIP, through both central and peripheral actions, GLP-1 decreases appetite leading to decreased food intake and thus body weight. Centrally, GLP-1 promotes satiety through the activation of GLP-1Rs in the hypothalamus and brainstem, which causes a reduction in food intake.^{82,83} GLP-1 has been shown to decrease satiety measures and *ad libitum* food intake in a dose-dependent manner in humans.¹¹¹ Peripherally, GLP-1 has pronounced effect on gastric motility and emptying, an effect known as the "ileal brake."¹¹² The passage of nutrients into the distal small intestine, the ileum in particular, which is rich in L cells, induces GLP-1 secretion leading to delayed gastric emptying and nutrient absorption and therefore reduced postprandial glucose excursions.^{113,114}

Other extrapancreatic effects of GLP-1 may include increase in hepatic glucose uptake and decrease in hepatic glucose production. In humans, GLP-1 infusion during a pancreatic clamp study resulted in the reduction of endogenous glucose production.¹¹⁵ In dogs, GLP-1 infusion into the portal vein increased nonhepatic glucose uptake without changing insulin and glucagon levels, indicating that a hepatoportal sensor may be regulating the effect of GLP-1 on peripheral glucose metabolism.¹¹⁶ However, controversy remains over the presence of GLP-1R in adipocytes, skeletal muscle, and liver and any possible effects and their underlying mechanisms need further research.^{89,117,118}

Dual GIPR and GLP-1R activation

Under normal physiology, GIP and GLP-1 work in synchrony to regulate postprandial insulin and glucagon secretion in maintaining glucose homeostasis. However, research has mainly focusing on studying the two hormones separately, especially with the development

of GLP-1R agonists in treating type 2 diabetes. GIP had not been used for treating type 2 diabetes because of its lack of insulinotropic effect and possible glucagonotropic action in type 2 diabetes during hyperglycemia.^{63,97}

In vitro studies have shown that coadministration of GIP and GLP-1 induced a synergistic effect by measuring intracellular cyclic adenosine monophosphate levels in RINm5F insulinoma cells.¹¹⁹ Incubating isolated human pancreatic islets (both nondiabetic and diabetic human islets) with GIP alone induced greater glucose-stimulated insulin secretion than with GLP-1 alone, and the combination of both GIP and GLP-1 provided some additive effect on insulin secretion.¹²⁰ GIP and GLP-1 coinfusion studies in rodents yield mixed results in terms of glucose regulation or body weight when compared to GIP or GLP-1 alone.¹²¹ In healthy humans, acute coinfusion of GIP and GLP-1 has a synergistic effect on insulin secretion when compared with GIP and GLP-1 alone.^{122,123} However, acute coinfusion of GIP and GLP-1 in patients with type 2 diabetes did not show any added insulinotropic effect to that of GLP-1 infusion alone.¹²⁴ Recently, there has been significant interest in developing unimolecular dual agonists of GIPR and GLP-1R (dual incretin receptor) with activity at each constitutive receptor.^{125–127} This dual incretin receptor concept was recently reviewed.¹²¹

Incretin hormones in obesity and diabetes

Obesity

What happens to incretin physiology in disease states such as obesity and diabetes? GIP levels are elevated during both fasting and after oral glucose challenge in obesity.⁵⁶ Studies showed that K cell numbers are increased in small intestine of obese *ob/ob* mice compared to lean control mice.^{128,129} When *ob/ob* mice were chronically fed a high-fat diet, the density of K cells in the small intestine increased by 54% compared to control diet.¹³⁰ The increased K cell density and circulating GIP levels found in obesity might be the result of chronically increased stimuli from the gut lumen, such as an increase in gut endocannabinoid tone. Notably, rodents fed a diet high in linoleic acid, which promoted weight gain, were found to have increased endocannabinoid levels in liver and gut.¹³¹ In humans, plasma endocannabinoid levels are positively associated with GIP levels, although gut-specific endocannabinoid levels were not assessed.¹³² In healthy lean individuals, a CBR agonist, nabilone, exerted tonic control over non-stimulated GIP secretion because fasting GIP levels in the circulation were increased by 80%.⁵⁶

Disruption of GIP signaling using different animal models—G*ipr*^{-/-} mice, GIP/DT mice lacking GIP-producing cells, treatment with Pro3-GIP (a GIPR antagonist), and vaccination against GIP—appears to prevent high-fat diet-induced obesity and insulin resistance.^{75,133–136} It is clear that dietary fat is a potent stimulus to GIP secretion and GIP plasma levels are increased in obese individuals.^{56,137,138} Whether there is a causal link between increased GIP signaling and obesity in humans is not clear, however. As mentioned earlier, GIPR gene expression in human adipocytes was negatively correlated with adiposity.⁷⁸

There is no difference in fasting GLP-1 levels between lean and obese healthy subjects, but GLP-1 secretion is reduced in response to an oral glucose challenge⁵⁶ and there are reports of reduced circulating GLP-1 levels after a meal.^{139–141} The lowered GLP-1 response to luminal nutrients in obesity may also be attributed to elevated GIP and endocannabinoid tone as shown in a recent study, where increased GIP secretion due to a CBR agonist was associated with significantly reduced GLP-1 release during a glucose challenge.⁵⁶ Furthermore, exogenous GIP infusion at high doses led to a diminution in GLP-1 secretion during a mixed-meal challenge in obese subjects with type 2 diabetes.⁶³ These new findings support the conclusion that incretins are influenced by endocannabinoids.

Type 2 diabetes

Since the discovery of incretins, the status of GLP-1 and GIP secretion in response to nutrients in type 2 diabetes has been marred by inconsistent findings and conflicting data. Earlier studies reported a slight increase in GIP secretion and reduced GLP-1 secretion in type 2 diabetes.^{62,142,143} It appears that duration and state of glucose control is an important factor in incretin secretion. In newly diagnosed type 2 diabetes mellitus with relatively good glycemic control (hemoglobin A1c (A1c) ~6.9%), both GIP and GLP-1 secretion in response to oral glucose and mixed meal challenges are similar or slightly increased when compared with healthy subjects.^{20,92} However, in longstanding type 2 diabetes with poor glycemic control (A1c ~ 8–9%), the GLP-1 response is decreased, whereas GIP secretion is unchanged.^{62,143,144} Recent meta-analysis of 23 trials with 28 different stimulation tests concluded that GIP secretion in response to glucose and meals is preserved in type 2 diabetes with two caveats: high BMI is associated with increased GIP levels, while aging and higher A1c are associated with reduced GIP response.¹⁴⁵ Similar meta-analysis was done in 22 trials for GLP-1 secretion, with 29 different stimulation tests showed that type 2 diabetes in general is not associated with reduced GLP-1 secretion, except on a background of poor glycemic control.¹⁴⁶

In patients with type 2 diabetes, insulin secretion by oral glucose is no longer substantially greater than the response to intravenous glucose.¹⁴⁷ GIP and GLP-1 secretion appear not to play a causal role in this defect as their secretion has been noted to be preserved in type 2 diabetes as stated above. GIP has a more significant contribution to insulin secretion over GLP-1 in healthy humans.¹⁴⁸ In type 2 diabetes, pancreatic islets remain responsive to GLP-1 but are no longer responsive to GIP. Insulin response to exogenous GLP-1 is three- to five-fold lower in type 2 diabetes; however, acute GLP-1 administration is able to increase insulin secretion to normal levels and to lower plasma glucose effectively.^{123,149} As elimination of GLP-1 is unchanged, the reason for the reduced incretin effect in type 2 diabetes can be explained in part by reduced β cell sensitivity to GLP-1 in addition to the loss of insulinotropic activity of GIP.¹⁵⁰ Exogenous GIP, even at supraphysiological doses, has markedly reduced insulinotropic actions with little or no glucose-lowering effects in type 2 diabetes, and the metabolic consequence is compounded by increased glucagon secretion during mixed meals and hyperglycemic clamps.^{63,97,123} Animal studies suggest that exogenous GLP-1 has the ability to increase islet size, enhance β cell proliferation, inhibit β cell apoptosis, and regulate islet growth, at least in young rodents.^{106,107,151} These

effects have tremendous implication in the treatment of type 2 diabetes because they directly address one of the fundamental defects in type 2 diabetes, that is, β cell failure.

Bariatric surgeries and incretins

Several bariatric surgical techniques are designed to promote weight loss and bring about remission of type 2 diabetes. A meta-analysis of 136 studies included 22,094 patients (1846 patients were in studies with reports of diabetes resolution) who underwent various bariatric surgeries for the treatment of morbid obesity and followed for 1–3 years. Within studies showing the resolution of diabetes after bariatric surgery, the rate of diabetes resolution for laparoscopic adjustable gastric banding, vertical banded gastroplasty, Roux-en-Y gastric bypass, and biliopancreatic diversion were 48%, 68%, 84%, and 98%, respectively.¹⁵² Interestingly, another meta-analysis, which included 94,579 patients (4944 with type 2 diabetes), showed that remission rates were equivalent in patients with BMI < 35 kg/m² and patients with mean baseline BMI 35 kg/m², 72% versus 71%, respectively.¹⁵³ Eleven recent randomized controlled trials compared bariatric surgery versus medical management of type 2 diabetes in nearly 800 patients with follow-up duration of 1–5 years, and bariatric surgery achieved a superior diabetes remission rate (33–90%) compared to medical management (0–23%).¹⁵⁴

Diabetes remission after surgical manipulations of the gastrointestinal tract, Roux-en-Y gastric bypass, or biliopancreatic diversion procedure is often observed within days after surgery, even before significant weight loss occurs; whereas with gastric banding, a restrictive procedure involving placing an adjustable gastric band fitted around the stomach near the esophageal junction, diabetes remission might not occur for several months.^{155,156} The physiological and molecular mechanisms underlying the beneficial glycemic effects of bariatric surgery are complex, involve altered endocrine signaling that results from surgical manipulation of the gastrointestinal tract, and are still not completely understood.¹⁵⁶ Pories and colleagues were the first to suggest that incretins might play a role in rapid diabetes remission after gastric bypass.¹⁵⁷ It seems evident that by passing the upper small intestine and excluding it from contact with nutrients would result in the alteration in GIP and/or GLP-1 secretion. Indeed, after gastric bypass or biliopancreatic diversion surgery, postprandial GIP levels decrease, while GLP-1 levels increase, attributed to rapid gastric emptying and/or direct accelerated delivery of nutrients to the L cell-rich distal intestine.^{158–162} Although increased GIP levels are associated with obesity,^{56,163} it is not known whether decreased GIP secretion is related to diabetes remission in gastric bypass surgery because some studies reported the improvement in glucose homeostasis with increase in plasma GIP levels (1 month after surgery) or no change in plasma GIP levels (6 months after surgery) after gastric bypass surgery.^{164,165} Postprandial GLP-1 levels, however, are markedly elevated after Roux-en-Y gastric bypass and biliopancreatic diversion, and vertical sleeve gastrectomy.¹⁵⁶ Hypersecretion of GLP-1 occurs early in the first 6 months post-surgery and, in one report, normalized by 12–15 months.¹⁶⁶ The hypersecretion of GLP-1 post-surgery is critical for the improvement in β cell function and glucose homeostasis as demonstrated by the infusion of exendin-4 (9-39), a GLP-1R antagonist, which reversed this effect.¹⁶⁷ For patients who achieved sustained diabetes remission for greater than 2 years, other factors are likely involved given that GLP-1

secretion returns to normal after approximately 1 year and administration of exendin-4 (9–39) only marginally impaired postprandial glucose homeostasis despite decreases in insulin secretion.¹⁶⁸ Comprehensive reviews of the role of gut hormones after bariatric surgery are available.^{169,170}

Clinical application of GIP and GLP-1 in obesity and diabetes

Glucose-dependent insulinotropic polypeptide

Given the strong, glucose-dependent insulinotropic effect of incretins, their therapeutic potential for diabetes treatment has been vigorously pursued since their discovery. Although GIP has similar insulinotropic action to that of GLP-1, it soon became clear that GIP lacks insulinotropic and glucose-lowering effects in patients with type 2 diabetes.^{97,147,171,172} Exogenous GLP-1 but not GIP administration augmented insulin secretion in patients with type 2 diabetes.^{123,173} Furthermore, GIP has been shown to be elevated in obese individuals, as mentioned above, and to have obesogenic effect, at least in animal models.^{56,163,174,175}

In type 2 diabetes, β cells develop resistance to GIP and this GIP resistance might be improved by reducing hyperglycemia. In the VDF Zucker rat, an animal model of type 2 diabetes, GIPR mRNA and protein levels were found to be downregulated in the presence of hyperglycemia; and GIPR mRNA and protein levels, hence β cell sensitivity to GIP, were restored when high blood glucose levels were lowered with phloridzin.¹⁷⁶ In patients with type 2 diabetes, 1-month treatment with glyburide reduced blood glucose levels and increased GIP sensitivity.¹⁷⁷ A supraphysiological dose of GIP, at five-fold higher than normally observed post-meal, was shown to have a short-lived insulinotropic effect in type 2 diabetic patients, but this increase in insulin did not translate to lowering blood glucose levels as there was a concomitant glucagonotropic effect on a cells.⁶³ GIP was reported to increase glucagon secretion from the isolated perfused rat pancreas.⁷⁰ Further elucidation of the mechanism of GIP resistance and glucagonotropic effect of GIP in patients with type 2 diabetes may present a caveat to GIP as a therapeutic agent. Furthermore, with elevated GIP levels in obesity and the effect of GIP in promoting fat storage in adipocytes, blocking GIP signaling has been proposed as a treatment for obesity.^{163,174} Animal studies have shown promising results: in ob/ob mice, treatment with Pro³-GIP (GIPR antagonist) prevented the development of diabetes and related metabolic abnormalities;^{134,135} vaccinating C57BL/6 mice with antibodies against GIP reduced body weight gain despite the animals being fed a high-fat diet;¹³⁶ and genetically deleting GIPR or targeting K cell ablation in mice both protected against obesity and associated metabolic dysregulation during a high-fat diet.^{75,133} However, GIP antagonism might not be the best route forward because even though it appears to be effective in treating and preventing obesity in animal models, GIP antagonism also reduces glucose-induced insulin secretion in nondiabetic conditions.¹⁷⁸⁻¹⁸⁰ Research is currently being pursued in engineering GIP analogs that would selectively improve β cell function but have reduced adipogenic and glucagonotropic actions. For example, specially engineered GIP analogs, such as D-Ala²-GIP₁₋₃₀, demonstrated equivalent potency to GIP₁₋₄₂ in terms of β cell function and survival but greatly reduced lipogenic actions.¹⁸¹ The development of GIPR antagonists has recently been reviewed.¹⁸²

Glucagon-like peptide-1

In type 2 diabetes, exogenous GLP-1 administration increases insulin secretion and lowers plasma glucose effectively even though insulin response is three- to five-fold lower when compared to healthy individuals.^{97,123,149} Furthermore, continuous intravenously administered GLP-1 completely normalized plasma levels of glucose in patients with type 2 diabetes.¹⁸³ At pharmacological doses, GLP-1 also has other noninsulinotropic effects: suppressing glucagon secretion in the presence of hyperglycemia and euglycemia, but not hypoglycemia, leading to improved hepatic insulin resistance and glycemic control;^{105,184} slowing of gastric emptying and gut motility, causing delayed nutrient absorption and dampening postprandial glucose excursion;¹⁸⁵ and increasing the duration of postprandial satiety, leading to reduced food intake, weight loss, and improved insulin resistance;^{111,186,187} all of which formed the foundation of GLP-1–based treatment of type 2 diabetes.

GLP-1R agonists in type 2 diabetes.—One major drawback of using native GLP-1 in treating diabetes is its short half-life of about 2 min due to DPP4 activity, as discussed above. After the removal of histidine and alanine from the N-terminus, GLP-1 is further hydrolyzed by neutral endopeptidases (NEPs) 24.11 at six different places.¹⁸⁸ Due to its biological short half-life, bolus subcutaneous injections of GLP-1 resulted in only a transient effect on insulin secretion and plasma glucose levels.¹⁸⁹ Several approaches have been used to develop GLP-1R agonists to circumvent degradation of GLP-1 by DPP4. GLP-1R agonists can be classified as short-acting or long-acting compounds based on their pharmacokinetics profile-whether they provide intermittent or continuous activation of GLP-1Rs, respectively. Seven GLP-1R agonists, with half-lives ranging from 2.4 to 165 h, were approved by the U.S. Food and Drug Administration (FDA) for use in treating type 2 diabetes. Exenatide (twice daily) and lixisenatide are the two short-acting GLP-1R agonists; exenatide (once weekly), liraglutide, albiglutide, dulaglutide, and semaglutide are the five long-acting GLP-1R agonists. Albiglutide is currently discontinued because of low-volume sales.¹⁹⁰ Two GLP-1Rs with different mode of delivery-oral route or via implantable, subdermal, osmotic titanium mini-pump—are currently awaiting FDA approval.

Short-acting GLP-1R agonists.: The first strategy was the use of exendin-4, a 39-aminoacid peptide produced in the salivary glands of Gila monster (*Heloderma suspectum*) with 53% amino acid homology to full-length GLP-1. Exendin-4 is not a substrate for DPP4 because it has a Gly⁸ in place of an Ala⁸. It also lacks some of the target bonds for NEP, and its secondary and tertiary structures may also prevent NEP hydrolysis. Exenatide, the biosynthetic version of exendin-4, must be injected subcutaneously. It is renally cleared through glomerular filtration, has a terminal half-life of about 2.4 h, has biological effects up to 8 h after dosing, and is still detectable in the plasma 15 h after one subcutaneous injection.^{191–193} It needs to be dosed twice a day, however, to maintain glucose-lowering effects. To increase the half-life of exenatide, lixisenatide was developed by deleting Pro³⁸ and adding six terminal lysine residues. This modification increased the half-life of native exenatide to about 3 h and twice daily administration is not advised.^{194,195}

In the 24-week GetGoal-X trial, the efficacy and safety of exenatide twice daily versus lixisenatide as an add-on to metformin for treating type 2 diabetes were compared.¹⁹⁶ Lixisenatide lowered A1c by 0.79% compared to 0.96% for exenatide twice daily and reached the predefined noninferiority margin criteria of 0.4%. Weight reduction was less in the lixisenatide group compared to the exenatide twice daily group (-2.96 versus -3.98 kg). Patients treated with lixisenatide had fewer gastrointestinal adverse effects (43.1% versus 50.6%) and experienced fewer episodes of symptomatic hypoglycemia (2.5% versus 7.9%).

Long-acting GLP-1R agonists.: Several approaches have been used to increase the half-life of native GLP-1 peptide: modifying the native GLP-1 amino acid sequence to prevent DPP4 degradation; utilizing a fatty acid chain to delay absorption from subcutaneous tissue after injection; or using protein binding to prevent renal elimination. Four of the FDA-approved GLP-1R agonists are derived from native GLP-1 peptide that use one or more of these approaches: liraglutide, albiglutide, dulaglutide, and semaglutide. The fifth GLP-1R agonist is extended release exenatide (once weekly).

Liraglutide is a long-acting GLP-1R agonist with a substitution of Lys³⁴ with Arg³⁴ and an attachment of a C-16 free-fatty acid derivative via a glutamoyl spacer to Lys²⁶. The hydrophobic properties of the free-fatty acid derivative result in heptamer formation and delayed absorption from subcutaneous injection sites. It also enabled the formation of noncovalent binding of liraglutide to albumin; therefore, increasing plasma half-life by preventing renal clearance. After subcutaneous injection, maximum plasma concentrations of liraglutide are reached after 10–14 h, and it has a half-life of 11–13 hours.^{197,198}

Albiglutide is generated by the genetic fusion of two sequential copies of DPP4-resistant GLP-1 with human albumin.¹⁹⁹ Modification is made to the amino acid sequence of native GLP-1 at position 8 (substitution of Ala⁸ with Gly⁸) to protect it from DPP4 hydrolysis.¹⁹⁹ This intrinsic design significantly increased the half-life of albiglutide to about 5 days and it can be administered once weekly.^{200,201}

Dulaglutide consists of two DPP4-resistant GLP-1 analogues that have been covalently linked to a constant fragment (Fc) of a human immunoglobulin class 4 (IgG4). The size of the compound, at 59.7 kDa, reduces its renal clearance. Furthermore, the amino acid sequence of the GLP-1 analog has been modified at three positions—substitution of Ala⁸ with Gly⁸, Gly²² to Glu²², and Arg³⁶ to Gly³⁶—to prevent DPP-4 hydrolysis.²⁰² Similar to albiglutide, these modifications extended the half-life of dulaglutide to about 5 days allowing for once weekly administration.²⁰³

The synthesis of semaglutide was based on liraglutide. Semaglutide has two amino acid substitutions compared to native GLP-1 (Ala⁸ by Aib⁸ and Lys³⁴ by Arg³⁴), and similar to liraglutide, is attached at Lys²⁶ with a longer linker and a longer fatty acid chain of C18 instead of C16.²⁰⁴ These modifications increase the half-life of semaglutide to about 7 days.²⁰⁵ The current FDA-approved semaglutide is administered via subcutaneous injection. An oral form of semaglutide is under development, where semaglutide is coformulated with the absorption enhancer sodium N-(8-[2-hydroxybenzoyl] amino) caprylate (SNAC) to facilitate its absorption across the gastric epithelium.²⁰⁶ Similar to injectable semaglutide,

oral semaglutide has a half-life of about 7 days, and an FDA New Drug Application was submitted in March 2019.^{206,207}

The fifth long-acting GLP-1R agonist is a sustained-release formulation of exenatide consisting of injectable microspheres of exenatide and poly (D_{,L} lactic-co-glycolic acid), a common biodegradable medical polymer with established use in absorbable sutures and extended release pharmaceuticals, that allows gradual drug delivery at a controlled rate.^{208,209}

GLP-1R agonist via infusion pump.: ITCA 650 is a drug-device combination product in which a continuous subcutaneous delivery of exenatide can be achieved for up to 12 months using a titanium matchstick-sized osmotic mini-pump placed in the subdermis of the abdominal wall.²¹⁰ A recently published Phase III double-blind, placebo-controlled trial demonstrated that ITCA delivery of exenatide significantly reduced A1c (-1.2%) and weight in type 2 diabetic patients already taking oral glucose-lowering agents.²¹¹ A Phase III open-label trial in type 2 diabetic patients with baseline A1c of 10.8% showed that after 39 weeks of treatment, a reduction of A1c of -2.8% was achieved.²¹²

Head-to-head comparison trials of GLP-1R agonists.—As a drug class for type 2 diabetes, the GLP-1R agonists have proven efficacy for lowering A1c and body weight together with a reduced risk of hypoglycemia compared with insulin or sulfonylureas.²¹³ To date, the results from 11 Phase III randomized trials that directly compare different pairs of FDA-approved GLP-1RAs have been published: DURATION-1 (exenatide twice daily versus exenatide once weekly);²¹⁴ LEAD-6 (exenatide twice daily versus liraglutide once daily);²¹⁵ DURATION-5 (exenatide twice daily versus exenatide once weekly);²¹⁶ GetGoal-X (exenatide twice daily versus lixisenatide once daily);²¹⁷ DURATION-6 (liraglutide once daily versus exenatide once weekly);²¹⁸ HARMONY-7 (liraglutide once daily versus albiglutide once weekly);²¹⁹ AWARD-1 (exenatide twice daily versus dulaglutide once weekly);²²⁰ AWARD-6 (liraglutide once daily versus semaglutide once weekly);²²² and SUSTAIN-3 (exenatide once weekly versus semaglutide once weekly).²²³ Patients included in these studies were treated with various oral glucose-lowering agents or diet and exercise prior to enrollment.

A1c reduction.: All GLP-1R agonists, short-or long-acting, have demonstrated robust reductions in A1c, with reduction ranging from 0.8% to 1.9% in Phase III clinical trials.^{196,214–223} In head-to-head comparison of GLP-1R agonists, long-acting GLP-1R agonists have generally proven superior to exenatide twice daily with significantly greater reduction in A1c levels: DURATION-1 (exenatide twice daily (-1.5%) versus exenatide once weekly (-1.9%)); LEAD-6 (exenatide twice daily (-0.8%) versus liraglutide once daily (-1.1%)); DURATION-5 (exenatide twice daily (-0.9%) versus exenatide once weekly (-1.6%)); Exenatide (exenatide twice daily (-1.1%) versus exenatide once weekly (-1.4%)); and AWARD-1 (exenatide twice daily (-0.8%) versus dulaglutide once weekly (-1.4%)).^{214–217,220} It is important to note that results are not comparable across studies because of differences in study design and patient cohorts. Even though lixisenatide has not yet been compared directly with a long-acting GLP-1R agonist in a Phase III clinical trial,

lixisenatide lowered HbA1c by 0.79% compared to 0.96% for exenatide twice daily in the GetGoal-X trial, which was a statistically significant difference.¹⁹⁶

Postprandial glucose excursion profile .: Short-acting and long-acting GLP-1R agonists have differential effects on fasting and postprandial glucose due to their pharmacology. Similar to native GLP-1, short-acting GLP-1R agonists provide intermittent stimulation of GLP-1R and preserve their ability to delay gastric emptying. This delay in gastric emptying, together with suppression of inappropriate glucagon secretion, results in markedly lower postprandial glucose excursion after short-acting GLP-1R agonists administration.²²⁴⁻²²⁷ With higher postprandial glucose excursion, long-acting GLP-1R agonists induce an increase in postprandial insulin concentrations,²²⁸ whereas short-acting GLP-1R agonists may actually lead to a decrease.²²⁴ Long-acting GLP-1R agonists provide a continuous exposure to GLP-1Rs, and this seems to cause downregulation of the effects on gastric emptying that, in turn, does not reduce postprandial glucose excursions to the same extent as do short-acting GLP-1R agonists.^{214,227} Hence, long-acting GLP-1R agonists have less reduction in postprandial glucose but allow enhanced effects on the whole 24-h glucose levels, ultimately resulting in superior effects on lowering fasting plasma glucose and A1c.²²⁹ Long-acting GLP-1R agonists provide better glycemic control than short-acting GLP-1R agonists because their use results in higher insulin levels in the fasting state, resulting in better suppression of gluconeogenesis in type 2 diabetic patients.^{214,215,218}

Antibodies formation.: Antibody formation to exenatide is frequent after treatment and is generally of no clinical relevance. A post-hoc analysis of 21 exenatide trials of various durations with over 4000 patients showed that the formation of anti-exenatide antibodies is common (37% in exenatide twice daily; 57% in exenatide weekly), mostly of low titer, peaks early at 24–30 weeks, and has no apparent effect on efficacy. The titers subsequently declined (exenatide twice daily: 25% at 52 weeks and 17% at 3 years; exenatide weekly: 45% at 52 weeks). There was, however, a small subgroup of patients where high anti-exenatide antibody titer was associated with smaller reduction in A1c.¹⁶³ For lixisenatide treatment, 56–60% of patients developed anti-lixisenatide antibodies after starting treatment, and development of anti-lixisenatide antibodies also appears to be of little clinical relevance.¹⁹⁷ The GLP-1R agonists based on native GLP-1 peptide generally have much lower antibody responses (8–9% for liraglutide; 3–7% for albiglutide; 1–3% for dulaglutide; and 1.7% for semaglutide), and these antibodies do not lead to a clinically relevant effect on glycemic control.^{171,198–200}

Weight reduction.: GLP-1 has a well-documented effect on satiety.^{82,83} As a drug class, GLP-1R agonists lead to a significantly greater effect on weight reduction than most other antidiabetic drug classes, with a weighted mean difference of -2.9 kg (CI: -3.6 to -2.2) in a meta-analysis of 25 randomized controlled trials using exenatide twice daily, exenatide once weekly, or liraglutide once daily.²³⁰ Within the GLP-1R agonist drug class, long-acting GLP-1R agonists have greater effect on fasting plasma glucose and A1c reduction, while short-acting GLP-1R agonists work best at suppressing postprandial glucose excursions. There is, however, no between-class difference in body weight reduction in head-to-head comparison trials of GLP-1R agonists.¹⁹⁰ For example, exenatide twice daily leads to

similar weight reductions as did exenatide extended release (once weekly), liraglutide, and dulaglutide.^{215,216,220,231} Newer compounds, such as semaglutide (1.0 mg once weekly), have shown significant average weight loss of up to 6.5 kg after 40 weeks of treatment.²²³

Cardiovascular outcome trials.: Since 2008, the FDA and later the European Medicines Agency (EMA) added cardiovascular safety as a required outcome for the approval of new glucose-lowering treatments for type 2 diabetes.^{232,233} Cardiovascular outcome trial (CVOT) was not included in the clinical trial for exenatide twice daily as it was approved before 2008. For short-acting GLP-1R agonists, ELIXA trial (lixisenatide versus placebo) showed noninferiority in composite cardiovascular endpoint when compared to placebo in type 2 diabetic patients with acute coronary syndrome or unstable angina.²³⁴ CVOTs for long-acting GLP-1R agonists published to date demonstrated either noninferiority or superiority in composite cardiovascular endpoint in patients with type 2 diabetes and established cardiovascular disease or high cardiovascular risk. LEADER trial (liraglutide versus placebo) reported cardiovascular benefit in composite cardiovascular endpoint (HR 0.87; 95% CI 0.78–0.97; P = 0.01 for superiority).²³⁵ SUSTAIN-6 trial (semaglutide versus placebo) and HARMONY trial (albiglutide versus placebo) also reported similar results (HR 0.74; 95% CI 0.58–0.95; P = 0.02 for superiority) and (HR 0.78; 95% CI 0.68–0.90; P = 0.0006 for superiority), respectively.^{236,237} Both EXSCEL (exenatide once weekly versus placebo) and PIONEER-6 (oral semaglutide versus placebo) showed noninferiority in composite cardiovascular endpoint (HR 0.91; 95% CI 0.83–1.00; P = 0.06 for noninferiority) for EXSCEL and (HR 0.79; 95% CI 0.57–1.11; P < 0.001 for noninferiority) for PIONEER-6.^{238,239} Given these results with some GLP-1R agonists demonstrating beneficial cardiovascular effect while others not, studies are needed to delineate the underlying mechanisms by which these GLP1R agonists might affect cardiovascular risk. A review of CVOTs in type 2 diabetes was recently published.²⁴⁰

GLP-1R agonists in treating obesity.—The ability of GLP-1R agonists to induce weight loss as discussed above is now well established by clinical trials designed for managing type 2 diabetes; however, the magnitude of weight loss varies among compounds. Currently, liraglutide 3 mg once daily is the only GLP-1R agonist approved by the FDA for treating obesity. A series of randomized clinical trials evaluated the efficacy and safety of liraglutide 3 mg daily for weight management in over 4000 patients without diabetes and who had a BMI of at least 30 kg/m² or at least 27 kg/m² with comorbidities.^{241–243} With diet and exercise, compared with placebo, liraglutide 3 mg once daily provided an additional weight reduction of 4.2–5.4% of body weight after 56 weeks.^{242,243} In a 52-week Phase II trial of 957 individuals without diabetes and with BMI of at least 30 kg/m², patients were randomized to receive semaglutide (0.05, 0.1, 0.2, 0.3, or 0.4 mg daily), liraglutide (3 mg daily), or placebo, in combination with diet and exercise. Semaglutide 0.05–0.4 mg per day resulted in dose-dependent weight losses over 52 weeks that were significantly greater than placebo at all doses, and higher than liraglutide (3 mg daily) at doses of 0.2 mg per day or more.²⁴⁴ Semaglutide (0.05 mg daily) and semaglutide (0.4 mg daily) provided a weight reduction of 6.8% and 16.2%, respectively, in comparison to liraglutide (3 mg daily) of 8.3% and placebo of 2.3%.244

GLP-1R agonists in treating prediabetes.—The use of GLP-1R agonists in preventing diabetes has so far been investigated only with liraglutide. In a 56-week randomized controlled trial involving 3731 overweight or obese patients without diabetes, 2487 were randomized to liraglutide 3 mg daily and 1244 to placebo.²⁴² At baseline, 61.2% of the patients had prediabetes. After 56 weeks, the prevalence of prediabetes was significantly lower in the liraglutide group compared to the placebo group, and type 2 diabetes developed in more patients in the placebo group.²⁴² From 56 weeks on, patients with prediabetes at screening continued on treatment (liraglutide 3 mg daily or placebo) for another 2 years.²⁴⁵ At the end of 2 years, 2% in the liraglutide group developed diabetes compared to 6% in the placebo group. In addition, 66% of individuals in the liraglutide group regressed back to normal glucose tolerance, while only 36% of those did so in the placebo group.²⁴⁵ Currently, none of the GLP-1R agonists are approved by the FDA for the treatment of prediabetes.

Safety issues and tolerability.

Antibodies formation.: Antibody formation to exenatide is frequently reported after treatment and is generally of no clinical relevance. A post-hoc analysis of 21 exenatide trials of various durations with over 4000 patients showed that the formation of anti-exenatide antibodies is common (37% in exenatide twice daily; 57% in exenatide weekly), mostly of low titer, peaks early at 24–30 weeks, and has no apparent effect on efficacy. The titers subsequently declined (exenatide twice daily: 25% at 52 weeks and 17% at 3 years; exenatide weekly: 45% at 52 weeks). There was, however, a small subgroup of patients where high anti-exenatide antibody titer was associated with a smaller reduction in A1c.¹⁹³ For lixisenatide treatment, 56–60% of patients developed anti-lixisenatide antibodies after starting treatment, and development of anti-lixisenatide antibodies also appears to be of little clinical relevance.²⁴⁶ The GLP-1R agonists based on the native GLP-1 peptide generally have much lower antibody responses (8–9% for liraglutide; 3–7% for albiglutide; 1–3% for dulaglutide; and 1.7% for semaglutide), and again, these antibodies do not lead to a clinically relevant effect on glycemic control.^{201,247–249}

Gastrointestinal side effects.: Gastrointestinal adverse effects are common in patients treated with GLP-1R agonists, with nausea, vomiting, or diarrhea being the most frequently reported.²⁵⁰ A systematic analysis of 32 published Phase III clinical trials on GLP-1R agonists with 10,367 patients found the following: (1) risk of nausea and diarrhea was dose dependent for long-acting GLP1R agonists; (2) nausea and vomiting were more common with metformin combination therapy; (3) compared to exenatide twice daily, lixisenatide treatment was associated with less nausea and diarrhea; (4) compared to liraglutide, exenatide weekly and albiglutide are associated with less nausea and diarrhea; (5) and compared to short-acting GLP-1R agonists, long-acting GLP-1R agonists were associated with less nausea and vomiting but more diarrhea.²⁵¹

Pancreatitis and pancreatic cancer.: Controversies surrounding a suspected association between pancreatitis and pancreatic cancer with the use of GLP-1R agonists surfaced after its introduction in 2005. A study found a more than 10-fold increase in reported pancreatitis and 2.9-fold increase in reported pancreatic cancer in patients treated with

exenatide compared to other therapies using the FDA Adverse Event Reporting System (FAERS) database.²⁵² However, the FAERS is used for reporting adverse events and is subject to bias.²⁵³ To address this concern, both the FDA and EMA reviewed the preclinical and clinical studies regarding the risk of pancreatitis and pancreatic cancer and concluded that the data were inconsistent with a causal association between GLP-1R agonists and pancreatic adverse events.²⁵⁴ A meta-analysis of three randomized placebo-controlled trials of at least 24 months duration, involving 9347 patients on GLP-1R agonist and 9353 on placebo, found no evidence of increased risk of pancreatitis.²⁵⁵ A retrospective cohort study involving almost one million patients initiating antidiabetic medications also showed no increased risk of pancreatic cancer with GLP-1R agonists use.²⁵⁶ Therefore, it is safe to conclude that GLP-1R agonists are unlikely to cause either pancreatitis or pancreatic cancer.

Current clinical guidelines.: In the latest consensus report by the American Diabetes Association and the European Association for the Study of Diabetes published in October 2018, GLP-1R agonists have been recommended as part of glycemic management for the following: (1) patients with established atherosclerotic cardiovascular disease (specifically GLP-1R agonists with proven cardiovascular benefit); (2) patients with need to minimize hypoglycemia; (3) and patients with need to minimize weight gain or promote weight loss.²⁵⁷

Dual incretin receptor agonists.: Recently, there has been a surge in interest in developing unimolecular dual agonists of GIPR and GLP-1R with activity at both incretin receptors for even greater glucose-lowering effects than seen with GLP-1R agonists alone.^{125–127} A randomized, placebo-controlled and active comparator-controlled Phase II trial was reported for one of these dual incretin receptor agonists, LY3298176, in patients with type 2 diabetes. After 26 weeks, LY3298176 showed superior A1c control with greater weight loss and acceptable tolerability profile, compared with dulaglutide.²⁵⁸ There are at least three other dual incretin receptor agonists in various stages of development: NNC0090-2746 (also known as RG7697), DA-JC1, and DA3-CH.^{259–261}

Evolving understanding of the enteroendocrine cell biology, gut microbiota, and endocannabinoid system

The classical view of enteroendocrine cells designates one hormone production per cell and these cells were named accordingly; that is, K cell secretes GIP and L cell secretes GLP-1. This unihormonal phenotype was largely based on anatomical appearances and histochemical and staining characteristics.²⁶² Over the years, researchers have shown that the enteroendocrine system is much more complex, with heterogenous enteroendocrine cell types and the knowledge that one enteroendocrine cell may secrete two or more different hormones instead of the traditional concept of one cell-one hormone. Reports showed the colocalization of GIP and GLP-1 in enteroendocrine cells called K/L cells that accounted for about 40–50% of the K, L, and K/L enteroendocrine cells in the duodenum and up to 55–75% in the mid-small intestine.^{20,38} As many as six enteroendocrine hormones (CCK, GLP-1, GIP, PYY, neurotensin, and secretin) have been found in the same enteroendocrine cell.^{263,264} Our group has even found the presence of hormones, such as ghrelin, insulin, and

GLP-1, in one taste cell type in taste buds in the tongue.^{265–267} Furthermore, recent findings that enteroendocrine cells can actually switch hormone expression depending on local cues and tissue compartments will surely revolutionize the field of gut endocrinology.²⁶⁸

The local environment that enteroendocrine cells interact with includes, but is not limited to, gut microbiota, ingested food, and other secreted acids and bile acids. The gut microbiota has been shown to influence a whole host of human physiology, such as nutrient absorption, immune function, metabolic, and endocrine functions.^{269,270} Regulation of enteroendocrine hormone secretion by gut microbiota is best shown by studies in germ-free mice. Germ-free mice were found to have higher circulating GLP-1 levels and increased proglucagon gene expression and GLP-1 immunopositive cell density in the distal gastrointestinal tract. Introduction of gut microbiota from conventionally raised mice to these germ-free mice normalized proglucagon gene expression and GLP-1 immunopositive cell density as well as circulating GLP-1 levels.²⁷¹

Gut microbiota convert dietary polysaccharides that cannot be digested by the host into short-chain fatty acids (SCFAs).²⁷² SCFA has been shown to increase the number of L cells in mouse and human intestinal epithelium (in vitro) through increasing the expression of transcription factor neuronal differentiation 1 (NEUROD1); thus, resulting in increased GLP-1 secretion.²⁷³ Blocking the NOTCH signaling pathway with dibenzoazepine, a γ secretase inhibitor, led to elevated expression of NEUROD1 and subsequent increase in K and L cell numbers accompanied by increased GIP and GLP-1 secretion.²⁷⁴ Therefore, compounds that alter gut microbiota may, in turn, regulate secretion from enteroendocrine cells. Low-calorie sweetener is an example of such compound. Regular consumption of low-calorie sweeteners is associated with greater increases in GIP secretion following nutrient intake in humans.⁴⁴ The possible involvement of gut microbiota in modulating the association between low-calorie sweetener consumption with increased GIP secretion can be inferred from rodent data. Long-term feeding of low-calorie sweetener to mice altered gut microbiota to those with over-representation of glycan degradation pathways, leading to increased formation of SCFAs, which has been shown to increase the number of K and L cells, and incretin secretion.45

Another exciting research area that shows great potential is the possible role of the endocannabinoid system in regulating incretin secretion, and how gut microbiota may constitute an integral part of this process. The first study to show that a bacterium, *Lactobacillus acidophilus*, modulates CBR expression was reported to occur in intestinal cells in rats.²⁷⁵ The possible interactions of the endocannabinoid system with gut microbiota were recently reviewed by Cani and colleagues.²⁶⁹ The role of the endocannabinoid system in regulating incretin secretion in humans was recently reported for the first time.⁵⁶ When compared to placebo, nabilone (CBR agonist) administration to healthy human subjects, as mentioned above, resulted in significantly elevated fasting GIP levels and post-OGTT GIP levels, but no change in fasting GLP-1 levels together with significantly lower post-OGTT GLP-1 levels.⁵⁶ The mechanisms weaving together nutrients, gut microbiota, the endocannabinoid system, and enteroendocrine cells are complex and present an exciting frontier for further research. Dysregulation of the endocannabinoid system and gut dysbiosis has been linked to obesity and diabetes and is an area of active research.²⁶⁹

Conclusions

Since the discovery of GIP 50 years ago, tremendous progress has been made in understanding the physiology and pathophysiology of incretins in relations to two of the most pressing global public health crises: obesity and diabetes. With that understanding came the development of a whole new drug class—GLP-1R agonists—for managing type 2 diabetes and obesity. As a drug class, GLP-1R agonists have been shown in Phase III randomized control trials to be very effective in long-term A1c lowering and lead to weight reduction. Emerging data also showed the benefit of GLP-1R agonists, compared to placebo, in preventing diabetes progression as well as reducing heart attacks, nonfatal strokes, cardiovascular death, and all-cause mortality in type 2 diabetes, at least for liraglutide and semaglutide.^{235,236,239,276} A recent review by Nauck and colleagues provided a comprehensive review of cardiovascular actions of GLP-1R agonists.²⁷⁷ In addition, a new class of agents, dual incretin receptor agonists, is currently being developed. One of the most exciting recent findings, in which enteroendocrine cells can actually switch hormone expression depending on local cues and tissue compartments, adds another dimension to the ever-evolving field of incretins. Understanding the interface and interactions between enteroendocrine cells, the endocannabinoid system, gut microbiota, food intake, and its composition is the next frontier in gut endocrinology for the next half century.

Acknowledgments

This research was supported by the Intramural Research Program of the National Institutes of Health, National Institute on Aging.

References

- 1. Moore B, Edie ES & Abram JH. 1906. On the treatment of diabetus mellitus by acid extract of duodenal mucous membrane. Biochem. J. 1: 28–38. [PubMed: 16742013]
- Bayliss WM & Starling EH. 1902. The mechanism of pancreatic secretion. J. Physiol. 28: 325–353. [PubMed: 16992627]
- 3. La Barre J 1932. Sur les possibilités d'un traitement du diabète par l'incrétine. Bull. Acad. R. Med. Belg. 12: 620–634.
- 4. Barre JL & Still EU. 1930. Studies on the physiology of secretin. Am. J. Physiol. Legacy Content 91: 649–653.
- Yalow RS & Berson SA. 1960. Immunoassay of endogenous plasma insulin in man. J. Clin. Invest. 39: 1157–1175. [PubMed: 13846364]
- McIntyre N, Holdsworth CD & Turner DS. 1964. New interpretation of oral glucose tolerance. Lancet 284: 20–21.
- Elrick H, Stimmler L, Hlad CJ Jr., et al. 1964. Plasma insulin response to oral and intravenous glucose administration. J. Clin. Endocrinol. Metab. 24: 1076–1082. [PubMed: 14228531]
- Dupre J, Ross SA, Watson D, et al. 1973. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J. Clin. Endocrinol. Metab. 37: 826–828. [PubMed: 4749457]
- 9. Holst JJ, Orskov C, Nielsen OV, et al. 1987. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 211: 169–174. [PubMed: 3542566]
- Mojsov S, Weir GC & Habener JF. 1987. Insulinotropin: glucagon-like peptide I (7–37) coencoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J. Clin. Invest. 79: 616–619. [PubMed: 3543057]
- 11. Kreymann B, Williams G, Ghatei MA, et al. 1987. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2: 1300–1304. [PubMed: 2890903]

- 12. Creutzfeldt W 1979. The incretin concept today. Diabetologia 16: 75-85. [PubMed: 32119]
- Muscelli E, Mari A, Natali A, et al. 2006. Impact of incretin hormones on beta-cell function in subjects with normal or impaired glucose tolerance. Am. J. Physiol. Endocrinol. Metab. 291: E1144–E1150. [PubMed: 16478775]
- Nauck MA, Homberger E, Siegel EG, et al. 1986. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J. Clin. Endocrinol. Metab. 63: 492–498. [PubMed: 3522621]
- Brown JC & Dryburgh JR. 1971. A gastric inhibitory polypeptide. II. The complete amino acid sequence. Can. J. Biochem. 49: 867–872. [PubMed: 5120249]
- Brown JC & Pedersen RA. 1977. GI hormones and insulin secretion. In Proceedings of the 5th International Congress of Endocrinology, Vol. 2, 568–570. Amsterdam: Excerpta Medica.
- Buffa R, Polak JM, Pearse AGE, et al. 1975. Identification of the intestinal cell storing gastric inhibitory peptide. Histochemistry 43: 249–255. [PubMed: 1097380]
- Buchan AM, Polak JM, Capella C, et al. 1978. Electron-immunocytochemical evidence for the K cell localization of gastric inhibitory polypeptide (GIP) in man. Histochemistry 56: 37–44. [PubMed: 350814]
- Polak JA & Bloom SR. 1982. Localization of regulatory peptides in the gut. Br. Med. Bull. 38: 303–307. [PubMed: 6129025]
- Theodorakis MJ, Carlson O, Michopoulos S, et al. 2006. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am. J. Physiol. Endocrinol. Metab. 290: E550– E559. [PubMed: 16219666]
- Fujita Y, Wideman RD, Asadi A, et al. 2010. Glucose-dependent insulinotropic polypeptide is expressed in pancreatic islet alpha-cells and promotes insulin secretion. Gastroenterology 138: 1966–1975. [PubMed: 20138041]
- Tseng CC, Jarboe LA, Landau SB, et al. 1993. Glucose-dependent insulinotropic peptide: structure of the precursor and tissue-specific expression in rat. Proc. Natl. Acad. Sci. USA 90: 1992–1996. [PubMed: 8446620]
- Messenger B, Clifford MN & Morgan LM. 2003. Glucose-dependent insulinotropic polypeptide and insulin-like immunoreactivity in saliva following sham-fed and swallowed meals. J. Endocrinol. 177: 407–412. [PubMed: 12773121]
- 24. Nakajima T, Nakajima E, Fukiage C, et al. 2002. Differential gene expression in the lens epithelial cells from selenite injected rats. Exp. Eye Res. 74: 231–236. [PubMed: 11950233]
- Nyberg J, Anderson MF, Meister B, et al. 2005. Glucose-dependent insulinotropic polypeptide is expressed in adult hippocampus and induces progenitor cell proliferation. J. Neurosci. 25: 1816– 1825. [PubMed: 15716418]
- Andersen DK, Elahi D, Brown JC, et al. 1978. Oral glucose augmentation of insulin secretion. Interactions of gastric inhibitory polypeptide with ambient glucose and insulin levels. J. Clin. Invest. 62: 152–161. [PubMed: 659629]
- Konturek SJ, Konturek J, Cieszkowski M, et al. 1986. Comparison of gastric inhibitory polypeptide and intraduodenal or intravenous fat on gastric acid secretion from vagally innervated and denervated canine stomach. Dig. Dis. Sci. 31: 49–56. [PubMed: 3940823]
- Kuzio M, Dryburgh JR, Malloy KM, et al. 1974. Radioimmunoassay for gastric inhibitory polypeptide. Gastroenterology 66: 357–364. [PubMed: 4855933]
- 29. Morgan LM 1979. Immunoassayable gastric inhibitory polypeptide: investigations into its role in carbohydrate metabolism. Ann. Clin. Biochem. 16: 6–14. [PubMed: 217296]
- Pederson RA, Schubert HE & Brown JC. 1975. Gastric inhibitory polypeptide. Its physiologic release and insulinotropic action in the dog. Diabetes 24: 1050–1056. [PubMed: 1193309]
- Varner AA, Isenberg JI, Elashoff JD, et al. 1980. Effect of intravenous lipid on gastric acid secretion stimulated by intravenous amino acids. Gastroenterology 79: 873–876. [PubMed: 7419011]
- Schirra J, Katschinski M, Weidmann C, et al. 1996. Gastric emptying and release of incretin hormones after glucose ingestion in humans. J. Clin. Invest. 97: 92–103. [PubMed: 8550855]
- Krarup T, Holst JJ & Larsen KL. 1985. Responses and molecular heterogeneity of IR-GIP after intraduodenal glucose and fat. Am. J. Physiol. 249: E195–E200. [PubMed: 4025540]

- 34. Flatt PR, Kwasowski P & Bailey CJ. 1989. Stimulation of gastric inhibitory polypeptide release in ob/ob mice by oral administration of sugars and their analogues. J. Nutr. 119: 1300–1303. [PubMed: 2795243]
- Sykes S, Morgan LM, English J, et al. 1980. Evidence for preferential stimulation of gastric inhibitory polypeptide secretion in the rat by actively transported carbohydrates and their analogues. J. Endocrinol. 85: 201–207. [PubMed: 7400708]
- Parker HE, Habib AM, Rogers GJ, et al. 2008. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 52: 289–298. [PubMed: 19082577]
- 37. Jang HJ, Kokrashvili Z, Theodorakis MJ, et al. 2007. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc. Natl. Acad. Sci. USA 104: 15069–15074. [PubMed: 17724330]
- Mortensen K, Christensen LL, Holst JJ, et al. 2003. GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul. Pept. 114: 189–196. [PubMed: 12832109]
- Margolskee RF, Dyer J, Kokrashvili Z, et al. 2007. T1R3 and gustducin in gut sense sugars to regulate expression of Na⁺-glucose cotransporter 1. Proc. Natl. Acad. Sci. USA 104: 15075– 15080. [PubMed: 17724332]
- 40. Ma J, Bellon M, Wishart JM, et al. 2009. Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects. Am. J. Physiol. 296: G735–G739.
- Steinert RE, Frey F, Topfer A, et al. 2011. Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides. Br. J. Nutr. 105: 1320–1328. [PubMed: 21255472]
- Ford HE, Peters V, Martin NM, et al. 2011. Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects. Eur. J. Clin. Nutr. 65: 508–513. [PubMed: 21245879]
- 43. Brown AW, Bohan Brown MM, Onken KL, et al. 2011. Short-term consumption of sucralose, a nonnutritive sweetener, is similar to water with regard to select markers of hunger signaling and short-term glucose homeostasis in women. Nutr. Res. 31: 882–888. [PubMed: 22153513]
- 44. Chia CW, Shardell M, Gravenstein KS, et al. 2018. Regular low-calorie sweetener consumption is associated with increased secretion of glucose-dependent insulinotropic polypeptide. Diabetes Obes. Metab. 20: 2282–2285. [PubMed: 29687583]
- 45. Suez J, Korem T, Zeevi D, et al. 2014. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514: 181–186. [PubMed: 25231862]
- 46. Chu ZL, Carroll C, Alfonso J, et al. 2008. A role for intestinal endocrine cell-expressed g proteincoupled receptor 119 in glycemic control by enhancing glucagonlike Peptide-1 and glucosedependent insulinotropic Peptide release. Endocrinology 149: 2038–2047. [PubMed: 18202141]
- 47. Hirasawa A, Tsumaya K, Awaji T, et al. 2005. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 11: 90–94. [PubMed: 15619630]
- Overton HA, Babbs AJ, Doel SM, et al. 2006. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 3: 167–175. [PubMed: 16517404]
- 49. Thomford NR, Sirinek KR, Crockett SE, et al. 1974. Gastric inhibitory polypeptide. Response to oral glucose after vagotomy and pyloroplasty. Arch. Surg. 109: 177–182. [PubMed: 4846436]
- McIntosh CHS, Widenmaier S & Kim SJ. 2009. Chapter 15: Glucose-dependent insulinotropic polypeptide (gastric inhibitory polypeptide; GIP). In Vitamins & Hormones, Vol. 80. Litwack G, Ed.: 409–471. Cambridge, MA: Academic Press. [PubMed: 19251046]
- 51. Kieffer TJ, Huang Z, McIntosh CH, et al. 1995. Gastric inhibitory polypeptide release from a tumor-derived cell line. Am. J. Physiol. 269: E316–E322. [PubMed: 7653549]
- 52. Ho LT, Pu HF, Sheu WJ, et al. 1987. Inhibition of somatostatin on glucose-induced release of gastric inhibitory polypeptide in rats. Chin. J. Physiol. 30: 45–53. [PubMed: 2896583]
- Martin PA & Faulkner A. 1996. Effects of somatostatin-28 on circulating concentrations of insulin and gut hormones in sheep. J. Endocrinol. 151: 107–112. [PubMed: 8943774]
- 54. Sirinek KR, Pace WG, Crockett SE, et al. 1978. Insulin-induced attenuation of glucose-stimulated gastric inhibitory polypeptide secretion. Am. J. Surg. 135: 151–155. [PubMed: 626287]

- 55. Ranganath L, Schaper F, Gama R, et al. 1999. Effect of glucagon on carbohydrate-mediated secretion of glucose-dependent insulinotropic polypeptide (GIP) and glucagonlike peptide-1 (7–36 amide) (GLP-1). Diabetes Metab. Res. Rev. 15: 390–394. [PubMed: 10634963]
- Chia CW, Carlson OD, Liu DD, et al. 2017. Incretin secretion in humans is under the influence of cannabinoid receptors. Am. J. Physiol. Endocrinol. Metab. 313: E359–E366. [PubMed: 28655715]
- 57. Deacon CF, Nauck MA, Meier J, et al. 2000. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J. Clin. Endocrinol. Metab. 85: 3575–3581. [PubMed: 11061504]
- Kieffer TJ, McIntosh CH & Pederson RA. 1995. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 *in vitro* and *in vivo* by dipeptidyl peptidase IV. Endocrinology 136: 3585–3596. [PubMed: 7628397]
- Baggio LL & Drucker DJ. 2007. Biology of incretins: GLP-1 and GIP. Gastroenterology 132: 2131–2157. [PubMed: 17498508]
- 60. Kim W & Egan JM. 2008. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol. Rev. 60: 470–512. [PubMed: 19074620]
- Deacon CF, Danielsen P, Klarskov L, et al. 2001. Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and anti-hyperglycemic effects in anesthetized pigs. Diabetes 50: 1588–1597. [PubMed: 11423480]
- Vilsboll T, Krarup T, Deacon CF, et al. 2001. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 50: 609–613. [PubMed: 11246881]
- Chia CW, Carlson OD, Kim W, et al. 2009. Exogenous glucose-dependent insulinotropic polypeptide worsens post prandial hyperglycemia in type 2 diabetes. Diabetes 58: 1342–1349. [PubMed: 19276444]
- 64. Chia CW, Odetunde JO, Kim W, et al. 2014. GIP contributes to islet trihormonal abnormalities in type 2 diabetes. J. Clin. Endocrinol. Metab. 99: 2477–2485. [PubMed: 24712564]
- 65. Miyawaki K, Yamada Y, Yano H, et al. 1999. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc. Natl. Acad. Sci. USA 96: 14843–14847. [PubMed: 10611300]
- 66. Campbell JE, Ussher JR, Mulvihill EE, et al. 2016. TCF1 links GIPR signaling to the control of beta cell function and survival. Nat. Med. 22: 84–90. [PubMed: 26642437]
- Elahi D, Andersen DK, Brown JC, et al. 1979. Pancreatic alpha- and beta-cell responses to GIP infusion in normal man. Am. J. Physiol. 237: E185–E191. [PubMed: 464094]
- Cleator IG & Gourlay RH. 1975. Release of immunoreactive gastric inhibitory polypeptide (IR-GIP) by oral ingestion of food substances. Am. J. Surg. 130: 128–135. [PubMed: 1098505]
- Ross SA & Dupre J. 1978. Effects of ingestion of triglyceride or galactose on secretion of gastric inhibitory polypeptide and on responses to intravenous glucose in normal and diabetic subjects. Diabetes 27: 327–333. [PubMed: 640238]
- Pederson RA & Brown JC. 1978. Interaction of gastric inhibitory polypeptide, glucose, and arginine on insulin and glucagon secretion from the perfused rat pancreas. Endocrinology 103: 610–615. [PubMed: 744105]
- Meier JJ, Gallwitz B, Siepmann N, et al. 2003. Gastric inhibitory polypeptide (GIP) dosedependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia 46: 798–801. [PubMed: 12764578]
- Yip RG, Boylan MO, Kieffer TJ, et al. 1998. Functional GIP receptors are present on adipocytes. Endocrinology 139: 4004–4007. [PubMed: 9724057]
- 73. Wasada T, McCorkle K, Harris V, et al. 1981. Effect of gastric inhibitory polypeptide on plasma levels of chylomicron triglycerides in dogs. J. Clin. Invest. 68: 1106–1107. [PubMed: 7287903]
- 74. Eckel RH, Fujimoto WY & Brunzell JD. 1979. Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes. Diabetes 28: 1141–1142. [PubMed: 510813]
- 75. Miyawaki K, Yamada Y, Ban N, et al. 2002. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. 8: 738–742. [PubMed: 12068290]

- 76. Hansotia T, Maida A, Flock G, et al. 2007. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J. Clin. Invest. 117: 143–152. [PubMed: 17187081]
- 77. Kim SJ, Nian C, Karunakaran S, et al. 2012. GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PLoS One 7: e40156. [PubMed: 22802954]
- Ceperuelo-Mallafre V, Duran X, Pachon G, et al. 2014. Disruption of GIP/GIPR axis in human adipose tissue is linked to obesity and insulin resistance. J. Clin. Endocrinol. Metab. 99: E908– E919. [PubMed: 24512489]
- 79. Campbell JE & Drucker DJ. 2013. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17: 819–837. [PubMed: 23684623]
- McIntosh CH, Widenmaier S & Kim SJ. 2012. Glucose-dependent insulinotropic polypeptide signaling in pancreatic β-cells and adipocytes. J. Diabetes Investig. 3: 96–106.
- Lund PK, Goodman RH, Dee PC, et al. 1982. Pancreatic preproglucagon cDNA contains two glucagon-related coding sequences arranged in tandem. Proc. Natl. Acad. Sci. USA 79: 345–349. [PubMed: 7043459]
- 82. Holst JJ 2007. The physiology of glucagon-like peptide 1. Physiol. Rev. 87: 1409–1439. [PubMed: 17928588]
- Sandoval DA & D'Alessio DA. 2015. Physiology of proglucagon peptides: role of glucagon and GLP-1in health and disease. Physiol. Rev. 95: 513–548. [PubMed: 25834231]
- 84. Jorsal T, Rhee NA, Pedersen J, et al. 2018. Enteroendocrine K and L cells in healthy and type 2 diabetic individuals. Diabetologia 61: 284–294. [PubMed: 28956082]
- Jin SL, Han VK, Simmons JG, et al. 1988. Distribution of glucagonlike peptide I (GLP-I), glucagon, and glicentin in the rat brain: an immunocytochemical study. J. Comp. Neurol. 271: 519–532. [PubMed: 3385016]
- Kauth T & Metz J. 1987. Immunohistochemical localization of glucagon-like peptide 1. Use of poly- and monoclonal antibodies. Histochemistry 86: 509–515. [PubMed: 3583822]
- Drucker DJ & Asa S. 1988. Glucagon gene expression in vertebrate brain. J. Biol. Chem. 263: 13475–13478. [PubMed: 2901414]
- Hansen AM, Bodvarsdottir TB, Nordestgaard DN, et al. 2011. Upregulation of alpha cell glucagonlike peptide 1 (GLP-1) in Psammomys obesus—an adaptive response to hyperglycaemia? Diabetologia 54: 1379–1387. [PubMed: 21347622]
- Cho YM, Fujita Y & Kieffer TJ. 2014. Glucagon-like peptide-1: glucose homeostasis and beyond. Annu. Rev. Physiol. 76: 535–559. [PubMed: 24245943]
- 90. Sonne DP, Rehfeld JF, Holst JJ, et al. 2014. Postprandial gallbladder emptying in patients with type 2 diabetes: potential implications for bile-induced secretion of glucagon-like peptide 1. Eur. J. Endocrinol. 171: 407–419. [PubMed: 24986531]
- 91. Elliott RM, Morgan LM, Tredger JA, et al. 1993. Glucagon-like peptide-1 (7–36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J. Endocrinol. 138: 159–166. [PubMed: 7852887]
- 92. Vollmer K, Holst JJ, Baller B, et al. 2008. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes 57: 678–687. [PubMed: 18057091]
- Moriya R, Shirakura T, Ito J, et al. 2009. Activation of sodium-glucose cotransporter 1 ameliorates hyper-glycemia by mediating incretin secretion in mice. Am. J. Physiol. Endocrinol. Metab. 297: E1358–E1365. [PubMed: 19808907]
- 94. Rocca AS & Brubaker PL. 1999. Role of the vagus nerve in mediating proximal nutrient-induced glucagonlike peptide-1 secretion. Endocrinology 140: 1687–1694. [PubMed: 10098504]
- 95. Anini Y, Hansotia T & Brubaker PL. 2002. Muscarinic receptors control postprandial release of glucagon-like peptide-1: *in vivo* and *in vitro* studies in rats. Endocrinology 143: 2420–2426. [PubMed: 12021207]
- 96. Chisholm C & Greenberg GR. 2002. Somatostatin-28 regulates GLP-1 secretion via somatostatin receptor subtype 5 in rat intestinal cultures. Am. J. Physiol. Endocrinol. Metab. 283: E311–E317. [PubMed: 12110536]

- 97. Nauck MA, Heimesaat MM, Orskov C, et al. 1993. Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J. Clin. Invest. 91: 301–307. [PubMed: 8423228]
- 98. Hansen L & Holst JJ. 2002. The effects of duodenal peptides on glucagon-like peptide-1 secretion from the ileum. A duodeno–ileal loop? Regul. Pept. 110: 39–45. [PubMed: 12468108]
- Meier JJ, Nauck MA, Kranz D, et al. 2004. Secretion, degradation, and elimination of glucagonlike peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 53: 654–662. [PubMed: 14988249]
- 100. Hansen L, Deacon CF, Orskov C, et al. 1999. Glucagon-like peptide-1-(7–36)amide is transformed to glucagon-like peptide-1-(9–36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 140: 5356–5363. [PubMed: 10537167]
- 101. Ruiz-Grande C, Alarcon C, Alcantara A, et al. 1993. Renal catabolism of truncated glucagon-like peptide 1. Horm. Metab. Res. 25: 612–616. [PubMed: 8119664]
- 102. Tornehave D, Kristensen P, Romer J, et al. 2008. Expression of the GLP-1 receptor in mouse, rat, and human pancreas. J. Histochem. Cytochem. 56: 841–851. [PubMed: 18541709]
- 103. Waser B, Blank A, Karamitopoulou E, et al. 2015. Glucagon-like-peptide-1 receptor expression in normal and diseased human thyroid and pancreas. Mod. Pathol. 28: 391–402. [PubMed: 25216224]
- 104. Segerstolpe A, Palasantza A, Eliasson P, et al. 2016. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24: 593–607. [PubMed: 27667667]
- 105. Nauck MA, Heimesaat MM, Behle K, et al. 2002. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J. Clin. Endocrinol. Metab. 87: 1239–1246. [PubMed: 11889194]
- 106. Egan JM, Bulotta A, Hui H, et al. 2003. GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet beta cells. Diabetes Metab. Res. Rev. 19: 115–123. [PubMed: 12673779]
- 107. Tschen SI, Dhawan S, Gurlo T, et al. 2009. Age-dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice. Diabetes 58: 1312–1320. [PubMed: 19228811]
- 108. Scrocchi LA, Brown TJ, MaClusky N, et al. 1996. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat. Med. 2: 1254–1258. [PubMed: 8898756]
- 109. Smith EP, An Z, Wagner C, et al. 2014. The role of β cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs. Cell Metab. 19: 1050–1057. [PubMed: 24836562]
- 110. Doyle ME & Egan JM. 2007. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol. Ther. 113: 546–593. [PubMed: 17306374]
- 111. Verdich C, Flint A, Gutzwiller JP, et al. 2001. A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J. Clin. Endocrinol. Metab. 86: 4382–4389. [PubMed: 11549680]
- 112. Spiller RC, Trotman IF, Higgins BE, et al. 1984. The ileal brake—inhibition of jejunal motility after ileal fat perfusion in man. Gut 25: 365–374. [PubMed: 6706215]
- 113. Wettergren A, Schjoldager B, Mortensen PE, et al. 1993. Truncated GLP-1 (proglucagon 78–107amide) inhibits gastric and pancreatic functions in man. Dig. Dis. Sci. 38: 665–673. [PubMed: 8462365]
- 114. Nauck MA, Niedereichholz U, Ettler R, et al. 1997. Glucagon-like peptide 1 inhibition of gastric emptying out-weighs its insulinotropic effects in healthy humans. Am. J. Physiol. 273: E981– E988. [PubMed: 9374685]
- 115. Seghieri M, Rebelos E, Gastaldelli A, et al. 2013. Direct effect of GLP-1 infusion on endogenous glucose production in humans. Diabetologia 56: 156–161. [PubMed: 23064290]

- 116. Johnson KM, Edgerton DS, Rodewald T, et al. 2007. Intraportal GLP-1 infusion increases nonhepatic glucose utilization without changing pancreatic hormone levels. Am. J. Physiol. Endocrinol. Metab. 293: E1085–E1091. [PubMed: 17684104]
- 117. McIntosh CH, Widenmaier S & Kim SJ. 2010. Pleiotropic actions of the incretin hormones. Vitam. Horm. 84: 21–79. [PubMed: 21094896]
- Drucker DJ 2018. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 27: 740–756. [PubMed: 29617641]
- 119. Gallwitz B, Witt M, Folsch UR, et al. 1993. Binding specificity and signal transduction of receptors for glucagon-like peptide-1(7–36)amide and gastric inhibitory polypeptide on RINm5F insulinoma cells. J. Mol. Endocrinol. 10: 259–268. [PubMed: 8396943]
- 120. Lupi R, Del Guerra S, D'Aleo V, et al. 2010. The direct effects of GLP-1 and GIP, alone or in combination, on human pancreatic islets. Regul. Pept. 165: 129–132. [PubMed: 20472004]
- 121. Skow MA, Bergmann NC & Knop FK. 2016. Diabetes and obesity treatment based on dual incretin receptor activation: 'twincretins'. Diabetes Obes. Metab. 18: 847–854. [PubMed: 27160961]
- 122. Nauck MA, Bartels E, Orskov C, et al. 1993. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7–36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J. Clin. Endocrinol. Metab. 76: 912–917. [PubMed: 8473405]
- 123. Elahi D, McAloon-Dyke M, Fukagawa NK, et al. 1994. The insulinotropic actions of glucosedependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7–37) in normal and diabetic subjects. Regul. Pept. 51: 63–74. [PubMed: 8036284]
- 124. Mentis N, Vardarli I, Kothe LD, et al. 2011. GIP does not potentiate the antidiabetic effects of GLP-1 in hyper-glycemic patients with type 2 diabetes. Diabetes 60: 1270–1276. [PubMed: 21330636]
- 125. Finan B, Ma T, Ottaway N, et al. 2013. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl. Med. 5: 209ra151.
- 126. Coskun T, Sloop KW, Loghin C, et al. 2018. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol. Metab. 18: 3–14. [PubMed: 30473097]
- 127. Portron A, Jadidi S, Sarkar N, et al. 2017. Pharmacodynamics, pharmacokinetics, safety and tolerability of the novel dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 agonist RG7697 after single subcutaneous administration in healthy subjects. Diabetes Obes. Metab. 19: 1446–1453. [PubMed: 28741871]
- 128. Flatt PR, Bailey CJ, Kwasowski P, et al. 1983. Abnormalities of GIP in spontaneous syndromes of obesity and diabetes in mice. Diabetes 32: 433–435. [PubMed: 6341126]
- 129. Polak JM, Pearse AG, Grimelius L, et al. 1975. Gastrointestinal apudosis in obese hyperglycaemic mice. Virchows Arch. B Cell Pathol. 19: 135–150. [PubMed: 810958]
- 130. Bailey CJ, Flatt PR, Kwasowski P, et al. 1986. Immunoreactive gastric inhibitory polypeptide and K cell hyperplasia in obese hyperglycaemic (ob/ob) mice fed high fat and high carbohydrate cafeteria diets. Acta Endocrinol. 112: 224–229.
- 131. Alvheim AR, Torstensen BE, Lin YH, et al. 2014. Dietary linoleic acid elevates the endocannabinoids 2-AG and anandamide and promotes weight gain in mice fed a low fat diet. Lipids 49: 59–69. [PubMed: 24081493]
- 132. Little TJ, Cvijanovic N, DiPatrizio NV, et al. 2018. Plasma endocannabinoid levels in lean, overweight, and obese humans: relationships to intestinal permeability markers, inflammation, and incretin secretion. Am. J. Physiol. Endocrinol. Metab. 315: E489–E495. [PubMed: 29438631]
- 133. Althage MC, Ford EL, Wang S, et al. 2008. Targeted ablation of glucose-dependent insulinotropic polypeptide-producing cells in transgenic mice reduces obesity and insulin resistance induced by a high fat diet. J. Biol. Chem. 283: 18365–18376. [PubMed: 18420580]
- 134. Gault VA, Irwin N, Green BD, et al. 2005. Chemical ablation of gastric inhibitory polypeptide receptor action by daily (Pro3)GIP administration improves glucose tolerance and ameliorates

insulin resistance and abnormalities of islet structure in obesity-related diabetes. Diabetes 54: 2436–2446. [PubMed: 16046312]

- 135. Irwin N, McClean PL, O'Harte FP, et al. 2007. Early administration of the glucose-dependent insulinotropic polypeptide receptor antagonist (Pro3)GIP prevents the development of diabetes and related metabolic abnormalities associated with genetically inherited obesity in ob/ob mice. Diabetologia 50: 1532–1540. [PubMed: 17486314]
- 136. Fulurija A, Lutz TA, Sladko K, et al. 2008. Vaccination against GIP for the treatment of obesity. PLoSOne3: e3163.
- 137. Creutzfeldt W, Ebert R, Willms B, et al. 1978. Gastric inhibitory polypeptide (GIP) and insulin in obesity: increased response to stimulation and defective feedback control of serum levels. Diabetologia 14: 15–24. [PubMed: 627329]
- 138. Salera M, Giacomoni P, Pironi L, et al. 1982. Gastric inhibitory polypeptide release after oral glucose: relationship to glucose intolerance, diabetes mellitus, and obesity. J. Clin. Endocrinol. Metab. 55: 329–336. [PubMed: 7045154]
- 139. Ranganath LR, Beety JM, Morgan LM, et al. 1996. Attenuated GLP-1 secretion in obesity: cause or consequence? Gut 38: 916–919. [PubMed: 8984033]
- 140. Muscelli E, Mari A, Casolaro A, et al. 2008. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes 57: 1340–1348. [PubMed: 18162504]
- 141. Faerch K, Torekov SS, Vistisen D, et al. 2015. GLP-1 response to oral glucose is reduced in prediabetes, screen-detected type 2 diabetes, and obesity and influenced by sex: the ADDITION-PRO study. Diabetes 64: 2513–2525. [PubMed: 25677912]
- 142. Jones IR, Owens DR, Luzio S, et al. 1989. The glucose dependent insulinotropic polypeptide response to oral glucose and mixed meals is increased in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 32: 668–677. [PubMed: 2676668]
- 143. Toft-Nielsen MB, Damholt MB, Madsbad S, et al. 2001. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 86: 3717–3723. [PubMed: 11502801]
- 144. Vilsboll T, Krarup T, Sonne J, et al. 2003. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 88: 2706–2713. [PubMed: 12788877]
- 145. Calanna S, Christensen M, Holst JJ, et al. 2013. Secretion of glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes: systematic review and meta-analysis of clinical studies. Diabetes Care 36: 3346–3352. [PubMed: 24065842]
- 146. Calanna S, Christensen M, Holst JJ, et al. 2013. Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia 56: 965–972. [PubMed: 23377698]
- 147. Nauck M, Stockmann F, Ebert R, et al. 1986. Reduced incretin effect in type 2 (non-insulindependent) diabetes. Diabetologia 29: 46–52. [PubMed: 3514343]
- 148. Gasbjerg LS, Helsted MM, Hartmann B, et al. 2019. Separate and combined glucometabolic effects of endogenous glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1 in healthy individuals. Diabetes 68: 906–917. [PubMed: 30626611]
- 149. Kjems LL, Holst JJ, Volund A, et al. 2003. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 52: 380– 386. [PubMed: 12540611]
- 150. Vilsboll T, Agerso H, Krarup T, et al. 2003. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J. Clin. Endocrinol. Metab. 88: 220–224. [PubMed: 12519856]
- 151. Brubaker PL & Drucker DJ. 2004. Minireview: glucagonlike peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 145: 2653–2659. [PubMed: 15044356]
- 152. Buchwald H, Avidor Y, Braunwald E, et al. 2004. Bariatric surgery: a systematic review and meta-analysis. JAMA 292: 1724–1737. [PubMed: 15479938]

- 153. Panunzi S, De Gaetano A, Carnicelli A, et al. 2015. Predictors of remission of diabetes mellitus in severely obese individuals undergoing bariatric surgery: do BMI or procedure choice matter? A meta-analysis. Ann. Surg. 261: 459–467. [PubMed: 25361217]
- 154. Schauer PR, Mingrone G, Ikramuddin S, et al. 2016. Clinical outcomes of metabolic surgery: efficacy of glycemic control, weight loss, and remission of diabetes. Diabetes Care 39: 902–911. [PubMed: 27222548]
- 155. Rubino F, R'Bibo S L, del Genio F, et al. 2010. Metabolic surgery: the role of the gastrointestinal tract in diabetes mellitus. Nat. Rev. Endocrinol. 6: 102–109. [PubMed: 20098450]
- 156. Stefater MA, Wilson-Perez HE, Chambers AP, et al. 2012. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr. Rev. 33: 595–622. [PubMed: 22550271]
- 157. Pories WJ, Swanson MS, MacDonald KG, et al. 1995. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann. Surg. 222: 339– 350; discussion 350–332. [PubMed: 7677463]
- 158. Clements RH, Gonzalez QH, Long CI, et al. 2004. Hormonal changes after Roux-en Y gastric bypass for morbid obesity and the control of type-II diabetes mellitus. Am. Surg. 70: 1–4; discussion 4–5. [PubMed: 14964537]
- 159. Korner J, Bessler M, Inabnet W, et al. 2007. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Rouxen-Y gastric bypass but not adjustable gastric banding. Surg. Obes. Relat. Dis. 3: 597–601. [PubMed: 17936091]
- 160. Mingrone G, Nolfe G, Gissey GC, et al. 2009. Circadian rhythms of GIP and GLP1 in glucosetolerant and in type 2 diabetic patients after biliopancreatic diversion. Diabetologia 52: 873–881. [PubMed: 19229515]
- 161. Rubino F, Gagner M, Gentileschi P, et al. 2004. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann. Surg. 240: 236– 242. [PubMed: 15273546]
- 162. Salinari S, Bertuzzi A, Asnaghi S, et al. 2009. First-phase insulin secretion restoration and differential response to glucose load depending on the route of administration in type 2 diabetic subjects after bariatric surgery. Diabetes Care 32: 375–380. [PubMed: 19033407]
- 163. Irwin N & Flatt PR. 2009. Evidence for beneficial effects of compromised gastric inhibitory polypeptide action in obesity-related diabetes and possible therapeutic implications. Diabetologia 52: 1724–1731. [PubMed: 19533083]
- 164. Laferrere B, Heshka S, Wang K, et al. 2007. Incretin levels and effect are markedly enhanced 1 month after Rouxen-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care 30: 1709–1716. [PubMed: 17416796]
- 165. Whitson BA, Leslie DB, Kellogg TA, et al. 2007. Enteroendocrine changes after gastric bypass in diabetic and nondiabetic patients: a preliminary study. J. Surg. Res. 141: 31–39. [PubMed: 17574036]
- 166. Elahi D, Galiatsatos P, Rabiee A, et al. 2014. Mechanisms of type 2 diabetes resolution after Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 10: 1028–1039. [PubMed: 25443077]
- 167. Jorgensen NB, Dirksen C, Bojsen-Moller KN, et al. 2013. Exaggerated glucagon-like peptide 1 response is important for improved β-cell function and glucose tolerance after Roux-en-Y gastric bypass in patients with type 2 diabetes. Diabetes 62: 3044–3052. [PubMed: 23649520]
- 168. Jimenez A, Casamitjana R, Viaplana-Masclans J, et al. 2013. GLP-1 action and glucose tolerance in subjects with remission of type 2 diabetes after gastric bypass surgery. Diabetes Care 36: 2062–2069. [PubMed: 23359363]
- 169. Hutch CR & Sandoval D. 2017. The role of GLP-1 in the metabolic success of bariatric surgery. Endocrinology 158: 4139–4151. [PubMed: 29040429]
- 170. Steinert RE, Feinle-Bisset C, Asarian L, et al. 2017. Ghrelin, CCK, GLP-1, and PYY(3–36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol. Rev. 97: 411–463. [PubMed: 28003328]
- 171. Krarup T, Saurbrey N, Moody AJ, et al. 1987. Effect of porcine gastric inhibitory polypeptide on beta-cell function in type I and type II diabetes mellitus. Metabolism 36: 677–682. [PubMed: 3298936]

- 172. Meier JJ, Hucking K, Holst JJ, et al. 2001. Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes. Diabetes 50: 2497–2504. [PubMed: 11679427]
- 173. Vilsboll T, Krarup T, Madsbad S, et al. 2002. Defective amplification of the late phase insulin response to glucose by GIP in obese type II diabetic patients. Diabetologia 45: 1111–1119. [PubMed: 12189441]
- 174. Kieffer TJ 2003. GIP or not GIP? That is the question. Trends Pharmacol. Sci. 24: 110–112. [PubMed: 12628351]
- 175. Wideman RD & Kieffer TJ. 2009. Mining incretin hormone pathways for novel therapies. Trends Endocrinol. Metab. 20: 280–286. [PubMed: 19595611]
- 176. Piteau S, Olver A, Kim SJ, et al. 2007. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat. Biochem. Biophys. Res. Commun. 362: 1007–1012. [PubMed: 17803965]
- 177. Meneilly GS, Bryer-Ash M & Elahi D. 1993. The effect of glyburide on beta-cell sensitivity to glucose-dependent insulinotropic polypeptide. Diabetes Care 16: 110–114. [PubMed: 8422763]
- 178. Ebert R & Creutzfeldt W. 1982. Influence of gastric inhibitory polypeptide antiserum on glucoseinduced insulin secretion in rats. Endocrinology 111: 1601–1606. [PubMed: 6751797]
- 179. Lewis JT, Dayanandan B, Habener JF, et al. 2000. Glucose-dependent insulinotropic polypeptide confers early phase insulin release to oral glucose in rats: demonstration by a receptor antagonist. Endocrinology 141: 3710–3716. [PubMed: 11014226]
- 180. Tseng CC, Kieffer TJ, Jarboe LA, et al. 1996. Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP). Effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat. J. Clin. Invest. 98: 2440–2445. [PubMed: 8958204]
- 181. Widenmaier SB, Kim SJ, Yang GK, et al. 2010. A GIP receptor agonist exhibits beta-cell anti-apoptotic actions in rat models of diabetes resulting in improved beta-cell function and glycemic control. PLoS One 5: e9590. [PubMed: 20231880]
- 182. Gasbjerg LS, Gabe MBN, Hartmann B, et al. 2018. Glucose-dependent insulinotropic polypeptide (GIP) receptor antagonists as anti-diabetic agents. Peptides 100: 173–181. [PubMed: 29412817]
- 183. Rachman J, Barrow BA, Levy JC, et al. 1997. Near-normalisation of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM. Diabetologia 40: 205–211. [PubMed: 9049482]
- 184. Nauck MA, Kleine N, Orskov C, et al. 1993. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7–36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36: 741–744. [PubMed: 8405741]
- 185. Meier JJ, Gallwitz B, Salmen S, et al. 2003. Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagonlike peptide 1 in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 88: 2719–2725. [PubMed: 12788879]
- 186. Zander M, Madsbad S, Madsen JL, et al. 2002. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 359: 824–830. [PubMed: 11897280]
- 187. Naslund E, Gutniak M, Skogar S, et al. 1998. Glucagonlike peptide 1 increases the period of postprandial satiety and slows gastric emptying in obese men. Am. J. Clin. Nutr. 68: 525–530. [PubMed: 9734726]
- 188. Hupe-Sodmann K, McGregor GP, Bridenbaugh R, et al. 1995. Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7–36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul. Pept. 58: 149–156. [PubMed: 8577927]
- 189. Nauck MA, Wollschlager D, Werner J, et al. 1996. Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7–36 amide]) in patients with NIDDM. Diabetologia 39: 1546–1553. [PubMed: 8960841]
- 190. Andersen A, Lund A, Knop FK, et al. 2018. Glucagonlike peptide 1 in health and disease. Nat. Rev. Endocrinol. 14: 390–403. [PubMed: 29728598]

- 191. Kolterman OG, Kim DD, Shen L, et al. 2005. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am. J. Health Syst. Pharm. 62: 173–181. [PubMed: 15700891]
- 192. Simonsen L, Holst JJ & Deacon CF. 2006. Exendin-4, but not glucagon-like peptide-1, is cleared exclusively by glomerular filtration in anaesthetised pigs. Diabetologia 49: 706–712. [PubMed: 16447056]
- 193. Fineman MS, Mace KF, Diamant M, et al. 2012. Clinical relevance of anti-exenatide antibodies: safety, efficacy and cross-reactivity with long-term treatment. Diabetes Obes. Metab. 14: 546– 554. [PubMed: 22236356]
- 194. Christensen M, Miossec P, Larsen BD, et al. 2014. The design and discovery of lixisenatide for the treatment of type 2 diabetes mellitus. Expert Opin. Drug Discov. 9: 1223–1251. [PubMed: 25119443]
- 195. Bolli GB & Owens DR. 2014. Lixisenatide, a novel GLP1 receptor agonist: efficacy, safety and clinical implications for type 2 diabetes mellitus. Diabetes Obes. Metab. 16: 588–601. [PubMed: 24373190]
- 196. Rosenstock J, Raccah D, Koranyi L, et al. 2013. Efficacy and safety of lixisenatide once daily versus exenatide twice daily in type 2 diabetes inadequately controlled on metformin: a 24-week, randomized, open-label, active-controlled study (GetGoal-X). Diabetes Care 36: 2945–2951. [PubMed: 23698396]
- 197. Knudsen LB, Nielsen PF, Huusfeldt PO, et al. 2000. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J. Med. Chem. 43: 1664– 1669. [PubMed: 10794683]
- 198. Agerso H, Jensen LB, Elbrond B, et al. 2002. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia 45: 195–202. [PubMed: 11935150]
- 199. Matthews JE, Stewart MW, De Boever EH, et al. 2008. Pharmacodynamics, pharmacokinetics, safety, and tolerability of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 93: 4810–4817. [PubMed: 18812476]
- 200. Dennis MS, Zhang M, Meng YG, et al. 2002. Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J. Biol. Chem. 277: 35035–35043. [PubMed: 12119302]
- Bronden A, Knop FK & Christensen MB. 2017. Clinical pharmacokinetics and pharmacodynamics of albiglutide. Clin. Pharmacokinet. 56: 719–731. [PubMed: 28050889]
- 202. Glaesner W, Vick AM, Millican R, et al. 2010. Engineering and characterization of the longacting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes Metab. Res. Rev. 26: 287–296. [PubMed: 20503261]
- 203. Thompson AM & Trujillo JM. 2015. Dulaglutide: the newest GLP-1 receptor agonist for the management of type 2 diabetes. Ann. Pharmacother. 49: 351–359. [PubMed: 25565404]
- 204. Lau J, Bloch P, Schaffer L, et al. 2015. Discovery of the once-weekly glucagon-like peptide-1(GLP-1) analogue semaglutide. J. Med. Chem. 58: 7370–7380. [PubMed: 26308095]
- 205. Marbury TC, Flint A, Jacobsen JB, et al. 2017. Pharmacokinetics and tolerability of a single dose of semaglutide, a human glucagon-like peptide-1 analog, in subjects with and without renal impairment. Clin. Pharmacokinet. 56: 1381–1390. [PubMed: 28349386]
- 206. Granhall C, Donsmark M, Blicher TM, et al. 2019. Safety and pharmacokinetics of single and multiple ascending doses of the novel oral human GLP-1 analogue, oral semaglutide, in healthy subjects and subjects with type 2 diabetes. Clin. Pharmacokinet. 58: 781–791. [PubMed: 30565096]
- 207. 2019. Novo Nordisk files oral semaglutide for US regulatory approval of glycaemic control, as well as for CV risk reduction for oral semaglutide and Ozempic[®]. Accessed April 9, 2019. https://www.novonordisk.com/media/news-details.2239031.html.
- 208. Kim D, MacConell L, Zhuang D, et al. 2007. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care 30: 1487–1493. [PubMed: 17353504]

- 209. Tracy MA, Ward KL, Firouzabadian L, et al. 1999. Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres *in vivo* and *in vitro*. Biomaterials 20: 1057–1062. [PubMed: 10378806]
- 210. Rohloff CM, Alessi TR, Yang B, et al. 2008. DUROS technology delivers peptides and proteins at consistent rate continuously for 3 to 12 months. J. Diabetes Sci. Technol. 2: 461–467. [PubMed: 19885211]
- 211. Rosenstock J, Buse JB, Azeem R, et al. 2018. Efficacy and safety of ITCA 650, a novel drug-device GLP-1 receptor agonist, in type 2 diabetes uncontrolled with oral antidiabetes drugs: the FREEDOM-1 trial. Diabetes Care 41: 333–340. [PubMed: 29242349]
- 212. Henry RR, Rosenstock J, Denham DS, et al. 2018. Clinical impact of ITCA 650, a novel drug-device GLP-1 receptor agonist, in uncontrolled type 2 diabetes and very high baseline HbA1c: the FREEDOM-1 HBL (High Baseline) Study. Diabetes Care 41: 613–619. [PubMed: 29301824]
- 213. Inzucchi SE, Bergenstal RM, Buse JB, et al. 2015. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38: 140–149. [PubMed: 25538310]
- 214. Drucker DJ, Buse JB, Taylor K, et al. 2008. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 372: 1240– 1250. [PubMed: 18782641]
- 215. Buse JB, Rosenstock J, Sesti G, et al. 2009. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 374: 39–47. [PubMed: 19515413]
- 216. Blevins T, Pullman J, Malloy J, et al. 2011. DURATION-5: exenatide once weekly resulted in greater improvements in glycemic control compared with exenatide twice daily in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 96: 1301–1310. [PubMed: 21307137]
- 217. Ji L, Onishi Y, Ahn CW, et al. 2013. Efficacy and safety of exenatide once-weekly vs exenatide twice-daily in Asian patients with type 2 diabetes mellitus. J. Diabetes Investig. 4: 53–61.
- 218. Buse JB, Nauck M, Forst T, et al. 2013. Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6): a randomised, open-label study. Lancet 381: 117–124. [PubMed: 23141817]
- 219. Pratley RE, Nauck MA, Barnett AH, et al. 2014. Once-weekly albiglutide versus once-daily liraglutide in patients with type 2 diabetes inadequately controlled on oral drugs (HARMONY 7): a randomised, open-label, multicentre, non-inferiority phase 3 study. Lancet Diabetes Endocrinol. 2: 289–297. [PubMed: 24703047]
- 220. Wysham C, Blevins T, Arakaki R, et al. 2014. Efficacy and safety of dulaglutide added onto pioglitazone and metformin versus exenatide in type 2 diabetes in a randomized controlled trial (AWARD-1). Diabetes Care 37: 2159–2167. [PubMed: 24879836]
- 221. Dungan KM, Povedano ST, Forst T, et al. 2014. Once-weekly dulaglutide versus once-daily liraglutide in metformin-treated patients with type 2 diabetes (AWARD-6): a randomised, open-label, phase 3, non-inferiority trial. Lancet 384: 1349–1357. [PubMed: 25018121]
- 222. Ahmann AJ, Capehorn M, Charpentier G, et al. 2018. Efficacy and safety of once-weekly semaglutide versus exenatide ER in subjects with type 2 diabetes (SUSTAIN 3): a 56-week, open-label, randomized clinical trial. Diabetes Care 41: 258–266. [PubMed: 29246950]
- 223. Pratley RE, Aroda VR, Lingvay I, et al. 2018. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 6: 275–286. [PubMed: 29397376]
- 224. Kolterman OG, Buse JB, Fineman MS, et al. 2003. Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J. Clin. Endocrinol. Metab. 88: 3082–3089. [PubMed: 12843147]
- 225. Kendall DM, Riddle MC, Rosenstock J, et al. 2005. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 28: 1083–1091. [PubMed: 15855571]

- 226. Lorenz M, Pfeiffer C, Steinstrasser A, et al. 2013. Effects of lixisenatide once daily on gastric emptying in type 2 diabetes—relationship to postprandial glycemia. Regul. Pept. 185: 1–8. [PubMed: 23665027]
- 227. Kapitza C, Forst T, Coester HV, et al. 2013. Pharmacodynamic characteristics of lixisenatide once daily versus liraglutide once daily in patients with type 2 diabetes insufficiently controlled on metformin. Diabetes Obes. Metab. 15: 642–649. [PubMed: 23368510]
- 228. Degn KB, Juhl CB, Sturis J, et al. 2004. One week's treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha- and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes 53: 1187–1194. [PubMed: 15111485]
- 229. Madsbad S 2016. Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists. Diabetes Obes. Metab. 18: 317–332. [PubMed: 26511102]
- 230. Vilsboll T, Christensen M, Junker AE, et al. 2012. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ 344: d7771. [PubMed: 22236411]
- 231. Buse JB, Drucker DJ, Taylor KL, et al. 2010. DURATION-1: exenatide once weekly produces sustained glycemic control and weight loss over 52 weeks. Diabetes Care 33: 1255–1261. [PubMed: 20215461]
- 232. U.S. Food and Drug Administration. 2008. Guidance for industry diabetes mellitus—evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. Accessed August 1, 2019. https://www.fda.gov/media/71297/download.
- 233. European Medicines Agency. 2012. Guideline on clinical investigation of medicinal products in the treatment or prevention of diabetes mellitus. Accessed August 1, 2019. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/06/WC500129256.pdf.
- 234. Pfeffer MA, Claggett B, Diaz R, et al. 2015. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med. 373: 2247–2257. [PubMed: 26630143]
- 235. Marso SP, Daniels GH, Brown-Frandsen K, et al. 2016. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375: 311–322. [PubMed: 27295427]
- 236. Marso SP, Bain SC, Consoli A, et al. 2016. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375: 1834–1844. [PubMed: 27633186]
- 237. Hernandez AF, Green JB, Janmohamed S, et al. 2018. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392: 1519–1529. [PubMed: 30291013]
- 238. Holman RR, Bethel MA, Mentz RJ, et al. 2017. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 377: 1228–1239. [PubMed: 28910237]
- 239. Husain M, Birkenfeld AL, Donsmark M, et al. 2019. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 10.1056/NEJMoa1901118.
- 240. Cefalu WT, Kaul S, Gerstein HC, et al. 2018. Cardiovascular outcomes trials in type 2 diabetes: where do we go from here? Reflections from a *Diabetes Care* Editors' Expert Forum. Diabetes Care 41: 14–31. [PubMed: 29263194]
- 241. Blackman A, Foster GD, Zammit G, et al. 2016. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: the SCALE Sleep Apnea randomized clinical trial. Int. J. Obes. 40: 1310–1319.
- 242. Pi-Sunyer X, Astrup A, Fujioka K, et al. 2015. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 373: 11–22. [PubMed: 26132939]
- 243. Wadden TA, Hollander P, Klein S, et al. 2013. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study. Int. J. Obes. 37: 1443–1451.
- 244. O'Neil PM, Birkenfeld AL, McGowan B, et al. 2018. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet 392: 637–649. [PubMed: 30122305]

- 245. le Roux CW, Astrup A, Fujioka K, et al. 2017. 3 Years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet 389: 1399–1409. [PubMed: 28237263]
- 246. Fonseca VA, Alvarado-Ruiz R, Raccah D, et al. 2012. Efficacy and safety of the once-daily GLP-1 receptor agonist lixisenatide in monotherapy: a randomized, double-blind, placebo-controlled trial in patients with type 2 diabetes (GetGoal-Mono). Diabetes Care 35: 1225–1231. [PubMed: 22432104]
- 247. Buse JB, Garber A, Rosenstock J, et al. 2011. Liraglutide treatment is associated with a low frequency and magnitude of antibody formation with no apparent impact on glycemic response or increased frequency of adverse events: results from the Liraglutide Effect and Action in Diabetes (LEAD) trials. J. Clin. Endocrinol. Metab. 96: 1695–1702. [PubMed: 21450987]
- 248. Jendle J, Grunberger G, Blevins T, et al. 2016. Efficacy and safety of dulaglutide in the treatment of type 2 diabetes: a comprehensive review of the dulaglutide clinical data focusing on the AWARD phase 3 clinical trial program. Diabetes Metab. Res. Rev. 32: 776–790. [PubMed: 27102969]
- 249. Carlsson Petri KC, Ingwersen SH, Flint A, et al. 2018. Semaglutide s.c. once-weekly in type 2 diabetes: a population pharmacokinetic analysis. Diabetes Ther. 9: 1533–1547. [PubMed: 29907893]
- 250. Amori RE, Lau J & Pittas AG. 2007. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA 298: 194–206. [PubMed: 17622601]
- 251. Bettge K, Kahle M, Abd El Aziz MS, et al. 2017. Occurrence of nausea, vomiting and diarrhoea reported as adverse events in clinical trials studying glucagon-like peptide-1 receptor agonists: a systematic analysis of published clinical trials. Diabetes Obes. Metab. 19: 336–347. [PubMed: 27860132]
- 252. Elashoff M, Matveyenko AV, Gier B, et al. 2011. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology 141: 150–156. [PubMed: 21334333]
- 253. 2012. FDA Adverse Event Reporting System (FAERS) (formerly AERS). Accessed August 1, 2019. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/ AdverseDrugEffects/default.htm.
- 254. Egan AG, Blind E, Dunder K, et al. 2014. Pancreatic safety of incretin-based drugs—FDA and EMA assessment. N. Engl. J. Med. 370: 794–797. [PubMed: 24571751]
- 255. Storgaard H, Cold F, Gluud LL, et al. 2017. Glucagon-like peptide-1 receptor agonists and risk of acute pancreatitis in patients with type 2 diabetes. Diabetes Obes. Metab. 19: 906–908. [PubMed: 28105738]
- 256. Azoulay L, Filion KB, Platt RW, et al. 2016. Incretin based drugs and the risk of pancreatic cancer: international multicentre cohort study. BMJ 352: i581. [PubMed: 26888382]
- 257. Davies MJ, D'Alessio DA, Fradkin J, et al. 2018. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41: 2669–2701. [PubMed: 30291106]
- 258. Frias JP, Nauck MA, Van J, et al. 2018. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 392: 2180–2193. [PubMed: 30293770]
- 259. Frias JP, Bastyr EJ 3rd, Vignati L, et al. 2017. The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090–2746, in patients with type 2 diabetes. Cell Metab. 26: 343–352.e342. [PubMed: 28768173]
- 260. Cao L, Li D, Feng P, et al. 2016. A novel dual GLP-1 and GIP incretin receptor agonist is neuroprotective in a mouse model of Parkinson's disease by reducing chronic inflammation in the brain. Neuroreport 27: 384–391. [PubMed: 26918675]
- 261. Tian MJ, Wang RF, Holscher C, et al. 2019. The novel GLP-1/GIP dual receptor agonist DA3-CH is neuroprotective in the pilocarpine-induced epileptogenesis rat model. Epilepsy Res. 154: 97–106. [PubMed: 31121474]
- 262. Drucker DJ 2016. Evolving concepts and translational relevance of enteroendocrine cell biology. J. Clin. Endocrinol. Metab. 101: 778–786. [PubMed: 26649620]

- 263. Egerod KL, Engelstoft MS, Grunddal KV, et al. 2012. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology 153: 5782–5795. [PubMed: 23064014]
- 264. Habib AM, Richards P, Cairns LS, et al. 2012. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153: 3054–3065. [PubMed: 22685263]
- 265. Doyle ME, Fiori JL, Gonzalez Mariscal I, et al. 2018. Insulin is transcribed and translated in mammalian taste bud cells. Endocrinology 159: 3331–3339. [PubMed: 30060183]
- 266. Shin Y-K, Cong W-N, Cai H, et al. 2012. Age-related changes in mouse taste bud morphology, hormone expression, and taste responsivity. J. Gerontol. A Biol. Sci. Med. Sci. 67A: 336–344.
- 267. Shin YK, Martin B, Kim W, et al. 2010. Ghrelin is produced in taste cells and ghrelin receptor null mice show reduced taste responsivity to salty (NaCl) and sour (citric acid) tastants. PLoS One 5: e12729. [PubMed: 20856820]
- 268. Beumer J, Artegiani B, Post Y, et al. 2018. Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. Nat. Cell Biol. 20: 909–916. [PubMed: 30038251]
- 269. Cani PD, Plovier H, Van Hul M, et al. 2016. Endocannabinoids—at the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol. 12: 133–143. [PubMed: 26678807]
- 270. Schroeder BO & Backhed F. 2016. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22: 1079–1089. [PubMed: 27711063]
- 271. Wichmann A, Allahyar A, Greiner TU, et al. 2013. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 14: 582–590. [PubMed: 24237703]
- 272. Louis P & Flint HJ. 2017. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 19: 29–41. [PubMed: 27928878]
- 273. Petersen N,Reimann F, Bartfeld S, et al. 2014. Generation of L cells in mouse and human small intestine organoids. Diabetes 63: 410–420. [PubMed: 24130334]
- 274. Petersen N, Reimann F, van Es JH, et al. 2015. Targeting development of incretin-producing cells increases insulin secretion. J. Clin. Invest. 125: 379–385. [PubMed: 25500886]
- 275. Rousseaux C, Thuru X, Gelot A, et al. 2007. *Lactobacillus acidophilus* modulates intestinal pain and induces opioid and cannabinoid receptors. Nat. Med. 13: 35–37. [PubMed: 17159985]
- 276. Chia CW, Egan JM & Ferrucci L. 2018. Age-related changes in glucose metabolism, hyperglycemia, and cardiovascular risk. Circ. Res. 123: 886–904. [PubMed: 30355075]
- 277. Nauck MA, Meier JJ, Cavender MA, et al. 2017. Cardiovascular actions and clinical outcomes with glucagonlike peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation 136: 849–870. [PubMed: 28847797]