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Abstract

Phylogenetics has played a pivotal role in the genomic epidemiology of severe acute respiratory syndrome coronavirus 2, such as
tracking the emergence and global spread of variants and scientific communication. However, the rapid accumulation of genomic
data from around the world—with over two million genomes currently available in the Global Initiative on Sharing All Influenza Data
database—is testing the limits of standard phylogenetic methods. Here, we describe a new approach to rapidly analyze and visualize
large numbers of SARS-CoV-2 genomes. Using Python, genomes are filtered for problematic sites, incomplete coverage, and excessive
divergence from a strict molecular clock. All differences from the reference genome, including indels, are extracted using minimap2
and compactly stored as a set of features for each genome. For each Pango lineage (https://cov-lineages.org), we collapse genomes
with identical features into ‘variants’, generate 100 bootstrap samples of the feature set union to generate weights, and compute the
symmetric differences between theweighted feature sets for every pair of variants. The resulting distancematrices are used to generate
neighbor-joining trees in RapidNJ that are converted into a majority-rule consensus tree for each lineage. Branches with support values
below 50per cent or mean lengths below 0.5 differences are collapsed, and tip labels on affected branches are mapped to internal
nodes as directly sampled ancestral variants. Currently, we process about 2 million genomes in approximately 9h on 52 cores. The
resulting trees are visualized using the JavaScript framework D3.js as ‘beadplots’, in which variants are represented by horizontal line
segments, annotated with beads representing samples by collection date. Variants are linked by vertical edges to represent branches
in the consensus tree. These visualizations are published at https://filogeneti.ca/CoVizu. All source code was released under an MIT
license at https://github.com/PoonLab/covizu.
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1. Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
was first sampled in December 2019, in association with an out-
break of unexplained pneumonia in the province of Hubei, China
(Wu et al. 2020b). The first genome sequence of the novel coro-
navirus isolated from this outbreak was released into the public
domain on 10 January 2020 (Wu et al. 2020a). Early phylogenetic
analyses of this and subsequent genome samples provided ini-
tial evidence of human-to-human transmission (Rambaut and
Andersen 2020) and estimates of the basic reproduction num-
ber (Riou and Althaus 2020). By the end of March 2020, over
200 countries had reported at least one confirmed case of SARS-
CoV-2 from importation or local transmission, and a global pan-
demic was formally declared by the World Health Organization.
One of the most remarkable developments from global efforts
to control the pandemic has been the rapid accumulation and
generally timely release of SARS-CoV-2 genome sequence data
into the public domain. As of 21 June 2021, over 2 million
SARS-CoV-2 genomes have been deposited in the Global Ini-
tiative on Sharing All Influenza Data (GISAID) database (Elbe
and Buckland-Merrett 2017), and this number has grown at a

sustained and exponentially increasing rate (Fig. 1). The phylo-
genetic analysis of these data has played an important role in
tracking the genomic epidemiology of SARS-CoV-2. For exam-
ple, Nextstrain (https://nextstrain.org, last accessed 22 October
2021; (Hadfield et al. 2018)) publishes time-scaled phylogenetic
trees (Sagulenko et al. 2018) as interactive visual summaries of
the diversity of SARS-CoV-2 genomes at global and local scales.
The resulting web documents are updated in real time with the
availability of new data. Throughout the SARS-CoV-2 pandemic,
Nextstrain has featured prominently in global variant tracking
and scientific communication, and in some cases it has directly
influenced public health decision-making (Bedford et al. 2020).

However, the data visualization maintained by Nextstrain is
limited in practice to fewer than about 5,000 genome sequences.
This constraint is not only due to the computational complex-
ity of reconstructing large trees by maximum likelihood, but
also the general difficulty of displaying large trees in a limited
visual space (e.g., a web browser window) in a meaningful and
interpretable way. Accurately reconstructing a large phylogeny is
difficult because the number of possible trees grows faster than
exponentially with the number of observed sequences; however,
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Figure 1. Weekly numbers of genomes submitted to the GISAID
database (accessed on 26 June 2021). Red line segments represent the fit
of a piecewise linear regression with three change points (indicated by
vertical dashed lines) using the R package segmented (Muggeo 2008). An
increasing linear trend relative to a log-transformed y-axis indicates an
exponentially growing rate of genome submission.

the amount of phylogenetic signal in the data has a fixed upper
limit since we cannot sequencemore than the full-length genome.
Furthermore, the time scale of transmission for SARS-CoV-2 tends
to outpace its molecular clock, such that many new infections are
genetically identical to their source populations. Paradoxically, we
can become increasingly uncertain about the relationships among
specific lineages as we collect greater amounts of data (Morel
et al. 2021)). This uncertainty is exacerbated by sequencing error
(Turakhia et al. 2020) and a substantial prevalence ofmissing data,
i.e., incomplete genome sequences.

Even if it is computationally feasible to accurately infer the
evolutionary relationships among millions of sampled infections,
visualizing these results in a meaningful way is a significant chal-
lenge. A standard maximum likelihood phylogeny, for example,
does not differentiate between samples with identical sequences.
These samples become collapsed into a single node, even if they
were collected on different dates or at different locations. Given
these metadata, however, genetically identical samples carry epi-
demiologically relevant information at an individual level. While
Bayesian methods can incorporate prior information to resolve
the relationships between identical samples (Boskova and Stadler
2020), these methods are computationally demanding and the
outputs do not necessarily result in an efficient or effective use
of visual space.

Here, we describe an ongoing open-source project to provide
a public interface to visualize the global diversity of SARS-CoV-2
genomes in near real time. Development of CoVizu (derived from
‘coronavirus visualization’) began in April 2020. From December
2020 onward, CoVizu became provisioned by a customized data
feed from the GISAID database (https://gisaid.org, last accessed
22 October 2021), which is presently the largest publicly acces-
sible repository of SARS-CoV-2 genome sequence data in the
world. The specific objectives of this project are: (1) to pro-
cess and visualize as much of the GISAID database as possible

(i.e., millions of genomes); (2) to reconstruct robust evolutionary
and epidemiological relationships among these genomes; (3) to
continually update outputs with new genomic data as frequently
as possible; and (4) to present this information in a rich and
intuitive visual interface.

CoVizu is composed of a Python-based ‘backend’—an analy-
tical pipeline for rapidly inferring the evolutionary relationships
among genome sequences—and a JavaScript-based ‘frontend’
to visualize these relationships. It relies heavily on the man-
ually curated Pango nomenclature system that partitions the
global diversity of SARS-CoV-2 into a hierarchy of ‘lineages’
(Rambaut et al. 2020). The web interface is presently hosted at
https://filogeneti.ca/CoVizu (last accessed 22 October 2021), and
as an integrated component of the GISAID web portal. All Python
and JavaScript source code comprising the project is publicly avail-
able from our repository (https://github.com/PoonLab/CoVizu,
last accessed 22 October 2021) under the Massachusetts Institute
of Technology (MIT) license.

2. Data analysis
The CoVizu backend is implemented in the Python scripting lan-
guage. Raw sequence data andmetadata, including sample collec-
tion dates and Pangolin (Rambaut et al. 2020) lineage assignments,
are provisioned by the GISAID database as a single Lempel–Ziv–
Markov compressed JSON (JavaScript Object Notation) file.

2.1 Sequence alignment and cleaning
An uncompressed data stream from the GISAID provisioned file
is processed in Python to exclude any record whose genome
sequence: (1) lacks a Pango lineage assignment; (2) was sam-
pled from a non-human host; (3) was shorter than 29,000nt;
(4) lacks a complete sample collection date (e.g., year and
month with no day); or (5) was labeled with a collection
date preceding 1 December 2019 or in the future. The fil-
tered data stream is then redirected to the program minimap2
(version 2.17; (Li 2018)) for pairwise alignment against the SARS-
CoV-2 reference genome (GenBank accession NC_045512; (Wu
et al. 2020a)). We parse the resulting SAM (sequence align-
ment/map) formatted output stream in Python to extract any
genetic differences (nucleotide substitutions, insertions, and dele-
tions) from the reference as ‘features’, as well as any inter-
vals of uncalled bases (missing data). These provide a compact
representation of each genome sequence. Any genomes that
failed to map to the reference or contained over 300 (~1 per
cent) uncalled bases are excluded at this stage. Furthermore,
the feature set of each genome is screened for problematic
sites using the curated list maintained at https://github.com/W-
L/ProblematicSites_SARS-CoV2 (last accessed 22 October 2021;
(DeMaio et al. 2020)). We also exclude genomeswhere the number
of features is either above the 99.9% or below the 0.1 percentile
of a Poisson distribution with rate parameter λ= r∆t, where
r=0.0655 substitutions/genome/day and∆t is the number of days
since 1 December 2019 (Rambaut 2020). We use the SciPy root-
finding method (Virtanen et al. 2020) to numerically solve for the
transition points of the Poisson cumulative distribution function
at different values of ∆t. The genome records that pass these
filters are partitioned into a dictionary keyed by Pango lineage
assignment.

2.2 Time-scaled tree reconstruction
To reconstruct a time-scaled phylogeny that relates the Pango lin-
eages in the database, we select a single representative genome
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for each lineage. We use the curated list of genomes associated
with Pango lineage designations (https://github.com/cov-lineages/
pango-designation/blob/master/lineages.csv, last accessed 22
October 2021) to screen for candidates from all genomes pass-
ing all the above filtering criteria by matching sample names and
then select the candidate with the earliest sample collection date.
We reconstitute amultiple sequence alignment of these represen-
tative genomes from the respective feature sets by excluding all
insertions relative to the reference genome. Next, we reconstruct
a maximum likelihood tree using the fast approximate heuris-
tic method implemented in FastTree (version 2.1.11, compiled for
double precision; (Price et al. 2010)). Any internal nodes with
a parametric bootstrap support below 50 per cent are collapsed
into polytomies. We rescale the resulting tree using TreeTime
(version 0.8.0; (Sagulenko et al. 2018)) with a pre-specified clock
rate (8× 10−4 substitutions/site/year) and retaining polytomies.
This final tree is processed using the Biopython Phylo submodule
(Talevich et al. 2012) and serialized into the Newick tree format
with terminal nodes labeled by Pango lineage.

2.3 Clustering analysis
We use the neighbor-joining method (Saitou and Nei 1987) to
reconstruct the evolutionary relationships among genomeswithin
each Pango lineage. To reduce computing time, all lineages with
5,000 samples or fewer are processed in a single batch dis-
tributed over multiple cores in a clustered computing environ-
ment using the Python-MPI (message passing interface) bindings
implemented in the mpi4py module (Dalcín et al. 2008). Lineages
with more than 5,000 samples are processed singly, with boot-
strap replicates distributed over multiple cores. Neighbor-joining
is a clustering method that requires a pairwise distance matrix
as input. Because we want to incorporate indel variation while
minimizing computation time, we assume a uniform rate over all
possible genetic differences and ignore multiple hits. To minimize
the memory consumption at this step, we convert the features
into integers by indexing the ordered set union of all features
observed for a given lineage. All genomes with identical feature
sets are compressed into a single ‘variant’. This step tends to
compress the number of samples by about 38per cent on average
(interquantile range 22–50per cent), with a small number of vari-
ants comprising a disproportionately large number of samples.
Since the time complexity of neighbor joining isO(n3) andmemory
consumption is O(n2) (Simonsen et al. 2008), we do not have the
computational resources to process all available samples of a lin-
eage at high global prevalence—such as B.1.617.2, also known as
variant of concern ‘Delta’—in a reasonable amount of time. More-
over, tens of thousands of variants or more would be difficult to
visualize meaningfully in any framework. Consequently, we sort
the variants of a lineage by their most recent sample collection
dates and retain only the most recent 5,000 variants. (The reduc-
tion in sample size by this step is reported in the web interface
for each lineage.) The resulting dictionary of variants and indexed
features, keyed by lineage, is serialized into a JSON file for parallel
computation.

For each lineage, we compute the symmetric difference (A△ B)
between the feature sets for every pair of variants, where A△ B
contains all features that are in either A or B but not both.
For example, the symmetric difference between the subsets A=

{1,4,128} and B= {4,37,89} is A△ B= {1,37,89,128}. To gener-
ate a bootstrap replicate, we sample the feature set union at
random with replacement and use the resulting frequencies to
weight the symmetric differences. Thus, the distance between A
and B is given by

∑
i∈A△B fb(i), where fb(i) is the frequency of the

i-th feature in bootstrap replicate b. The resulting pairwise dis-
tance matrix is written to a comma-delimited file as input for
neighbor-joining tree reconstruction using RapidNJ (version 2.3.2;
(Simonsen et al. 2011)). We repeat this process for 100 bootstrap
replicates.

We use a custom Python function to generate a consensus tree
from all splits that occurred in at least 50per cent of the bootstrap
trees and assign branch lengths by averaging over the subset of
trees containing each split. Next, we collapse any branches with
a mean length below 0.5 features (genetic differences). If a termi-
nal branch is collapsed, then its variant label is re-assigned to the
parent internal node. If an internal branch is collapsed, then any
variant labels carried by that node are reassigned to its parent.
Thus, an internal node may be associated with multiple variants
that are too genetically similar to be reproducibly distinguished.
We interpret a labeled internal node as an ancestral variant that
has been directly observed as a genome sequence. The resulting
tree is serialized into a JSON file comprising node and edge lists. A
node list is an associative array comprising lists of sample labels
keyed by variant. An edge list comprises pairs of parent and child
nodes (variants), branch lengths and bootstrap support values.
Although this clusteringmethod is designed to be fast and approx-
imate, the resulting consensus trees have topologies and branch
lengths concordant withmaximum likelihood trees reconstructed
from the same genomic data (e.g., see Supplementary Fig. S1).

3. Data visualization
The CoVizu frontend is implemented in JavaScript using the D3.js
(https://d3js.org/, last accessed 22 October 2021) and jQuery UI
(https://jqueryui.com/, last accessed 22 October 2021) frame-
works. Upon completion of the analysis pipeline, JSON data from
the clustering analysis and the Newick file from the time-scaled
tree reconstruction are automatically transferred from the com-
puting cluster to the web server. To reduce page load time, the
JSON data are transmitted to the client in a gzip-compressed for-
mat. These data are used to render SVG (support vector graphics)
and HTML elements in three panels that represent different lev-
els of data aggregation from left to right. The leftmost panel
depicts the time-scaled tree relating Pango lineages and corre-
sponds to the highest level of data aggregation. The middle panel
depicts a ‘beadplot’ that we use to visualize the genetic variation
within a selected Pango lineage. The width of the beadplot scales
dynamically with the horizontal dimension of the browser win-
dow. Finally, the rightmost panel displays an interactive dynamic
table that displays the individual samples for the selected lin-
eage, variant, or bead. All these visual outputs are presented as a
single composite webpage (Fig. 2). This webpage and its text com-
ponents, e.g., pop-up dialogs, have been translated into French,
Spanish, and Chinese.

3.1 Time-scaled tree
The time-scaled tree relating Pango lineages is rendered as an SVG
using a rectangular layout algorithm, with the earliest time point
on the left-hand side. Each tip representing a lineage is associ-
ated with a rectangular element spanning the range of sample
collection dates. This visualization scheme was recently adopted
by https://covidcg.org (last accessed 22 October 2021; (Chen et al.
2021)) for their lineage report interface. On CoVizu, the user
can select whether the rectangles are colored according to the
number of samples, most recent collection date, average devia-
tion from the molecular clock, or the predominant geographical
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Figure 2. The CoVizu frontend presented as a single webpage at https://filogeneti.ca/CoVizu. Visual information is arranged into three panels
(emphasized with rectangular boxes and labels) to present the data at decreasing levels of granularity from left to right. The leftmost panel displays a
time-scaled tree relating Pango lineages, colored by geographic region in this instance. Selecting a lineage updates the middle panel to display a
beadplot of its variants and samples. In this example, we have selected lineage B.1.362.2, which was sampled predominantly in Europe and comprised
99 samples grouped into 59 variants. The rightmost panel depicted here displays a scrollable table of sample accessions, names, and collection dates.

region of sampling (Africa, Asia, China, Europe, North Amer-
ica, Oceania, and South America). China is classified as a region
because the samples from this country in the GISAID database
are labeled by district (e.g., Guangzhou) instead of by country. We
used a qualitative color-accessible palette developed by Paul Tol
(https://personal.sron.nl/~pault/, last accessed 22 October 2021)
for regions, and built-in D3.js palettes for other color schemes.
The time-scaled tree can be downloaded by the user in the Newick
tree format, and lineage-level statistics can be downloaded as a
comma-separated values (CSV) formatted file.

Mouseover events on rectangular elements trigger a ‘tool tip’
dialog that provides lineage-level summary statistics, such as the
number of samples and mean deviation from the clock model.
In addition, this dialog displays a list of all mutations that were
observed in at least 50per cent of samples. Following the colon-
delimited notation used in https://cov-lineages.org (last accessed
22 October 2021), amino acid substitutions are prefixed with ‘aa’
and labeled by the protein abbreviation and position in the ref-
erence protein sequence. For example, ‘aa:S:D614G’ represents
a substitution of aspartic acid by glycine at Position 614 of the
spike protein. Insertions and deletions are prefixed respectively
with ‘ins’ and ‘del’, and labeled by the reference nucleotide coor-
dinate and indel length in nucleotides. For example, ‘del:11288:9’

represents a deletion of nine nucleotides at genome coordinates
11288–11296 (inclusive).

3.2 Beadplots
Selecting a lineage in the time-scaled tree triggers the browser
to render a beadplot (Fig. 3) in the middle panel as an SVG. A
beadplot is a custom visual device that summarizes the distri-
bution and genetic variation of samples within a lineage. The
horizontal axis of the beadplot is scaled to the range of sample
collection dates for the lineage. Samples with indistinguishable
genome sequences are grouped into variants. In other words, each
variant corresponds to a node in the consensus tree. (In the con-
text of SARS-CoV-2, the term variant is often used interchangeably
with clade or lineage (Mascola et al. 2021). However, variant can
also refer to any unique combination of differences from a refer-
ence sequence.) Each variant is represented by a horizontal line
segment in the beadplot.

Each horizontal line segment spans the range of sample collec-
tion dates. Circles (beads) along a line segment represent samples.
The area of the bead is scaled in proportion to the number of sam-
ples collected on the same date. In addition, each circle is colored
with respect to the most common geographic region of the sam-
ples. Together these elements provide an intuitive visual summary
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Figure 3. Visualizing the sample composition of a lineage. (A) The left image was generated by the CoVizu website for lineage B.1.1.117, using data
retrieved from GISAID on 20 June 2021. Each horizontal line represents genomes that are indistinguishable in sequence (comprising a ‘variant’),
labeled by the name of the earliest sample. For example, Brazil/PE-FIOCRUZ-IAM08 (upper left) was sampled on 6 April 2020, and identical genomes
were subsequently observed in six samples in South Africa. This pattern is consistent with the importation of this variant from Brazil to South Africa.
A more recent variant (Germany/ST-RKI-I-019194, seven samples) is ancestral to several other variants sampled in Germany (lower right). It is derived
from an unsampled ancestral variant (‘unsampled2’) at a distance of 3.8 mutations, averaged over 100 bootstrap replicates, which in turn is separated
from Brazil/PE-FIOCRUZ-IAM08 by a mean of 10.5 mutations. These lengths imply that this lineage is relatively undersampled. (B) For comparison, the
right image depicts a time-scaled tree generated from the same data using FastTree2 and TreeTime. In this visualization, it is more difficult to identify
samples that are genetically indistinguishable. Thus, beadplots endeavor to visually emphasize features that are relevant for public health
applications.

of the frequencies of a specific variant over time. Furthermore,
sampling the same or closely related variants in different regions
provides evidence of importation events (Fig. 3). Unsampled vari-
ants, which correspond to unlabeled internal nodes in the con-
sensus tree, are represented by horizontal line segments that
are not annotated with beads and span the entire width of the
beadplot. The existence of these latent variants is inferred by
the common ancestry of variants that are directly observed. Vari-
ants are connected by vertical line segments that correspond to
branches in the consensus tree. Because the number of branches
can become excessive for large beadplots, we provide a slider wid-
get for users to filter branches by mean length. Horizontal lines
can extend beyond the first and last samples of the correspond-
ing variant if descendant variants are sampled at earlier or later
dates, respectively.

All elements of a beadplot SVG are visually responsive to
mouseover events, which also triggers a tooltip dialog summa-
rizing variant- or bead-level summary statistics, including the
number of samples, branch lengths, and the parent and child
variants. The displayed beadplot can be exported as either a con-
sensus tree (Newick format) or a SVG file, which can be converted
into any rasterized or vector-based image format.

3.3 Sample details
The rightmost panel of theweb page presents some database-level
statistics—namely, the date of the current update, total number of
genomes that passed the quality filters, and the number of Pango
lineages—and a tabbed content area where the user can switch
between two interfaces that summarize the sample metadata.
The ‘countries’ interface displays a bar plot that summarizes the
distribution of samples among geographic regions, and a sortable

table that breaks down these frequencies by country (Fig. 4A) for
the selected element. The ‘samples’ interface, on the other hand,
displays a sortable table that lists the accession number, name
(label), and collection date for every sample associated with the
selected element. In addition, mouseover events are bound to the
accession numbers in the table to trigger a query of the GISAID API
for retrieving laboratory and author information for the sample,
which is displayed as a pop-up dialog (Fig. 4B).

3.4 Search interface
Since the frontend was designed to enable users to browse the
relationships among millions of SARS-CoV-2 samples, we also
needed to implement a search interface to enable users to quickly
focus on samples matching specific parameters. The search inter-
face comprises a text box for submitting a substring query, which
can be matched against Pango lineage names, GISAID acces-
sion numbers, countries, and sample names, and date selection
widgets for specifying a range of sample collection dates. If the
substring query matches a regular expression that identifies it as
a partial Pango lineage name or accession number, the browser
populates a drop-down with suggested ‘autocompletions’ of the
substring.

The submitted query is compared to metadata extracted from
all samples, and the unique identifiers of bead and lineage ele-
ments that contain hits are stored. Next, the browser modifies
the class attribute of all of matching elements, which causes
the window to update how these elements are drawn, i.e., with
CSS highlighting. Caching the search results in this way stream-
lines the process of navigating between lineages and render-
ing the corresponding beadplots. The total number of hits is
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Figure 4. Excerpts from sample details panel. (A) An example of geographical metadata displayed for a lineage. (B) Table of sample information.
Contributing laboratory and author information is retrieved from GISAID and displayed in a tooltip upon a mouseover event bound to accession
numbers.

displayed below the search interface. Finally, the user can traverse
search results using either the ‘next’ and ‘previous’ buttons or
arrow keys.

4. Concluding remarks
Over the course of the SARS-CoV-2 pandemic, it has quickly
become clear that the standard phylogenetic toolkit was not up
to the task of processing the overwhelming number of publicly
accessible viral genomes collected around the world (Morel et al.
2021; Turakhia et al. 2020). This critical situation has catalyzed
the development of new analytical methods (Boskova and Stadler
2020; Worobey et al. 2020). It has also led to the resurrection
of classic methods in phylogenetics, including maximum parsi-
mony (Turakhia et al. 2021) and, in our case, neighbor joining
with an uncorrected distance. CoVizu is under continual devel-
opment and many of the methods described here are subject to
further enhancements and refactoring for improved performance.
We welcome suggestions through our issue tracker for additional
features, with the hope that this rapid analysis and visualization
system can provide a unique, useful resource for public health
monitoring and basic research.

Supplementary data
Supplementary data is available at Virus Evolution online.

Data Availability
All sequence data used to generate the figures are available at
https://gisaid.org, using sample accession numbers provided in
Supplementary Tables 1 and 2.
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