Skip to main content
. 2023 Mar 14;25:e40259. doi: 10.2196/40259

Table 4.

Artificial intelligence–related features of wearable devices for forecasting.

Author Machine learning category Algorithm used for forecasting or predictions Input Data validation method Data set decomposition Algorithm best performance Reported best diagnostic performance of model Ground truth
Hina et al [22] Classical Linear regression, FGSVRa, SVRb, and ensemble-boosted trees PPGc signal Train or test split
  • Training: 60% of 200 subjects

  • Validation: 40%

FGSVR
  • Coefficient of determination (R2): 0.937

  • mARDd: 7.62%

  • RMSEe: 11.20 mg/dL

  • Clarke error grid: 95%

Med-device
Alfian et al [23] Modern LSTMf Insulin dose, BGg level, meal ingestion, and exercise activity Train or test split Two BG data sets:
  • Data set 1: 148 records

  • CGMh data set: single diabetes patient taken: 26,167 records

Both data sets used 80% for training and rest for testing
LSTM
  • Correlation coefficient (r) and RMSE

  • (Data set 1) RMSE: 25.621 mg/dL, r:0.647

  • (Data set 2) RMSE: 2.285 mg/dL, r: 0.999

Expert and med-device
Alarcon-Paredes et al [24] Modern NDi—ANNj Fingertip images K-fold cross validation, train or test split
  • Training: 514 hostograms

  • Train or test (for model selection): 70% of whole data set

  • Validation subset (model validation): 30%

ANN
  • MAEMk: 10.37

  • Clarke grid error: 90.32%

Medical
Islam et al [10] Modern CNNl PPG signal, GSRm, and BG Train or test split
  • 210 data points

  • Training: 204 data points

  • Testing: 6 data points (4 nondiabetic and 2 diabetic)

CNN
  • Clarke grid error: 80%

Med-device
Kularathne et al [25] Classical Linear regression Age, BMI, current blood glucose level, genetic factors, smoking, HbA1c,Carbs NAn NA Linear regression
  • MSEo: 0.0150

  • R2 score: 0.7834

  • Variance score: 0.7346

Medical and med-device
Joshi et al [26] Classical and modern Deep neural network, MPRp NIRq signals Train or test split
  • Training samples: 187

  • Testing samples: 46

MPR3
  • mARD: 4.86%

  • AvgE: 4.88%

  • Mean absolute deviation: 9.42%

  • RMSE: 13.57 mg/dL

Medical and med-device
Zhou et al [27] Classical RFr NIR signals, heart rate variability, pulse transfer time, BG level Train or test split
  • Training samples: ND

  • Test samples: 168

RF
  • Clarke grid error: 80.35%

  • Avg RMSE: 1.44 mg/dL

Med-device
Mahmud et al [28] Modern CNN Infrared channels, GSR and temperature signal Train or test split
  • Training samples: 15 instance data of 15 subjects

  • Testing: another 25 data

  • Chosen data length: 1024

CNN
  • Clarke grid error (values not mentioned)

Med-device
Bent et al [29] Classical Multiple regression model, RF Interstitial glucose summary and glucose variability metrics Train or test split, leave on out
  • Training: 16 participants

  • Testing: 10 participants

RF
  • RMSE: 35.7 mg/dL

  • Mean absolute percentage error: 5.1%

Med-device
Lee et al [9] Modern CNN PPG signal Train or test split 349 of PPG data samples:
  • Training: 279 sets

  • Testing: 70 sets

CNN
  • Clarke error grid: 84.29%

Med-device
Shrestha et al [30] Classical SVMs NA NA NA SVM
  • Accuracy: 97%

Med-device
Li et al [31] Classical RF NIR signal NA NA RF
  • MAE: 17.27%

  • Clarke error grid: 56.52%

Med-device

aFGSVR: fine Gaussian support vector regression.

bSVR: support vector regression.

cPPG: photoplethysmography.

dmARD: mean absolute relative difference.

eRMSE: root mean square error.

fLSTM: long short term memory.

gBG: blood glucose.

hCGM: continuous glucose monitoring.

iND: not defined.

jANN: artificial neural network.

kMAE: mean absolute error.

lCNN: convolutional neural network.

mGSR: galvanic skin response.

nNA: not applicable.

oMSE: mean square error.

pMPR: multiple polynomial regression.

qNIR: near-infrared.

rRF: random forest.

sSVM: support vector machine.