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Abstract

Dysregulated RNA splicing is a molecular feature that characterizes almost all tumor types. 

Cancer-associated splicing alterations arise from both recurrent mutations and altered expression 

of trans-acting factors governing splicing catalysis and regulation. Cancer-associated splicing 

dysregulation can promote tumorigenesis via diverse mechanisms, contributing to increased 

cell proliferation, decreased apoptosis, enhanced migration and metastatic potential, resistance 

to chemotherapy, and evasion of immune surveillance. Recent studies have identified specific 

cancer-associated isoforms that play critical roles in cancer cell transformation and growth 

and demonstrated the therapeutic benefits of correcting or otherwise antagonizing such cancer-

associated mRNA isoforms. Clinical-grade small molecules that modulate or inhibit RNA splicing 

have similarly been developed as promising anti-cancer therapeutics. Here, we review splicing 

alterations characteristic of cancer cell transcriptomes, dysregulated splicing’s contributions to 

tumor initiation and progression, and existing and emerging approaches for targeting splicing 

for cancer therapy. Finally, we discuss the outstanding questions and challenges that must be 

addressed to translate these findings into the clinic.

Introduction

RNA splicing [G] is a fundamental step in the expression of most human genes. In addition 

to its essential role in removing introns from pre-mRNA to produce mature mRNAs, splicing 

also influences other steps in gene expression, including nuclear export, mRNA translation, 

and mRNA quality control via nonsense-mediated decay (NMD)1. Almost all multi-exon 

*correspondence: rbradley@fredhutch.org and olga.anczukow@jax.org.
Author contributions
The authors contributed equally to all aspects of the article.

Competing interests
RKB is an inventor on patent applications filed by Fred Hutchinson Cancer Center related to modulating splicing for cancer therapy. 
OA is an inventor on a patent application filed by The Jackson Laboratory related to modulating splicing factors.

Peer review information
Nature Reviews Cancer thanks Maria Carmo-Fonseca, Polly Leilei Chen and the other, anonymous, reviewer(s) for their contribution 
to the peer review of this work.
This Review discusses the diverse ways in which cancer-associated RNA splicing dysregulation promotes tumor initiation and 
progression, existing and emerging approaches for targeting splicing for cancer therapy, and outstanding questions and challenges in 
the field.

HHS Public Access
Author manuscript
Nat Rev Cancer. Author manuscript; available in PMC 2023 September 01.

Published in final edited form as:
Nat Rev Cancer. 2023 March ; 23(3): 135–155. doi:10.1038/s41568-022-00541-7.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



human genes undergo alternative splicing (AS), wherein a single gene generates multiple 

distinct mature mRNAs to expand the cell’s protein-coding repertoire2. High-throughput 

sequencing studies have revealed that AS both regulates and is regulated by many biological 

processes and phenomena, ranging from neural development to epithelial-to-mesenchymal 

transition (EMT) or T cell activation3,4.

AS plays a similarly important role in many tumors. Most tumors exhibit widespread 

splicing abnormalities relative to peritumoral healthy tissues, including frequent retention of 

normally excised introns, inappropriate expression of isoforms normally restricted to other 

cell types or developmental stages, and splicing errors that disable tumor suppressors or 

promote oncogene expression5–7. Aberrant splicing in tumors can arise from diverse causes, 

including altered expression of key splicing regulatory proteins or RNAs, which themselves 

can function as proto-oncoproteins or tumor suppressors; cis-acting somatic mutations that 

alter splicing of the genes bearing those lesions; and trans-acting somatic mutations that 

cause gain- or loss-of-function alterations affecting splicing regulators, driving pervasive 

splicing changes across the transcriptome6,7. Each of these mechanisms can cause pro-

tumorigenic splicing changes, with the last—recurrent mutations in the genes encoding 

specific splicing factors (SFs) that typically appear as initiating or early events during 

tumor formation—providing a particularly clear genetic illustration of the fundamental role 

that splicing dysregulation plays in tumorigenesis. In recent years, a better understanding 

of individual spliced isoforms that impact cancer cell transformation has led to the 

development of novel approaches to target these individual events8. Molecular inhibitors 

of oncogenic SFs or splicing machinery components are currently being developed as 

anti-cancer therapeutics9. RNA splicing dysregulation plays pervasive and causative roles 

in tumorigenesis, frequently via disruption of the molecular and cellular processes termed 

‘Cancer Hallmarks’ as proposed by Weinberg and Hanahan10,11.

In this Review, we outline both the basic biology and cancer relevance of RNA splicing. 

We discuss splicing regulatory alterations that are implicated in tumor initiation, as well as 

individual splicing events associated with tumor initiation, progression and drug resistance. 

We describe how splicing dysregulation could be therapeutically targeted with small 

molecules and the technical challenges and outstanding questions that need to be addressed 

to translate our fast-improving understanding of splicing’s critical role in tumorigenesis into 

the clinic.

Splicing catalysis and regulation

RNA splicing is a highly regulated process performed by the spliceosome - a very large 

complex consisting of both RNA and protein components - along with additional regulatory 

SF proteins, that fine-tune its activity. The spliceosome recognizes core regulatory sequences 

in the pre-mRNA including the 5’ and 3’ splice sites (5’ and 3’ SS) that mark intron-exon 

boundaries, the branch point [G] site (BPS), and the polypyrimidine tract [G] (Py-tract)12 

(Fig. 1a). Two spliceosomal complexes carry out splicing reactions, the U2-type (major 

spliceosome) or the U12-type (minor spliceosome). They differ mainly in a subset of RNA 

components used during their respective splicing reactions and in the splice site sequences 

they recognize12. The major U2-type spliceosome, which preferentially recognizes GT-AG 
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splice sites and is responsible for the removal of ~99% of introns, contains over 300 

components – including small nuclear RNA (snRNA) molecules that interact with ‘Sm’ 

core proteins and additional proteins to form small nuclear ribonucleoprotein (snRNP) 

particles12. The Sm proteins associate with each other to form a ring-shaped complex 

that binds to U1, U2, U4, and U5 snRNAs. The minor or U12-type spliceosome, which 

recognizes both AT-AC and GT-AG sites, is involved in the removal of less than 1% of 

introns and regulates a distinct set of splicing events and utilizes different spliceosomal 

snRNA and protein components, including ZRSR213. The U12-type spliceosome has 

distinct 5’SS and BPS sequence contexts that guide recognition of these introns. The 

U2-specific snRNPs are U1, U2, U4, and U6, while the U12-type snRNPs are U11, U12, 

U4atac, and U6atac12.

The detailed compositions and structures of the spliceosomal complexes have been reviewed 

extensively12. Several spliceosomal components are altered in human tumors, including via 

recurrent hotspot mutations in components of the ‘Early’ or E complex and pre-spliceosome 

A complex (Fig. 1a), and will be discussed further below.

Except for the dinucleotides adjacent to the 5’ and 3’ SS, the core regulatory sequences 

recognized by the spliceosome are rather degenerate in humans and allow for a huge 

diversity in their sequences14. This provides an additional layer of regulation that depends 

on both cis-acting regulatory sequences and trans-acting SF proteins that can strengthen 

or weaken the spliceosome’s recognition of the splice sites14. Together, these cis-acting 

sequences and trans-acting SFs regulate AS, allowing a single gene to encode multiple 

different RNA isoforms that can be translated into different, and frequently functionally 

distinct, protein isoforms (Fig. 1b). Alternatively spliced isoforms can differ in their 

coding potential, stability, localization, translation efficiency, and other molecular features. 

For example, alternative exons are enriched in gene regions that encode protein-protein 

interaction surfaces15. It is currently estimated that each human protein-coding gene encodes 

an average of 7.4 RNA isoforms; however, much more extreme examples of AS have been 

described16.

Regulatory, trans-acting SFs that modulate AS are a class of RNA-binding proteins (RBPs) 

that recognize and bind cis-regulatory elements on the pre-mRNA, namely exonic or 

intronic splicing enhancer (ESE or ISE) or silencer sequences (ESS or ISS), and promote 

or repress inclusion of that exon into mature mRNA, respectively (Fig. 1c). The serine/

arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs) are two 

well-known SF families that regulate AS in a concentration-dependent manner by binding 

regulatory elements in the pre-mRNA17,18. SR proteins contain an RNA recognition motif 

(RRM) domain that binds RNA and an arginine/serine-rich (RS) domain that mediates 

protein-protein and protein-RNA interactions. hnRNPs typically contain one or multiple 

RRMs, along with a glycine-rich and/or arginine/glycine-rich region, and/or K Homology 

(KH)-domain [G] 18. hnRNPs play diverse roles in AS, mRNA transport, and translation and 

often function as antagonists to SR protein-regulated AS events18. The distinct RNA-binding 

motifs of SR proteins and hnRNPs suggest that these SFs can work antagonistically or 

cooperatively, and the intricate interplay of these regulatory SFs is only beginning to be 

unraveled.
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Splicing alterations in tumor initiation

Mutations or expression changes affecting components of the splicing machinery or SFs 

can play critical roles in cancer initiation and progression (Fig. 2). By inducing splicing 

changes affecting many downstream genes, these alterations have the potential to disrupt a 

network of gene products and cancer pathways. Several key examples are highlighted in the 

following sections.

Recurrent mutations in splicing factors

Recurrent somatic mutations in SF3B1, SRSF2, U2AF1, and ZRSR2 occur frequently 

in hematological malignancies, including in myelodysplastic syndromes (MDS), chronic 

myelomonocytic leukemia (CMML), acute myeloid leukemia (AML), and chronic 

lymphocytic leukemia (CLL)19,20 (Fig. 2a,b). These mutations are frequently termed 

“spliceosomal mutations”. SF3B1 and U2AF1 are also recurrently mutated in diverse solid 

tumor types7,21–23. Mutations in SF3B1, SRSF2, and U2AF1 almost always occur as 

heterozygous missense point mutations affecting specific residues in both haematological 

malignancies and solid tumors, while mutations in the X-linked gene ZRSR2 frequently 

disrupt its open reading frame and preferentially occur in males. Detailed functional studies 

have revealed that recurrent SF3B1, SRSF2, and U2AF1 mutations cause gain or alteration 

of function, while ZRSR2 mutations cause loss of function, consistent with the spectra 

of mutations observed in patients. Spliceosomal mutations are almost always mutually 

exclusive as they elicit redundant and/or synthetically lethal effects due to their cumulative 

impact on AS and hematopoiesis24, although there are rare exceptions to this rule25.

SF3B1 is the most frequently mutated spliceosomal component in cancer, with recurrent 

somatic mutations detected in ~30% of all patients with MDS, including 83% of cases 

of MDS-subtype refractory anemia with ringed sideroblasts (RARS) and 76% of cases 

of MDS-subtype refractory cytopenia with multilineage dysplasia and ringed sideroblasts 

(RCMD-RS)19,26. SF3B1 mutations are also detected in other cancers, including 15% 

of CLL, 3% of pancreatic cancer, 1.8% of breast adenocarcinomas, 1% of cutaneous 

melanomas, and 20% of uveal melanomas21,22 (Fig. 2a). SF3B1 is a core component of 

the U2 snRNP that is involved in BPS recognition and spliceosomal complex A assembly 

(Fig. 1). SF3B1 mutations near-universally occur as heterozygous, missense mutations that 

affect multiple hotspot residues within the C-terminal HEAT domains (Fig. 2b). These 

mutations induce altered BPS recognition with consequent changes in 3’SS recognition, 

resulting in widespread splicing alterations including cryptic 3′SS usage, differential 

cassette exon inclusion, and reduced intron retention27,28.The prognostic implications of 

an SF3B1 mutation depend upon the specific mutation and indication. For example, 

SF3B1K700E is associated with comparatively good prognosis in MDS-RS19,20 , while 

SF3B1K666N is associated with disease progression29. In CLL, SF3B1G742D correlates 

with poor prognosis26. Although how mutant SF3B1 promotes disease phenotypes and 

tumorigenesis is still under active investigation, numerous cellular pathways have been 

implicated. For example, SF3B1 mutations cause aberrant inclusion of a poison exon (an 

exon that contains an in-frame premature termination codon) in BRD9 across tumor types to 

promote cell transformation30; induce MAP3K7 mis-splicing to promote hyperactive nuclear 
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factor-κB (NF-κB) signaling and disrupt erythropoiesis24,31, and disrupt splicing of genes 

involved in heme biosynthesis to cause ring sideroblast formation32.

Recurrent mutations affecting the SR protein SRSF2 have been observed in 10% of all 

patients with MDS and related disorders, including in 31–47% of CMML and 11% of 

AML20,33, and less commonly in solid tumors34 (Fig. 2a). SRSF2 mutations are linked 

with poor clinical outcomes in MDS and increased progression to AML20. Required for 

both constitutive and alternative splicing, SRSF2 mediates exon inclusion and recognition 

of the 5’ and 3’SS by interacting with U1 and U2 snRNPs (Fig. 1). Heterozygous 

mutations immediately adjacent to SRSF2’s RRM domain, which predominantly occur as 

missense mutations and universally affect the P95 residue (Fig. 2b), alter its RNA-binding 

preference. Mutant SRSF2 favors recognition of C-rich sequences (CCNG motif) and has 

reduced affinity for G-rich sequences (GGNG motif), whereas wild-type SRSF2 recognizes 

both35,36. This alters the efficiency of SRSF2-mediated exon inclusion and results in mis-

splicing. For example, mutant SRSF2’s altered binding preference results in downregulation 

of EZH2, a histone methyltransferase implicated in MDS pathogenesis, due to increased 

inclusion of a poison exon35. Notably, EZH2 loss-of-function mutations in CMML are 

mutually exclusive with SRSF2 mutations. SRSF2 mutations frequently co-occur with 

specific additional somatic mutations, such as isocitrate dehydrogenase 2 (IDH2) mutations, 

which functionally collaborate with SRSF2 mutations to promote leukemia, in part via 

increased intron retention in INTS3 that arises from direct effects of mutant SRSF2 as well 

as IDH233.

U2AF1 is mutated in 5%–15% of MDS, 5%–17% of CMML, and 3% of lung 

adenocarcinomas20,23,37,38 (Fig. 2a). The U2AF1–U2AF2 heterodimer recognizes the 3’ 

SS (U2AF1 binds to the AG dinucleotide and U2AF2 to the polypyrimidine tract) and is 

critical for U2 snRNP binding (Fig. 1). U2AF1 is subject to recurrent mutations affecting 

two hotspots, S34 and R156/Q157, within U2AF1’s two zinc finger domains (Fig. 2b). 

Mutations at the two hotspots cause different alterations in RNA binding affinity and 3’ SS 

recognition to induce largely distinct splicing patterns38,39. The means by which U2AF1 
mutations cause disease are not fully understood, with dysregulated pathways including 

DNA damage response, RNA localization and transport, cell cycle, epigenetic regulation, 

innate immunity, stress granule formation, and pre-mRNA splicing40,41.

ZRSR2, an X-linked gene, is mutated in 1–11% MDS without ring sideroblasts, 0.8%–8% 

of CMML, and at lower rates amongst other hematological cancers (Fig. 2a), with most 

mutations occurring in male patients20,42,43. In contrast to the hotspot alterations described 

above, ZRSR2 mutations are distributed across the gene (Fig. 2b), preferentially disrupt the 

open reading frame or key functional residues to cause loss of function, and can co-occur 

with SF3B1, SRSF2 or U2AF1 mutations20. ZRSR2 heterodimerizes with ZRSR1 and is 

reportedly involved in recognition of 3’ SS for both U2-and U12-type introns (Fig. 1). 

ZRSR2 loss results in improper retention of U12-type introns, with few direct effects on 

U2-type introns44, and promotes clonal advantage in part by causing intron retention in 

LZTR1, which encodes a regulator of RAS-related GTPases45,46.
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Mouse models have provided insight into the initiating roles of recurrent spliceosomal 

mutations for myeloid malignancies by specifically inducing these lesions in the 

hematopoietic compartment. Sf3b1K700E/+ knock-in mice exhibit macrocytic anemia, 

erythroid dysplasia, and long-term hematopoietic stem cell expansion47; Srsf2P95H/+ 

knock-in mice exhibit impaired hematopoiesis, myeloid and erythroid dysplasia, and 

hematopoietic stem cell expansion35; U2af1S34F-expressing transgenic mice exhibit 

altered hematopoiesis48, while U2af1S34F/+ knock-in mice exhibit multilineage cytopenia, 

macrocytic anemia, and low-grade dysplasias49; finally, Zrsf2 knock-out mice exhibit 

modest dysplasia and increased hematopoietic stem cell self-renewal45. One important 

factor to keep in mind when interpreting results from such mouse models is the imperfect 

conservation of AS between human and mouse. The particularly high conservation of U12-

type versus U2-type introns may explain why Zrsr2 loss leads to a competitive advantage in 

mouse models, as expected given its enrichment in human disease, whereas mouse models 

of other spliceosomal mutations do not45.

Genetic evidence similarly indicates that spliceosomal mutations are commonly initiating 

events in the pathogenesis of myeloid malignancies. Clonality studies of MDS with SF3B1 
mutations indicate that these lesions are initiating events that occur in human hematopoietic 

stem cells and persist in their myeloid progeny50. A recent longitudinal study revealed 

differences in clonal expansion driven by distinct somatic mutations during aging of the 

human hematopoietic system and clonal hematopoiesis. Spliceosomal mutations drove 

expansion later in life, exhibited some of the fastest expansion dynamics, and were strongly 

associated with transformation to overt malignancy, whereas clones with mutations in 

epigenetic regulators preferentially expanded early in life and displayed slower growth with 

old age51. Spliceosomal mutations are frequently expressed at allelic ratios that indicate 

presence in the dominant clone in many solid tumors, suggesting that they may be early 

or even initiating events in those malignancies as well. However, further genetic studies in 

primary patient samples and functional studies in animal models are necessary to reach firm 

conclusions about the timing of their acquisition.

Genes encoding other spliceosomal components are also mutated in both hematological and 

solid malignancies (Fig. 2). For example, RBM10 is recurrently mutated in lung, thyroid, 

and other cancers, resulting in disrupted splicing and pro-tumorigenic effects52,53. SF3A1, 

PRPF8, SF1, HNRNPK, U2AF2, SRSF6, SRSF1, SRSF7, TRA2B, and SRRM2 mutations 

have also been reported, although at relatively low rates54. A recent study suggested that 

>100 genes encoding spliceosomal components contain putative driver mutations across 

multiple cancer types55. The functional roles of such low-frequency SF mutations in cancer 

are unclear, although they could potentially be important given the pleiotropic role of 

splicing in gene expression.

Finally, mutations affecting proteins that are not canonically involved in splicing regulation 

can have potent effects on splicing. For example, mutations in IDH2 alter AS as discussed 

above33, while hotspot missense mutations in TP53 are associated with dysregulated AS in 

pancreatic cancer56.
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Splicing factor expression alterations

SF-levels and activity are tightly controlled epigenetically, transcriptionally, post-

transcriptionally via AS coupled with NMD, translationally, and post-translationally, 

including via phosphorylation by specific kinases17,18. Changes to any of these regulatory 

pathways can lead to altered SF-expression and consequent altered AS of the SFs 

downstream targets. While recurrent SF mutations are common in hematological 

malignancies, altered SF-levels and copy number changes are particularly prominent in 

solid tumors6 (Fig. 2a). SFs regulate AS of downstream mRNA targets in a concentration-

dependent manner; therefore, changes in SF-levels alone can induce AS deregulation in 

tumors17,18. Causal links have been identified between SF misregulation and multiple 

cancer types. Of note, several SFs that are upregulated in breast tumors exhibit oncogenic 

functions and are sufficient to promote tumor initiation in breast cancer models57–60. SFs 

can also serve as tumor suppressors, and therefore SF-downregulation can contribute to 

tumor development61.

An archetypal example of pro-tumorigenic altered SF-expression is the upregulation of 

the SR protein SRSF1 in breast, lung, colon and bladder tumors57,60,62.This can arise in 

part from amplification of Chr.17q23 but is also observed in tumors with amplifications 

of the gene encoding the transcription factor MYC57,60,63 (Fig. 2a). SRSF1 overexpression 

enhances AS of isoforms associated with decreased cell death (e.g., BIN1, BIM (also known 

as BCL2L11), MCL1, CASC4), increased cell proliferation (e.g.RON, MKNK2, S6K1, 

CASC4, PRRC2C), and resistance to DNA damage (e.g.PTPMT1 and DBF4B), resulting in 

cell transformation in vivo and in vitro57,58,62–64. SRSF1 can act synergistically with MYC, 

often resulting in higher tumor grade and shorter survival in breast and lung cancer patients, 

in part by potentiating the activation of eukaryotic translation initiation factor 4E (eIF4E), 

a translational regulator of cell growth signaling pathways57,63. Further, SRSF1 can activate 

mTOR complex 1 (mTORC1) growth signaling and promote translation initiation in part via 

interactions with the phosphatase PP2A and mTOR and by enhancing phosphorylation of 

eIF4E binding protein 1 (4E-BP1)65,66.

Another SR protein family member, SRSF3, is overexpressed in lung, breast, ovarian, 

stomach, bladder, colon, bone, liver, brain, and oral tumors, in part due to copy number6 

(Fig. 2a). Decreased expression of SRSF3 is also observed, for example in hepatocellular 

carcinoma67, suggesting a complex role in tumorigenesis. Targets of SRSF3 play roles 

in cellular metabolism, growth, cytoskeletal organization, and AS67–69. For example, 

overexpression of SRSF3 regulates the switch between the two isoforms of pyruvate kinase 

(PKM), a key metabolic enzyme underlying the Warburg effect on cancer cells69, promoting 

splicing of the PKM2 isoform and decreasing PKM169. SRSF3 also regulates splicing of 

HIPK2, a serine/threonine-protein kinase involved in transcription regulation and apoptosis. 

SRSF3 knockdown promotes HIPK2 exon 8 skipping, leading to expression of an isoform 

associated with cell death70. SRSF3 also controls AS of target genes involved in glucose 

and lipid metabolism, and its conditional knockout in mouse hepatocytes causes fibrosis and 

the development of metastatic hepatocellular carcinoma with aging67. Finally, high SRSF3 

levels in tumors and cell lines are associated with the splicing of isoforms 1 and 2 of ILF371, 

a double-stranded RNA-binding protein implicated in cell proliferation regulation71.
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Additional SFs that are frequently upregulated in cancers include other members of the SR 

protein family, e.g., SRSF4, SRSF6, or SR-like TRA2β; members of the hnRNP protein 

family, e.g., hnRNPA1, hnRNPA2/B1, hnRNPM, or PTB (also known as hnRNPI); and other 

SFs, e.g., ESPR1 and 2 and RBM5, 6 and 1072–79 (Fig. 2a).

Conversely, several SFs are downregulated in human tumors, including hnRNPK, ESRP1, 

ESRP2, RBFOX2, RBM5, or QKI (Fig. 2a). Decreased levels of QKI, a KH domain-

containing RNA-binding protein, are detected in several tumor types, including lung, oral, 

and prostate cancers, and are associated with poor prognosis80,81. QKI regulates AS of 

NUMB, which encodes a membrane-associated inhibitor of Notch, leading to an isoform 

that decreases cell proliferation and prevents Notch signaling81. QKI also regulates the 

expression of SOX2 (which encodes a transcription factor) by binding a cis-element 

in its 3′ UTR80. In addition, gene fusions of QKI with MYB have been described in 

angiocentric gliomas, a subtype of pediatric low-grade brain tumors, and shown to promote 

transformation in vitro and in vivo82.

In addition to SRSF3 discussed above, other SFs (e.g., ESRPs, other SR proteins, and RBM 

proteins) can similarly be either upregulated or downregulated depending on the tumor 

type, suggesting context-dependent functions as both oncoproteins and tumor suppressors 

and complex roles in regulating tissue-specific splicing. For example, ESRP1 exhibits 

tumor-suppressive functions, and its downregulation during EMT regulates a specific set of 

EMT-associated splicing switches and promotes a more aggressive EMT-phenotype in vitro 
83–85. In contrast, it also exhibits oncogenic activity; high levels of ESRP1 been associated 

with poor prognosis in prostate72 and estrogen receptor positive breast tumors73 and lead to 

increased lung metastasis in animal models of breast cancer86. Adding to the complexity, 

in oral tumors, ESRP1—which is expressed at low levels in normal epithelium—becomes 

upregulated in pre-cancerous lesions, carcinoma in situ, and advanced lesions but then is 

downregulated in invasive tumor fronts76. Another example of an SF with dual functions is 

RBM5, which is often considered to be a tumor suppressor77,87,88 and is downregulated in 

lung and prostate cancers87,89, but is upregulated in primary breast tumors78.

Aberrantly spliced RNA isoforms

Tumors often exhibit a more complex splicing repertoire than do normal tissues (Box 1), 

and tumorgenicity may be associated with cancer-specific AS events that arise during the 

transformation process. In some cases, cis-acting mutations can disrupt splicing to promote 

tumorigenesis. Such cis-acting mutations frequently cause MET exon 14 skipping in lung 

cancer90, and other cis-acting mutations can similarly disrupt gene expression by inducing 

retention of specific introns91.

Cancer-specific AS frequently arises independently of the presence of such cis-acting 

mutations or recurrent mutations affecting SFs5. Such AS switches impact thousands of 

genes and are often specific to a given tumor type5, or even subtype, likely because baseline 

splicing profiles differ between normal tissues. Nonetheless, numerous AS isoforms are 

frequently dysregulated across multiple tumor types, suggesting shared splicing regulatory 

networks across tissue types.
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These dysregulated isoforms often impact the so-called ‘Hallmarks of Cancer,’ a series of 

biological capabilities acquired during the development of human tumors that are frequently 

used as an organizing principle for rationalizing cancer complexity. Cancer-associated AS 

isoforms can provide a proliferative advantage, improve cell migration and metastasis, 

enable escape from cell death, rewire cell metabolism or cell signaling, promote an abetting 

microenvironment, alter immune response, or enable drug resistance (Fig. 3). Such cancer-

associated AS switches can arise from changes in SF levels or activity, cis-acting mutations 

affecting specific splice sites or exons, or other means. Functional studies in model systems 

have demonstrated that alterations in a single isoform can impact tumor growth but are often 

not sufficient to fully recapitulate SF-mediated transformation57–59,92,93, suggesting that the 

combination of multiple AS isoform switches is likely required to promote the different 

steps of tumorigenesis5.

Differential splicing in tumors can lead to the expression of isoforms that increase 

proliferative potential (Fig. 3). For example, splicing of the RPS6KB1 gene encoding the 

protein S6K1, a substrate of mTOR that controls translation and cell growth, has been 

associated with sustained cell proliferation and tumor growth. The RPS6KB1–1 isoform 

produces a full-length protein, while the premature termination codon (PTC)-containing 

RPS6KB1–2 isoform, created by the inclusion of three cassette exons 6a, 6b, and 6c, 

generates a shorter isoform that lacks a portion of the kinase domain and differentially 

activates downstream mTORC1 signaling94. This splicing switch is regulated by SRSF160. 

RPS6KB1–2 is highly expressed in breast and lung cancer cell lines and primary tumors, 

and its knockdown decreased cancer cell proliferation and tumor growth, while conversely, 

knockdown of RPS6KB1–1 induced transformation94–96.

Splicing of the PKM gene can lead to deregulated cell metabolism (Fig. 3). Inclusion of 

either of the two mutually exclusive exons, exon 9 or exon 10 produces the constitutively 

active PKM1 or the cancer-associated PKM2 isoform, respectively69,97,98. These isoforms 

differ by 22 amino acids, and while both perform the same catalytic function, PKM2 can 

switch between the active and inactive state99. High PKM2 levels in human solid tumors 

correlate with shorter patient survival, advanced stage, and poor prognosis99. PKM2 splicing 

is regulated either by repressing inclusion of exon 9 via binding of PTBP1, hnRNPA1, or 

hnRNPA2, or promoting exon 10 inclusion via binding of SRSF397,98,100.

To survive, cancer cells need to acquire the ability to resist cell death. Multiple genes that 

control cell death are regulated at the splicing level, giving rise to distinct isoforms that 

either exhibit anti- or pro-apoptotic functions, including BCL-2 family members, such as 

BCL2L1, BIM, or MCL1 (Fig. 3). BCL2L1 generates two isoforms, BCL-xL and BCL-xS, 

which respectively suppress and promote apoptosis101–104. This splicing switch relies on 

the usage of an alternative 5’ SS in exon 2 and is regulated by SAM68, RBM4, PTBP1, 

RBM25, SRSF1, hnRNPF, hnRNPH, hnRNPK and SRSF966,105–112.

Genomic instability is one of the hallmarks of tumors and one of the proteins that senses 

single strand DNA breaks and activates DNA damage response is the serine/threonine 

checkpoint kinase CHK1 (Fig. 3). Skipping of CHK1 exon 3 produces the shorter isoform 

CHK1-S that uses an alternative downstream initiation start site compared to the full-length 
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isoform113. The resulting protein lacks the ATP-binding N-terminal domain and represses 

full-length CHK1. High levels of CHK1-S are detected in ovarian, testicular, and liver 

cancer tissues113,114.

Nearly all cancer cells up-regulate telomerase to re-elongate or maintain telomeres. Splicing 

of the reverse transcriptase component of telomerase, TERT, can generate at least 22 distinct 

isoforms, which differ in their activity; many of these lack telomerase activity and have a 

dominant negative effect115 (Fig. 3). A splicing switch to favor the full-length TERT, which 

has telomerase activity, occurs in cancer cells, and is regulated by SFs hnRNPK, hnRNPD, 

SRSF11, hnRNPH2, hnRNPL, NOVA1 and PTBP1116–120.

An example of tumor suppressor evasion involves the transcription factor KLF6, which 

regulates cell proliferation, differentiation, and survival, and is often inactivated in tumors by 

mutation or deletions (Fig. 3). AS of KLF6 can produce an oncogenic isoform KLF6-SV1, 

as opposed to the full-length tumor suppressor isoform. KLF6-SV1 uses an alternative 5’ SS 

that causes a frame shift and produces a protein with 21 novel amino acids but lacking all 

three of the zinc finger domains121,122. KLF6 splicing is regulated by SRSF1, TGFβ1, and 

RAS signaling123,124. Increased KLF6-SV1 levels are detected in prostate, lung, ovarian, 

brain, breast, pancreatic, and liver tumors, and correlate with poor survival122,123,125. KLF6-

SV1 knockdown increases apoptosis and prevents tumor growth, whereas its overexpression 

promotes cancer cell proliferation, survival, or invasion in vitro and in vivo122,123,125.

Splicing alterations and tumor progression

Many AS isoforms have been linked with increased cell invasion, angiogenesis, and 

metastatic dissemination (Fig. 3). Several genes encoding proteins that regulate cell adhesion 

and migration express distinct spliced isoforms during cell invasion or EMT. These include 

AS of CD44, RAC1, RON (also known as MST1R), or MENA (also known as ENAH) 

that generate isoforms enabling cell invasion and metastatic dissemination. For example, 

MENA, a regulator of actin nucleation and polymerization that modulates cell morphology 

and motility, generates three main isoforms that play different roles in tumor progression. 

Inclusion of exon INV or 11a produces respectively isoforms MENA-INV or MENA11a 
which are expressed in breast and lung tumors but not in normal tissues126–130, whereas 

skipping of exon 6 produces MENAΔv6129. These splicing events are regulated by many 

SFs, including ESPR1 and ESPR2131. Isoform ratios are altered during tumor progression, 

with increased MENA-INV and MENAΔv6, and decreased MENA11a associated with 

tumor grade and metastasis126–130,132,133.

Splicing switches can also impact angiogenesis and promote tumor growth and 

dissemination to distant organs (Fig. 3). AS of VEGFA, a growth factor that promotes 

proliferation and migration of endothelial cells, leads to protein isoforms with differential 

functions in angiogenesis. Inclusion of variable exons 6a, 6b, 7a, or 7b produces pro- 

angiogenic VEGFAxxx isoforms, whereas inclusion of variable exon 8b, instead of exon 

8a, produces anti-angiogenic VEGFAxxxb isoforms134,135. Both isoforms exhibit similar 

binding affinity to their receptor in vitro; however, VEGFAxxxb is unable to stimulate 

VEGF signaling and thus inhibits angiogenesis136. Splicing of VEGFAxxxb is promoted 
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by SRSF6, whereas SRSF1 and SRSF5 shift the balance towards VEGFAxxx isoforms137. 

Expression of anti-angiogenic VEGFxxxb often decreases as tumors progress136,138–141, and 

its overexpression can reduce tumor growth in mice140,142.

Moreover, AS has been linked with changes in the tumor microenvironment through 

effects on both stromal and immune components (Fig. 3). Several extracellular matrix 

components undergo AS switches during tumor progression143. These include splicing of 

fibronectin and its receptor, α5β1 integrin, both of which have been linked to radiation 

resistance144–146. Inclusion of the fibronectin ED-A exon leads to an isoform expressed 

during embryonic development and in malignant cells, and which differs in its integrin 

binding domain compared to the pro-angiogenic fibronectin isoform that includes exon 

ED-B144–146. Similarly, tumor-specific isoforms of tenascin-C (TNC) or osteopontin (SPP1) 

have been linked with disease progression147,148. Furthermore, changes in extracellular 

matrix stiffness and composition can lead to differential splicing58,149, for example, through 

differential phosphorylation and activation of SFs150.

Finally, AS also impacts multiple regulatory steps in immune cell development and 

function151 (Fig. 3). For example, AS of CD45 is a key step during activation of T cells, 

whereas CD44 AS is involved in lymphocyte activation151. AS regulates multiple genes that 

mediate Toll-like receptor (TLR) signaling and controls the production of positive regulators 

of TLR signaling, including IRAK1, CD14, and IKKβ, as well as the negative regulators 

sTLR4 and RAB7B152–154. Similarly, soluble isoforms of interleukin receptors, such as 

IL-4R, IL-5R, and IL-6R, are generated by AS in immune cells151. However, it remains 

unclear how cell compositional changes in the immune repertoire of tumors impact splicing 

patterns detected in bulk tissue RNA-sequencing.

Splicing alterations and response to therapy

Resistance to targeted therapies

Alterations in AS can lead to resistance to targeted therapy via effects on the target 

or signal transduction pathway (Fig. 4). Treatment with vemurafenib, a BRAF-V600E 

inhibitor, selects for resistant cells expressing an AS BRAF isoform that does not encode 

the RAS-binding domain that normally regulates BRAF dimerization and activation155. 

Similarly, the BRCA1Δ11q isoform, a variant lacking the majority of exon 11, promotes 

resistance to poly(ADP-ribose) polymerase (PARP) inhibition and cisplatin156. In addition, 

BRCA1 wild-type colon cancer cells that are resistant to PARP inhibition express 

BARD1β157, an oncogenic spliced isoform of the BRCA1 interaction partner BARD1 

required for BRCA1 tumor suppressor activities. Expression of BARD1β correlated with 

impaired homologous recombination and its exogenous expression increased resistance to 

PARP inhibitors. Likewise, splicing of the BH3-only pro-apoptotic protein BIM, which 

is regulated by SRSF1, has been linked with response and resistance to tyrosine kinase 

inhibitors57,158. Finally, AS of HER2 (also known as ERBB2), including skipping of 

exon 16—which encodes Δ16HER2, a constitutively active protein that lacks 16 amino 

acids in the extracellular domain—decreases sensitivity to the HER2-targeting antibody 

trastuzumab159,160.
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Drugs that inhibit hormone receptor signaling are often used as frontline treatments for 

prostate tumors expressing androgen receptor (AR) or breast cancers expressing estrogen 

receptor alpha (ERα). Patients often develop resistance to these therapies, and splicing 

alterations can contribute to drug sensitivity (Fig. 4). For example, expression of AR 

isoforms that activate AR signaling despite lacking the ligand-binding domain where 

hormones and anti-androgen antagonists act (e.g., AR-V7 and AR-v567es) is associated 

with anti-androgen resistance and metastasis161–163. Similarly, breast cancers expressing 

ERα36, an isoform lacking the constitutive activation function (AF-1) domain and part 

of the hormone-dependent activation function (AF-2) domain, do not respond well to 

tamoxifen treatment compared to patients whose tumors express other ERα isoforms164.

Resistance to immunotherapy

A breakthrough in the treatment of B-cell acute lymphoblastic leukemia (B-ALL) has been 

the development of immunotherapeutics directed against CD19, including CD19-directed 

chimeric antigen receptor (CAR) T cells. Yet, relapses occur in 50% of patients due to 

immune rejection and T cell exhaustion or loss of the targeted epitope165. Epitope loss 

can be driven by AS of CD19, generating spliced isoforms that lack exon 2 and are not 

recognized by CAR-T cells, leading to resistance166 (Fig. 4). Another example of AS-driven 

acquired resistance to CAR-T cell therapies is AS of CD22167. Skipping of exons 5 and 6 

leads to resistance to CAR-T cells targeting the third immunoglobulin-like domain of CD22, 

whereas skipping of the start codon-containing exon 2 prevents CD22 protein production, 

thereby decreasing the levels of protein available for epitope presentation167.

Targeting splicing for cancer therapy

Given splicing’s critical role in tumorigenesis, there is intense interest in targeting AS for 

cancer therapy. A variety of approaches, ranging from inhibiting key spliceosomal proteins 

or regulatory SFs to modulating specific AS events, are under preclinical and clinical 

development. The following discusses these approaches, starting from broad-spectrum 

splicing modulation to specific isoform-level approaches and ending with a discussion of 

novel approaches that have shown potential preclinically (Fig. 5).

Broad-spectrum splicing modulation

Targeting the core spliceosome—One approach for targeting splicing for cancer 

therapy is to inhibit the spliceosome itself. SF3B1 is a spliceosome component critical 

for BPS and 3’SS selection (Fig. 1), and limiting its function disrupts splicing at very early 

stages in spliceosome assembly. Multiple natural products and derivative molecules that 

target SF3B1 have been identified or developed, including FR901464 and its derivatives 

(e.g., spliceostatin A, meayamycin, and thailanstatins); sudemycin E; pladienolide B, 

FD-895, and their derivatives (e.g., E7107, H3B-8800); and herboxidiene168–173 (Fig. 

5). Mechanistically, SF3B1 inhibition prevents BPS recognition and leads to widespread 

disruption of both constitutive splicing and AS, including in transcripts involved with 

cell proliferation and death174. Interestingly, only a subset of introns and AS events are 

affected by SF3B1 inhibition, indicating that some splice sites are more sensitive than others 

to spliceosomal inhibitors47,174. Cancer cells bearing recurrent mutations in spliceosomal 
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genes are particularly sensitive to SF3B1 inhibitors compared to wild-type cells47,175; 

however, no compounds that selectively target only mutant SF3B1 have been developed. 

Several SF3B1 inhibitors have been taken into clinical trials. E7107 entered into phase 

I trials for solid tumors and resulted in dose-related AS changes in patient cells but did 

not demonstrate broad efficacy and was associated with ocular toxicities that led to study 

discontinuation176,177. H3B-8800 has also undergone phase I clinical trials as a treatment for 

myeloid neoplasms. Although no complete or partial responses were observed, a decreased 

need for blood transfusions was observed in some patients, with minor adverse events178. 

Given the critical role of the SF3b complex in normal splicing, it is unclear whether there 

will be a sufficient therapeutic index for compounds that inhibit wild-type SF3B1 function in 

a clinical setting.

Another broad-spectrum spliceosome inhibitor is isoginkgetin, which prevents recruitment 

of the U4/U5/U6 tri-snRNP and leads to stalling at the prespliceosomal A complex179. In 

pre-clinical models, isoginkgetin treatment influences a number of cancer relevant-pathways 

including cell death180, invasion181, and immune response182.

Targeting alternative splicing factors—The development of inhibitors targeting 

specific RBPs and SFs has been challenging, in part due to the lack of catalytically active 

sites that are readily targetable by most classical small molecule inhibitor approaches. One 

notable exception is the serendipitous discovery that several aryl sulfonamides, which have 

anti-cancer activity via previously unknown mechanisms of action, act as molecular glues 

that cause degradation of the RBP RBM39 via recruitment to the CUL4-DCAF15 ubiquitin 

ligase complex. These compounds (e.g., E7820, indisulam, tasisulam, and chloroquinoxaline 

sulfonamide) induce highly specific degradation of RBM39 and its paralog RBM23183–185 

(Fig. 5). RBM39 is a regulatory SF that works with U2AF65 and SF3B1 in the initial stages 

of spliceosome assembly and splice site recognition186–188 and additionally coordinates 

the action of other regulatory SFs, including SR proteins189. RBM39 knockdown broadly 

impacts AS events, and RBM39-regulated AS events have a 20% overlap with those 

regulated by U2AF65190,191. Clinical trials of aryl sulfonamides have been undertaken191, 

including a phase III trial comparing tasisulam to paclitaxel for metastatic melanoma that 

was halted due to myeloid toxicity and lack of evidence that tasisulam was superior to 

the standard of care192. However, those trials were conducted prior to the discovery of the 

mechanism of action of these compounds, and so target engagement and consequent splicing 

alterations have not yet been measured in clinical trials.

Given that over- and under-expression of specific SFs is common and can promote 

tumorigenesis, developing means to correct SF expression could be therapeutically valuable. 

No such general-purpose ways of targeting individual SFs currently exist, but future 

efforts to develop them could include identification of molecular glues for SFs beyond 

RBM39; promoting or suppressing inclusion of poison exons within SFs via antisense 

oligonucleotides or small molecules to suppress or enhance SF protein levels, respectively; 

and targeting upstream regulators of SF activity or expression that are more readily 

druggable than are many SFs themselves.
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Targeting upstream regulatory proteins—SFs are subject to extensive post-

translational modifications that provide opportunities for therapeutic interventions. For 

example, spliceosomal proteins and SFs are subject to extensive arginine methylation, such 

that both type I (PRMT1, PRMT3, PRMT4, PRMT6, PRMT8) and type II (PRMT5) protein 

arginine methyltransferases are critical for regulation of both constitutive and AS through 

their methylation of Sm proteins and regulatory SFs193,194. PRMT5 itself is a direct target 

of the MYC oncogene, providing a link between MYC-driven tumors and AS93. Many small 

molecules that inhibit type I or II PRMTs have been identified (Fig. 5). Both type I and type 

II PRMT inhibitors exhibit promising preclinical activity, such as anti-tumor activity against 

lymphoma and leukemias with spliceosomal mutations in cell lines and mouse models195, 

and several are currently in early clinical trials.

Many SFs, particularly SR proteins, are heavily phosphorylated. These phosphorylation 

events alter SF activity and localization and are ultimately required for their splicing activity. 

Inhibition of the kinases that regulate these phosphorylation events may therefore be a 

viable strategy to diminish the activity of oncogenic SR proteins (Fig. 5). Serine-rich 

protein kinase-1 (SRPK1) inhibitors lead to decreased phosphorylation of multiple SR 

proteins and have antiangiogenic effects through SRSF1-mediated AS of VEGF196–198. 

Another compound, TG003, influences SR protein phosphorylation by inhibiting CDC-

like kinase 1 (CLK1)199, and exhibits anti-cancer effects in prostate and gastric cancer 

models200,201. Other inhibitors targeting CLK1, CLK2, and CLK4 impair the viability of 

colorectal cancer cells in vitro by impacting the interaction of SRSF10 with these kinases202. 

Inhibitors of dual-specificity tyrosine-regulated kinases (DYRKs) can similarly modulate SF 

phosphorylation and activity. Most of these kinase inhibitors impact the activity of multiple 

SR proteins, and it remains to be determined whether greater selectivity is required to 

limit toxicity in patients with cancer202. Phosphorylation of other SFs is important for their 

activity as well. For example, CDK11 phosphorylates SF3B1, and inhibition of CDK11 via 

the compound OTS964 impairs splicing catalysis and causes intron retention203.

In sum, multiple approaches that induce broad-spectrum splicing modulation and/or 

inhibition show preclinical promise and are currently being tested in the clinic. However, 

as all existing approaches affect splicing in both healthy and malignant cells, careful 

assessment of potential toxicity and therapeutic indices is critical. Given this current 

limitation, the future development of compounds that selectively target or otherwise 

antagonize the neomorphic activities of mutant spliceosomal proteins has the potential to 

yield substantial therapeutic benefit with favorable side effect profiles.

Targeted splicing correction

Small molecules targeting individual isoforms—As many disease-related SFs are 

not currently druggable with small molecules, targeting key downstream mis-spliced RNAs 

instead may offer a promising therapeutic approach. However, only a few compounds 

that work by targeting a specific RNA transcript have shown clinical utility to date204. 

Risdiplam is the first FDA-approved small molecule for the treatment of spinal muscular 

atrophy that works by targeting the RNA transcript204,205. Risdiplam promotes exon 7 

inclusion by selectively binding a splicing enhancer in exon 7 and the intron downstream 
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of the 5′SS in the SMN2 pre-mRNA206. The past five years have seen an increase in 

similar efforts to identify small molecules that target specific cancer-relevant RNAs. Small 

molecule ligands that target RNA can be rationally designed by taking into account the 

preferred binding sites or RNA structure for each small molecule, which can be identified 

from sequence information and in vitro studies207,208. Small molecules can be used to 

induce targeted degradation of RNAs, direct cleavage, or splicing modulation through steric 

hindrance207,208. However, development of such approaches is much more advanced in 

genetic diseases than in oncology.

Splicing modulation with oligonucleotides—RNA-based therapeutics offer the 

potential for extraordinary specificity for virtually any pre-mRNA sequence for the purpose 

of altering pre-mRNA splicing. Splice-switching antisense oligonucleotides (ASOs) are 

short, chemically modified RNA oligos that are designed to bind a reverse complimentary 

sequence in a target pre-mRNA, thereby preventing its interaction with the splicing 

machinery (Fig. 5). Splice-switching ASOs can be designed to specifically target: 1) a 

5’ or 3’ SS, thus blocking its usage; 2) a splicing enhancer sequence, thus preventing 

binding of a SF activator and promoting exon skipping; 3) a splicing silencer sequence, 

thus preventing binding of a SF repressor and promoting exon inclusion; or 4) a cryptic 

SS that arises due to a mutation, thus restoring the wild-type splice site209. Chemical 

modifications to the phosphate backbone and/or the ribose ring have generated highly 

stable ASOs with high substrate specificity, low toxicity, low immunogenicity, and reduced 

ribonuclease H degradation rate210. Delivery of ASOs to a target tissue remains a substantial 

challenge to their widespread therapeutic usage, except for delivery to the liver, for which 

GalNAc conjugation is very effective211,212. Current splice-switching FDA-approved ASOs 

are delivered directly to their target location or systemically213, but delivery to some tissues, 

including tumors, remains challenging. Novel approaches to delivery involve packaging 

formulations that enhance cellular uptake or targeted approaches like aptamer- or antibody-

conjugation that direct the ASO to specific tissues or cell types213. A further important 

challenge to utilizing ASOs in oncology is the importance of delivery to most or all tumor 

cells for efficacy, at least for approaches that act via cell-intrinsic mechanisms.

Despite the challenges of delivery in vivo, the catalogue of ASOs targeting cancer pathways 

has grown. In many cases, ASOs correcting cancer-associated AS events have led to 

promising anti-cancer phenotypes in cell line and animal models (Table 1). For example, 

the gene encoding BCL-x (BCL2L1) can be alternatively spliced to produce a pro-apoptotic 

isoform, BCL-xS, or an antiapoptotic isoform, BCL-xL, and an ASO that promotes 

the formation of BCL-xS induces apoptosis in glioma cell lines214. The bromodomain 

containing 9 (BRD9) gene encodes a poison exon that leads to degradation of its mRNA 

when included in SF3B1-mutant tumors. An ASO that forces skipping of this exon results 

in increased BRD9 protein levels and decreased tumor volume in uveal melanoma mouse 

models30. A similar approach has been taken to target poison exons in transcripts encoding 

oncogenic SFs. ASOs that promote inclusion of poison exons in SRSF3215 and TRA2B216 

lead to AS changes in their target transcripts and decreased proliferation of cancer cells. 

Additional targets include regulators of p53 (e.g., MDM2, MDM4, USP5), cell signaling 

(e.g., ERRB4, IL5R, STAT3, FGFR1, MSTR1), cell death (e.g., BCL2L1, BIM, MCL1), 
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DNA damage (e.g., BRCA2, ATM), and chromatin remodeling and transcription (e.g., 
BRD9, ERG) (Table 1).

Novel strategies targeting alternative RNA splicing—New approaches aimed at 

targeting either SFs or specific AS events have emerged to widen the repertoire of RNA-

targeting tools. One example is decoy oligonucleotides, which attenuate SF activity by 

competing for their natural binding targets217 (Fig. 5). Decoy oligonucleotides induce 

transcriptomic changes similar to knockdown of the target SF, and SRSF1 decoys can limit 

the growth of glioma cells in vivo217. Another approach is the use of engineered U7 snRNAs 

to correct a specific AS event. This approach alters U7’s specificity for histone mRNA 

processing and reengineers it to block specific pre-mRNA sequences, effectively acting as 

an antisense molecule218. Stable expression of these constructs may overcome the limitation 

of conventional antisense therapeutics, in that they would not require multiple rounds of 

administration218. So far, this approach has been utilized in models of myotonic dystrophy, 

Duchenne muscular dystrophy, amyotrophic lateral sclerosis, β-thalassemia, HIV infection, 

and spinal muscular atrophy218. Additionally, alterations in the sequence recognition of the 

U1 snRNA can enable specific targeting of exons to promote their inclusion, and has been 

applied to several RNA targets, including SMN2 (Spinal Muscular Atrophy) and SPINK5 
(Netherton Syndrome)219.

The idea of engineering programmable SFs started with the use of RNA-binding domains 

from Pumilio 1 targeted to specific pre-mRNA sequences220. When designed to target 

BCL-X, Pumilio 1 engineered SFs promoted the formation of pro-apoptotic BCL-xS and 

sensitized cancer cells to chemotherapy220. In the CRISPR era, RNA-targeting Cas13 

(CasRx) has been adapted to base edit target RNA221 or alter splicing of pre-mRNA222. 

Building on the Cas13 RNA-targeting capability, CRISPR artificial splicing factors were 

developed to direct the splicing activity of an individual SF to a target pre-mRNA (Fig. 

5) using guide RNAs (gRNAs) targeting for example SMN2 in models of spinal muscular 

atrophy223 or regulatory exons of oncogenic SFs in breast cancer models216. One challenge 

facing CRISPR-based approaches for therapeutic splicing modulation is that the Cas 

machinery must be delivered and expressed in addition to the gRNA itself.

Finally, gene editing by CRISPR-based approaches enables targeting specific AS events. 

By engineering specific mutations, one can strengthen or abolish a specific SS sequence in 

a target of interest, thereby promoting exon inclusion or skipping. For example, cytidine 

deaminase single-base editors have been used to program exon skipping by mutating target 

DNA bases within SS224,225. Alternatively, targeted exon deletions with CRISPR-Cas9 

using paired gRNAs can promote exon skipping for desired targets226.

Immunomodulatory approaches

Peptides translated from aberrant, cancer-associated RNA isoforms are promising targets 

for immunotherapies. These cancer-specific neoantigens—antigenic epitopes that are not 

produced or presented by major histocompatibility complex I (MHC class I) in healthy 

cells—can arise from mutations affecting splicing as well as non-mutational use of aberrant 

splice junctions, intron retention, and other cancer-specific AS227. For example, AS of 
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CD20 in B-cell lymphomas produces a T helper (TH)-cell response that can selectively 

kill malignant B-cell clones, and vaccination of humanized mice with the corresponding 

peptide from CD20 spliced isoforms can produce a robust T cell response228. Large-scale 

analysis of sequencing and proteomic data has uncovered cancer-associated AS-derived 

epitopes that are predicted to bind MHC class I in over half of tumor samples analyzed5. 

Additionally, studies using long-read RNA sequencing (LR-seq) identified aberrant, tumor-

specific isoforms, a subset of which encoded putative AS-derived neoantigens that were 

immunogenic in mice expressing a human MHC allele229.

In this context, it is interesting to note that tumor mutational burden, a common measure 

of neoantigenic potential, does not always correlate with an individual patient’s response 

to immune checkpoint inhibitors230. Discovery of AS-derived neoantigens may complement 

genomic analysis to determine which patients will respond to immune checkpoint therapy231 

and additionally represent a rich source of potential targets for immunotherapy, particularly 

if tumor-specific targets that are shared across many patients can be identified227,231–233. 

Splicing modulation via multiple compounds that inhibit the SF3b complex triggers an 

antiviral immune response and apoptosis in transplantable syngeneic mouse models of 

breast cancer234, consistent with an important role for aberrant splicing in influencing 

tumor-immune interactions.

Another promising approach is synergistic treatment with splicing-modulating drugs and 

immune checkpoint inhibitors235. Therapeutic modulation of AS in syngeneic mouse 

tumor models by RBM39 degradation or PRMT inhibition induced mis-splicing-derived 

neoantigen presentation on tumor cells that stimulated robust anti-tumor immune responses 

and enhanced responses to checkpoint inhibition235. No evidence of toxicity or increased 

immune infiltration of healthy tissues was observed in this preclinical setting, but further 

work to establish safety is necessary before clinical translation.

Outstanding questions and challenges

Several technical challenges and outstanding questions remain to be addressed to translate 

the above mechanistic findings into the clinic.

Mapping splicing alterations in tumors

Most of the studies to date have relied on short-read RNA-seq to characterize the AS 

repertoire in human tumors (Box 2). These approaches have revealed the complexity of 

the cancer transcriptome and the extraordinary magnitude of AS switches during cell 

transformation. However, short-read RNA-seq cannot reliably detect complex and/or full-

length novel isoforms236. A recent LR-seq study reported that novel spliced isoforms can 

account for >30% of the transcriptome of breast tumors237. As LR-seq approaches become 

more robust and cost-effective, we anticipate that they will become part of the routine 

characterization of tumors and provide a more comprehensive view of the AS make-up of 

tumors and normal tissues. Obtaining precise sequences of full-length spliced isoforms will 

be critical for the identification of private or shared neoantigens and the development of 

immunotherapies that target splicing-derived peptides.
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Moreover, tumors are heterogenous at both the genomic and transcriptomic levels, and 

one can expect a similar complexity for AS. Yet, whether distinct regions of a tumor or 

cell types within a tumor exhibit differences in AS remains unknown, in part because the 

majority of current single-cell studies are based on 3’-biased, short-read RNA-seq that 

cannot reliably detect AS. Recently, single-cell transcriptomic approaches coupled with 

LR-seq have demonstrated that full-length isoforms can be measured in single cells in the 

context of brain development238–240. Thus, single-cell LR-seq would be a very powerful 

strategy to define how AS contributes to tumor evolution and drug response and to identify 

tumor populations associated with drug resistance. Finally, single-cell LR-seq has been 

coupled with spatial transcriptomics to reveal how AS contributes to tissue development and 

disease241. This approach has potential utility for studying tumor initiation and progression, 

which have already been associated with alterations in AS.

Finally, while technologies to measure AS isoforms at the RNA level have flourished over 

the past ten years, detecting and measuring the encoded protein isoforms remains very 

difficult. The ability to measure AS isoforms using quantitative proteomics should further 

enable linking AS alterations to their functional roles in human malignancies and accelerate 

the discovery of novel druggable targets.

Defining the function of AS switches

Work from many labs has identified thousands of cancer-associated AS isoforms. Yet, 

the lack of high-throughput approaches to interrogate the function of spliced isoforms at 

scale impedes the discovery of clinically relevant and actionable AS alterations. Testing the 

function of individual isoforms is laborious, often requiring overexpression or knockdown 

of each target. This limits our ability to define the functional consequences of AS and 

identify key targets for therapeutic correction. Therefore, functional screens that allow 

for the simultaneous study of thousands of AS-derived isoforms are needed. Recently, 

CRISPR-based approaches have demonstrated that hundreds of exons can be individually 

deleted using paired gRNAs and screened for their effects on tumor cell growth226. 

Similarly, CRISPR-based editing can be used to mutate splice sites at scale and prevent 

exon inclusion242. However, these approaches target the DNA sequence and therefore could 

potentially also impact genome and chromatin architecture, gene transcription, and other 

regulatory elements. Additional strategies that model the functional consequences of other 

AS events besides exon skipping (i.e., intron retention, alternative splice sites, mutually 

exclusive exons) need to be developed in the future to enable testing the function of virtually 

any AS event (or combinations of AS events) of interest. Although further development 

is needed, RNA-targeting CRISPR approaches may be particularly useful in this context. 

Of note, many studies are biased towards studying NMD-inducing events, which are easier 

to model, and because their putative loss-of-function consequences are easier to interpret 

functionally compared to other AS events.

Finally, better model systems are needed to test the functional consequences of AS 

alterations in malignancies and to preclinically evaluate splicing-targeting therapies. These 

include in vitro models that recapitulate the complexity of tumors (e.g., organoids and 

co-culture models). Syngeneic mouse models of cancers with mutant SFs can also provide 
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novel mechanistic insights and be used test the efficacy of splicing-modulating drugs. 

Humanized mouse models would further enable testing the efficacy of therapies targeting 

human immune cells. Many functional studies of AS using in vitro and in vivo models have 

primarily focused on cell growth or survival as a readout, but AS switches can impact a 

multitude of other important cellular phenotypes. Finally, current approaches are best-suited 

to modeling the functional consequences of a single AS switch per cell. As cancer cells 

typically exhibit AS alterations in many transcripts, accurately mimicking this will require 

modelling of combinatorial AS switches.

Origins and implications of AS switches

The past decade has revealed the extent of alterations in AS isoforms and SFs in cancer, 

but we still lack a comprehensive understanding of the functional consequences of these 

changes. The relative contributions of tumor-specific isoforms are still largely unknown. Is 

there a key set of AS isoforms that provide a growth advantage to cancer cells, or do tumors 

benefit from a global dysregulation of splicing, resulting in many mis-splicing events that 

complement each other?

Moreover, the mechanistic origins of most splicing aberrations in tumors are not yet 

understood. While several SFs are recurrently mutated or amplified, a large proportion of 

solid tumors display striking changes in AS and/or SF levels, yet do not bear genomic 

alterations directly affecting any SFs. Therefore, understanding the regulation of SF 

expression in healthy tissues and tumors should facilitate the continued development of 

therapies targeting splicing. Regulation of SFs at the transcriptional level (e.g., through 

oncogenic transcription factors such as MYC63,93,97,243,244) or post-transcriptional level 

(e.g., via splicing coupled to NMD216,226,245,246) at least partly controls SF levels in tumors. 

Much less is known about SF regulatory mechanisms at the epigenetic, translational, or 

post-translational levels. Although rewiring of the epigenetic landscape is a hallmark of 

tumors, few studies have examined how it impacts tumor-associated AS. Similarly, (post)-

translational control is a crucial component of cancer development and progression, yet 

its impact on the splicing machinery is poorly understand. MYC activation modulates 

translation of the core SF SF3A3, leading to downstream changes in AS and metabolic 

reprograming in breast cancers247, suggesting a key link between and AS and translational 

control in tumors.

AS is deeply interconnected with other molecular processes, including regulatory 

mechanisms at the epigenetic, transcriptional, and translational levels. Therefore, cancer-

driven changes in any of these mechanisms can in turn impact splicing outcomes, and 

vice-versa, alterations in AS can feed back on these regulatory networks. This intricate 

interconnectivity can be difficult to disentangle, and studies need to be carefully designed to 

capture and differentiate between direct and indirect effects.

Finally, many non-genetic factors influence cancer susceptibility. These include age as well 

as environmental and lifestyle differences, such as diet or smoking. How these factors 

impact AS in pre-cancerous tissues, and whether they are associated with rewiring of the AS 

landscape that increases cancer risk, remains to be determined.
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In sum, research over the past decade has revealed that AS dysregulation is not merely 

an occasional correlate of cancer, but rather a near-ubiquitous and fundamental molecular 

characteristic that frequently plays a causative and even initiating role in tumorigenesis. 

Continued research should reveal new insights into the mechanistic origins and functional 

consequences of pervasive, cancer-specific splicing dysregulation and enable the creation of 

new cancer therapeutics that act by modulating RNA splicing.
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Glossary

Branch point
The branch point is a nucleotide that performs a nucleophilic attack on the 5’ splice site in 

the first step of splicing

K Homology (KH)-domain
The KH domain is a protein domain that can bind RNA and is found in various RNA-

binding proteins, including splicing factors

Polypyrimidine tract (Py-tract)
The polypyrimidine tract is a pyrimidine (C or T)-rich sequence motif upstream of many 

3’ splice sites that is bound by the U2AF2 subunit of the U2AF heterodimer to facilitate 3’ 

splice site recognition

RNA splicing
RNA splicing is a post-transcriptional mechanism that mediates the removal of introns from 

a pre-mRNA transcript and the ligation of exons to form a mature mRNA
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BOX 1 |

Common splicing patterns detected in tumors

Tumor-associated alterations in splicing patterns can lead to a wide variety of functional 

consequences that impact cancer hallmarks. While every alternative splicing (AS) event 

will be unique, a few broader categories have emerged. First, inclusion or skipping 

of in-frame sequences as a consequence of cassette exon splicing or alternative splice 

site selection can lead to the addition or deletion of amino acid-encoding nucleotides, 

impacting protein structure, function, and/or localization (see panel a). On the other hand, 

inclusion or skipping of out-of-frame sequences will introduce premature termination 

codons (PTCs), which will typically trigger nonsense-mediated decay (NMD) and 

prevent production of a corresponding protein isoform (panel b). Those PTC-containing 

transcripts in tumors can arise from intron retention, due to both transcriptome-wide 

intron retention273 and focal retention due to cis-acting mutations91, as well as other AS 

events.

A special subclass of out-of-frame AS events that trigger NMD are ‘poison exons’, 

which correspond to cassette exons that when included introduce a PTC in the transcript 

(panel c). Poison exons are particularly common in genes encoding splicing factors (SFs) 

and frequently endogenously regulate SF protein levels215,216. Their altered splicing can 

cause overexpression of oncogenic SFs and downregulation of tumor-suppressive SFs 

across tumor types. Interestingly, many of the AS events detected in tumors correspond to 

isoforms initially expressed during embryonic development and then switched when adult 

cells differentiate30,35. This reversion to embryonic patterns has been postulated to enable 

cancer cell proliferation and phenotypic plasticity.
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BOX 2 |

How to detect and quantify differential splicing

Strengths and limitations of different techniques for detecting isoforms that are 

differentially spliced between biological or experimental conditions (e.g., cancer vs. 
normal tissues) are discussed below.

Transcriptome-wide detection of alternative splicing (AS) isoforms can be carried out 

using high-throughput RNA-sequencing (RNA-seq) 265. Most cancer studies have used 

short-read RNA-seq (see panel a). Short reads are mapped to the reference transcriptome 

to quantify changes in splicing between conditions. Detecting novel (non-annotated) 

splicing involves additional steps of split read mapping, splice site inference, and de 
novo transcript reconstruction. Differential splicing can be quantified at the level of 

individual splicing events (i.e., inclusion or exclusion of a particular exon)266,267, with 

respect to a particular isoform (i.e., inclusion or exclusion of a particular exon within a 

full-length transcript)268,269 , or at the level of individual isoforms (i.e., quantifying the 

abundance of one isoform with respect to all other isoforms transcribed from the parent 

gene)270. When individual splicing events are studied, AS is typically quantified using a 

‘percent spliced in’ (PSI) or ‘isoform fraction’ value ranging from 0 to 100%, defined as 

expression of the isoforms that follow a splicing pattern of interest relative to the total 

expression of all transcripts of the gene (see panel b).

Short-read RNA-seq enables researchers to generate millions of reads for AS 

quantification. Because of its ubiquity, short-read data can be easily compared with 

public datasets such as those generated by The Cancer Genome Atlas (TCGA) or 

Genotype-Tissue Expression (GTEx) projects. However, isoform reconstruction and 

accurate quantification of full-length isoform expression are both challenging. Short-read 

RNA-seq permits identification of some RNA modifications directly, such as A-to-I 

editing, and others indirectly by immunoprecipitation and sequencing. Standard single-

cell RNA-seq technologies, which preferentially sequence 3’ ends of RNAs, do not 

permit accurate splicing quantification.

Long-read RNA-seq (LR-seq) technologies can sequence full-length RNA isoforms 

(see panel a). LR-seq can reveal complex AS, novel 5’ or 3’ untranslated regions 

(UTRs), and gene fusions. Recent LR-seq approaches enable direct RNA sequencing 

and RNA modification detection236,271. However, LR-seq yields relatively few reads per 

sample, limiting its utility for isoform quantification. This limitation can be addressed 

with targeted LR-seq, such as enriching for isoforms of interest with probe capture 

or depleting high-abundance RNAs. Combining LR-seq for isoform identification with 

short-read RNA-seq for isoform quantification is effective but complex237.

Accurately quantifying splicing is challenging due to statistical considerations. 

Quantifying expression of AS isoforms primarily relies upon ‘informative’ reads that 

uniquely arise from one or more, but not all, isoforms (e.g., reads which cross exon-

exon junctions that are only present in one isoform). Technical effects such as 3’ end 

biases can manifest as apparent differential AS. These challenges can be addressed by 
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sequencing to high coverage, applying read coverage thresholds, and utilizing appropriate 

statistical tests.

Targeted experimental approaches can detect and quantify selected isoforms (see panel 

c). These include RT-(q)PCR utilizing isoform-specific primers, for which at least one 

primer should cross a splice junction to ensure that the assay queries mature mRNA. 

Digital droplet PCR (ddPCR) can allow for absolute isoform quantification. Protein-

encoding isoforms can be detected with isoform-specific antibodies. Finally, isoform-

specific RNA probes enable isoform mapping and quantification with spatial resolution. 

Although most of these approaches are low throughput, imaging advances may enable 

simultaneous detection of hundreds of isoforms.
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Figure 1. Principles of constitutive and alternative splicing.
(a) Stepwise assembly of spliceosomal complexes on a pre-mRNA molecule and catalysis 

of the splicing reaction to generate mature spliced mRNA. During the first step of the 

splicing reaction, the ATP-independent binding of U1 snRNP to the 5’SS initiates the 

assembly of the E complex, while SF1 and U2AF2 bind, respectively, to the BPS and 

Py-tract. In the second step, the ATP-dependent interaction of U2 snRNP with the BPS, 

stabilized by U2AF2–U2AF1 and SF3a–SF3b complexes, leads to A complex formation 

and SF1 displacement from the BPS. The recruitment of the U4/U6/U5 tri-snRNP complex 
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marks the formation of the catalytically inactive B complex. The active B* complex is 

formed following major conformational changes, including release of U1 and U4, and 

the first catalytic step generates the C complex and results in lariat formation. The C 

complex performs the second catalytic step, which results in joining of the two exons. 

The spliceosome then disassembles releasing the mRNA and the lariat bound by U2/U5/

U6.Spliceosomal core factors that exhibit alterations in human tumors are colored next 

to each complex. (b) Alternative splicing patterns are classified into cassette alternative 

exon splicing, alternative 5’ and 3’ splice site usage, mutually exclusive exons, and intron 

retention. These splicing patterns lead to distinct spliced mRNA isoforms that can be 

translated into protein isoforms with distinct sequences and functions. (c) Trans-acting 

regulatory splicing factors act as splicing activator (A) or repressor (R) and promote or 

inhibit spliceosome assembly by binding enhancers (ESE/ESS) or silencers (ISE/ISS) cis-

acting regulatory sequences. 5’/3’ ASS: 5’/3’ alternative splice site; BPS: branch point site; 

Py-tract: polypyrimidine tract; snRNP: small nuclear ribonucleoprotein.
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Figure 2. Recurrent splicing factor alterations in cancer.
(a) Examples of SFs frequently upregulated, downregulated, or mutated in human primary 

tumors shown per tumor type. (b) Recurrent hotspot mutations in components from 

the spliceosomal A complex detected in human malignancies (BRCA-breast cancer, 

CLL-chronic lymphocytic leukemia, CMML-chronic myelomonocytic leukemia, MDS-

myelodysplastic syndromes, PDAC-pancreatic adenocarcinoma, UVM-uveal melanoma). 

Positions of recurrent mutations are indicated along with the protein structures and domains 

(Zn- zinc finger domain, UHM-U2AF homology motif domain, RS-arginine/serine-rich 
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domain, RRM-RNA-recognition motif, HD-heat domain). ZRSR2 mutations primarily affect 

U12-type introns, but as ZRSR2 has been biochemically implicated in U2-type splicing as 

well, it is illustrated in association with a U2-type intron above264.
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Figure 3. Splicing hallmarks of cancer.
Examples of spliced isoforms implicated in the regulation of critical cellular processes 

defined as the Cancer Hallmarks by Weinberg and Hanahan10,11. Note that the cancer 

hallmark ‘Polymorphic microbiomes’ is not included here.
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Figure 4. Splicing-driven alterations in drug responses.
Examples of alternatively spliced isoforms associated with altered response or resistance to 

targeted therapies, including isoforms that confer resistance to therapies targeting HER2 (a) 

or the androgen receptor (b), as well as to chimeric antigen receptor (CAR) T cells (c,d). 

AR, androgen receptor; Ex, exon; FL, full length.
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Figure 5. Therapeutic approaches to target splicing in cancer.
Current strategies either target (a) the splicing machinery itself or (b) the aberrantly spliced 

isoforms expressed in tumor cells. (a) Approaches targeting the spliceosome and splicing 

factors (SFs) include broad-spectrum inhibition or modulation as well as SF-specific 

inhibition both directly or through inhibition of upstream regulators of post-translational 

modifications (e.g., targeting methylation (Me), phosphorylation (P), or ubiquitination (Ub) 

processes). (b) Modulation of specific isoforms can be achieved using small molecules, 

splice-switching antisense oligonucleotides (ASOs), DNA- or RNA-targeting Cas with 

CRISPR-based approaches, or engineered small nuclear RNAs (snRNAs).
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Table 1.

Splicing-modulating antisense oligonucleotides tested in cancer models.

Target
Gene

Induced Splicing
Event

Tumor
Type

Type of cancer model References

ATM blocks exon inclusion LE Cell line 248 

BCL-X switches BCL-xL to BCL-xS BRCA, GBM, LUAD, PRAD Cell line 249, 250

BIM exon 4 inclusion LE Cell line 251 

BRCA2 cryptic exon skipping BRCA Cell line 252 

BRD9 exon 14a skipping UVM Cell line
Xenograft mouse model

30 

ERBB4 exon 26 skipping BRCA Cell line
Xenograft mouse model

253 

ERG exon 4 skipping PRAD Cell line
Xenograft mouse model

254 

EZH2 poison exon skipping LE Cell line 195 

FGFR1 exon α inclusion GBM Cell line 255 

GLDC exon 7 skipping LUAD Cell line
Xenograft mouse model

256 

IL5R exon 5 skipping LE Cell line 257 

MCL1 exon 2 skipping SKCM Cell line 258 

MDM2 exon 4 skipping UCEC Cell line 259 

MDM4 exon 6 skipping DLBCL, SKCM Cell line
Patient-derived xenograft mouse model

260 

MKNK2 3’ UTR intron retention GBM Cell line
Xenograft mouse model

92 

MSTR1 exon 11 skipping BRCA, STAD Cell line 261 

PKM2 exon 9 inclusion GBM Cell line 69 

SRSF3 poison exon inclusion BRCA, OSCC Cell line 215 

STAT3 exon 23 skipping BRCA Cell line
Xenograft mouse model

262 

TRA2B poison exon inclusion BRCA Cell line 216 

USP5 alternative 5' SS GBM Cell line 263 

Breast carcinoma (BRCA), diffuse large B-cell lymphoma (DLBCL), glioblastoma (GBM), leukemia (LE), lung adenocarcinoma (LUAD), prostate 
adenocarcinoma (PRAD), oral squamous cell carcinoma (OSCC), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), uterine 
corpus endometrial carcinoma (UCEC), uveal melanoma (UVM).
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