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Abstract

Dysfunction of goal-directed behaviors under stressful or pathological conditions results in 

impaired decision-making and loss of flexibility of thoughts and behaviors, which underlie 

behavioral deficits ranging from depression, obsessive-compulsive disorders and drug addiction. 

Tackling the neuromodulators fine-tuning this core behavioral element may facilitate the 

development of effective strategies to control these deficits present in multiple psychiatric 

disorders. The current investigation of goal-directed behaviors has concentrated on dopamine 

and glutamate signaling in the corticostriatal pathway. In accordance with the beneficial effects 

of caffeine intake on mood and cognitive dysfunction, we now propose that caffeine’s main site 

of action - adenosine A2A receptors (A2AR) - represent a novel target to homeostatically control 

goal-directed behavior and cognitive flexibility. A2AR are abundantly expressed in striatopallidal 

neurons and colocalize and interact with dopamine D2, NMDA and metabotropic glutamate 5 

receptors to integrate dopamine and glutamate signaling. Specifically, striatopallidal A2AR (i) 

exert an overall “break” control of a variety of cognitive processes, making A2AR antagonists 

a novel strategy for improving goal-directed behavior; (ii) confer homeostatic control of goal-

directed behavior by acting at multiple sites with often opposite effects, to enhance cognitive 

flexibility; (iii) integrate dopamine and adenosine signaling through multimeric A2AR-D2R 

heterocomplexes allowing a temporally precise fine-tuning in response to local signaling changes. 

As the U.S. Food and Drug Administration recently approved the A2AR antagonist Nourianz® 

(istradefylline) to treat Parkinson’s disease, striatal A2AR-mediated control of goal-directed 

behavior may offer a new and real opportunity for improving deficits of goal-directed behavior and 

enhance cognitive flexibility under various neuropsychiatric conditions.
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1. Introduction

The basal ganglia critically gate multiple behaviors, ranging from locomotion, learning, 

emotion and cognition (Gunaydin and Kreitzer, 2016; Hikosaka et al., 2018). This involves 

multiple integrative modules organized as parallel striatal projection pathways that are 

driven by corticostriatal glutamatergic pathways (Cataldi et al., 2022; Lovinger, 2010). 

These circuits are fine-tuned by the dopamine and adenosine systems causing competitive 

and sometime opposite impacts on information flow to other brain regions. One type of 

striatum-dependent behavioral output/processing is the balance and smooth shift between 

goal-directed behaviors and habit formation (Cruz et al., 2023; Yin and Knowlton, 2006; 

Yin et al., 2008). Goal-directed behavior allows to continuously re-estimate circumstances 

adapting changes to reach a goal or avoid aversion; in contrast, habitual behavior triggers 

rapid responses to a particular stimulus or state that are resistant to interference (Dolan and 

Dayan, 2013; Smith and Graybiel, 2014). Their interaction and cooperation are critical for 

flexible and adaptive behaviors in our daily life.

The imbalance of goal-directed and habitual behaviors upon stressful or pathological 

conditions results in impaired decision-making, aberrant habitual behavior, increased 

stereotypy and behavioral disinhibition with loss of flexibility of thoughts (Robbins 

et al., 2019; Voon et al., 2017). Such deficits in goal-directed decision-making may 

therefore underlie disparate symptoms across psychiatric disorders, ranging from depression, 

obsessive-compulsive disorders (Gillan et al., 2011), drug addiction (Dolan and Dayan, 

2013) and preservative behaviors seen in Huntington’s (HD) or Parkinson’s disease (PD) 

(Lawrence et al., 1998; Redgrave et al., 2010). Thus, the precise characterization of the 

fine-tuning of goal-directed behavior may contribute to cluster behavioral deficits across 

clinical diagnosis boundaries onto a common framework and facilitate the development of 

effective strategies to control goal-directed behavioral deficits across multiple psychiatric 

disorders.

Current investigation into the neuromodulation of goal-directed behaviors has largely 

concentrated on dopamine and glutamate signaling in the striatum (Yin and Knowlton, 

2006). Dopamine and glutamate signaling formats multiple behavioral processes including 

prediction error signal, motivation, value and executive function: for example, nigrostriatal 

dopamine provides an “error prediction” signal for instrumental learning through 

reinforcement (Rossi et al., 2013; Steinberg et al., 2013) while the activation of 

the glutamatergic corticostriatal pathway exerts a “gain” control of cortical incoming 

information for action-outcome performance (Histed et al., 2009). Yet, these efforts have not 

translated into effective pharmacological strategies for improving deficits in goal-directed 

behavior. In fact, there is no effective pharmacological strategy to dampen deficits of goal-

directed behavior in neuropsychiatric disorders.
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This review focuses on new insights into the role of striatopallidal A2AR in temporal, 

cellular and circuit integration mechanisms conferring a homeostatic control of goal-

directed behavior with enhanced cognitive flexibility. The formation of heteromers and 

signalosome complexes allows striatopallidal A2AR to temporally integrate dopamine and 

glutamate signaling to fine-tune striatal signaling and neuroplasticity. Moreover, the ability 

of striatopallidal A2AR to act as a break mechanism to constrain a variety of cognitive 

processes and to homeostatically control goal-directed/habitual behaviors with remarkable 

cognitive flexibility may provide a rationale to develop novel therapeutic strategies targeting 

A2AR to control deficits in goal-directed behavior in different psychiatric disorders.

2. Striatopallidal A2AR exert fine-tuning and temporally integrative 

modulation through signalosome complexes

A2AR are densely located in striatopallidal medium spiny neurons (MSN) (Fig. 1), where 

they colocalize and antagonistically interact with D2R (Azdad et al., 2009; Hillion et al., 

2002). A2AR also directly interact with NMDAR (Gerevich et al., 2002; Higley and Sabatini, 

2010), mGlu5R (Ferré et al., 2002; Kachroo et al., 2005) and cannabinoid CB1R (Carriba 

et al., 2007; Köfalvi et al., 2020) in a synergistic manner (Table 1). A2AR are also present 

at corticostriatal terminals (Hettinger et al., 2001; Rebola et al., 2005), where they modulate 

glutamate release (Ciruela et al., 2006; Rodrigues et al., 2005), controlling A1R (Ciruela et 

al., 2006), CB1R (Ferreira et al., 2015; Martire et al., 2011) and mGlu5R (Rodrigues et al., 

2005). Thus, A2AR are uniquely positioned to integrate incoming information (glutamate 

signals) and neuronal sensitivity to this incoming information (dopamine signals) (Ferré 

et al., 2023) to control striatal synaptic plasticity (long-term depression - LTD and long-

term potentiation - LTP) and different striatum-dependent behaviors including goal-directed 

behavior. Accordingly, A2AR modulate LTP at corticoaccumbal synapses (d’Alcantara et 

al., 2001) and LTP, LTD (Li et al., 2015a; Maltese et al., 2017; Morató et al., 2019) and 

spike-timing-dependent LTP (Flajolet et al., 2008; Shen et al., 2008a) at glutamatergic 

synapses onto striatopallidal MSN. Furthermore, concomitant stimulation of A2AR and D2R 

shifts striatopallidal MSN plasticity from LTD to LTP (Shen et al., 2008a) and modulate 

a form of striatal LTD that is dependent on endocannabinoid release and D2R activation 

(Kreitzer and Malenka, 2007). In particular, striatal LTD, which is restricted to striatopallidal 

MSN and requires activation of D2R and mGlu5R (Kreitzer and Malenka, 2007; Lovinger, 

2010), is the main form of synaptic plasticity in the dorsolateral striatum (DLS) (Di 

Filippo et al., 2009; Lovinger, 2010; Partridge et al., 2000). The loss of striatopallidal 

LTD is associated with a shift from goal-directed action (Furlong et al., 2017) to habitual 

responding (Nazzaro et al., 2012). Thus, striatopallidal A2AR signaling orchestrates D2R-/

mGlu5R-/CB1R-mediated LTD in striatopallidal MSN to modify instrumental learning.

Among several A2AR-dependent receptor-receptor interactions (Table 1), the homeostatic 

control of goal-directed (and other) behaviors by striatopallidal A2AR is mostly achieved by 

the strategic colocalization and formation of A2AR-D2R heteromers in the striatum (Ferré 

and Ciruela, 2019). A2AR-D2R heteromers have been studied extensively by fluorescence 

resonance energy transfer (FRET), receptor binding, co-immunoprecipitation and blocking 

peptides targeting the A2AR-D2R interaction site (Azdad et al., 2009; Hillion et al., 2002). 
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The presence of A2AR-D2R (Trifilieff et al., 2011) and A2AR-CD73 heteromers in the intact 

striatum (Augusto et al., 2013) has been further confirmed by proximity ligation assays 

(PLA). The functional significance of these A2AR-D2R heteromers in intact animals is 

supported by the dynamic change of their relative density in different disease conditions, 

namely in the dopamine-depleted caudate-putamen after chronic L-DOPA treatment in 

non-human primates (Bonaventura et al., 2014), in the post-mortem brain of PD patients 

(Fernández-Dueñas et al., 2019), and their increased density (by nearly 2-fold) upon training 

to promote habit-based responses rather than training to promote goal-directed behavior (He 

et al., 2016).

Recent developments have allowed evolving from an initially proposed existence of different 

subpopulation (homomers vs. heteromers) of A2AR and D2R in striatopallidal MSN to a 

revised model of a predominant population of A2AR-D2R heteromers forming molecular 

complexes with adenylyl cyclase subtype 5 (AC5), a major AC in striatal MSN (Navarro 

et al., 2018a), mGlu5R and CB1R. These multimeric structures act as integrative devices of 

adenosine/dopamine/glutamate/endocannabinoid signals, dictating the excitability and gene 

expression pattern of striatopallidal MSN (Ferré et al., 2018). Furthermore, homeostatic 

control and integration of dopamine, glutamate, endocannabinoid and adenosine by these 

heteromeric signalossomes require co-stimulation of these receptors by the temporally 

precise arrival of these signals at striatopallidal MSN. Indeed, a recent study has revealed 

a temporally specific relationship between striatopallidal A2AR signaling and nigrostriatal 

dopamine signaling in association with the reward that is critical for the A2AR modulation 

of instrumental behavior (Li et al., 2016). Thus, this molecular and temporal integrative 

mechanism uniquely positions striatopallidal A2AR as preferential controllers of striatum-

dependent behavior (including goal-directed behavior) to fine-tune distinct behavioral 

elements (such as the maintenance and retrieval of working memory) in response to local 

adenosine/dopamine signal changes.

In line with this molecular and physical signal integration, the contemporary theory of 

striatum-dependent behavioral learning postulates that the convergence of nigrostriatal 

dopamine (reinforcement) signal and corticostriatal glutamate (sensorimotor) signaling on 

striatopallidal MSN is critical for coding of the action and outcome relationship and 

instrumental behavior (Augustin et al., 2014; Yagishita et al., 2014). Striatopallidal A2AR 

may modulate instrumental learning by acting precisely at the time of the reward to interact 

with the reward-triggered dopamine and glutamate signaling. The temporal tight relation 

between A2AR signaling and the reward-triggered dopamine and glutamate signaling in 

the control of instrumental behaviors was recently highlighted using optoA2AR (Li et al., 

2015b): the time-precise optogenetic control of intracellular A2AR signaling showed that 

a transient and “time-locked” (but not random) activation of striatopallidal MSN at the 

time of the reward is sufficient to affect acquisition of instrumental behaviors and to define 

the animal’s sensitivity to goal-directed valuation (Li et al., 2016). This conclusion is in 

agreement with a recent study showing the precision and sufficiency of “time-locked” 

activation of the striatopallidal pathway during the reward to modify instrumental learning 

and with the recent optogenetic identification of a narrow (0.3–2 s) critical time window for 

modulation of striatal plasticity after optogenetic stimulation of nigrostriatal dopamine and 

corticostriatal glutamate inputs separately (Yagishita et al., 2014).
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3. Striatopallidal A2AR act as a “break” mechanism constraining cognition

Increasing evidence from diverse learning paradigms suggest that the activation of 

striatopallidal A2AR exerts a selective inhibitory control on various cognitive behaviors, 

including working memory (Augusto et al., 2013; Li et al., 2018a), instrumental learning 

(Li et al., 2016, 2018a), reversal learning and set-shifting (Zhou et al., 2019), Pavlovian 

fear conditioning (Wei et al., 2014), and goal-directed behavior (Emtage et al., 2022; Li et 

al., 2016, 2018b). Thus, the comparison of global, forebrain-specific and striatum-specific 

A2AR knockout (KO) models shows that the inactivation of striatal A2AR is sufficient to 

enhance a variety of cognitive processes including working memory (Wei et al., 2011), 

reversal learning (Wei et al., 2011), goal-directed behavior (Yu et al., 2009), Pavlovian 

fear conditioning (Wei et al., 2014), effort-related decision making and effort expenditure 

(Mingote et al., 2008; Sun et al., 2023) without affecting spatial reference memory, motor 

function, and anxiety-like behaviors in ‘control’ rodents.

Instrumental behaviors are operationally defined as behavioral responses that are sensitive 

(goal-directed) or insensitive (habit) to outcome value and action-outcome contingency 

(Redgrave et al., 2010; Yin and Knowlton, 2006). The devaluation test reveals that 

striatum-specific A2AR KO mice or focal A2AR KO in the dorsomedial striatum enhance 

goal-directed behavior; conversely, optogenetic or chemogenetic activation of striatopallidal 

neurons in the dorsomedial striatum suppress goal-directed behavior (He et al., 2020). 

However, goal-directed and habitual behaviors may at times compete and at others cooperate 

in the selection and subsequent evaluation of actions because their control over performance 

appears to be all or none (Balleine and Dezfouli, 2019). The critical issue is whether 

striatopallidal A2AR preferentially control goal-directed behavior at the expense of habit 

formation or vice versa or both, an issue that cannot be addressed by standard random 

ratio (RR, promoting goal-directed behavior) or random interval (RI, promoting habit 

formation) training protocols since the devaluation test would produce an all or none 

response without delineating their relationship. We have recently clarified this issue using 

the RR and RI dual trainings in the morning and afternoon respectively for 10 days, 

which allowed demonstrating that A2AR in the nucleus accumbens (NAc) preferentially 

control goal-directed behavior (Li et al., 2020). Importantly, the goal-directed consequence 

of striatopallidal A2AR inactivation should be attributed to an enhanced goal-directed 

behavior but can be manifested as an impaired habit formation (Yu et al., 2009). This 

preferential modulation of goal-directed compared to habit-based learning by A2AR was 

further confirmed by the ability of A2AR blockade to selectively reverse goal-directed 

behavior triggered by aggregated α-synuclein in the striatum (He et al., 2022).

It should be noted that the over-inhibition of A2AR may potentiate goal-directed drug 

seeking behaviors such as alcohol consumption as indicated by genetic or pharmacological 

inactivation of A2AR (Nam et al., 2013). Consistently, A2AR agonists or the direct activation 

of A2AR-containing MSN of the indirect pathway in the dorsomedial striatum decreases 

conditioned alcohol-seeking behaviors (Hong et al., 2019), although A2AR inhibition 

promotes an orbitofrontal-DMS LTP that reduces alcohol-seeking behaviors (Cheng et 

al., 2021). These studies highlight the importance of the contexts of establishment of goal-

directed behaviors. More precisely, A2AR antagonism may mediate both enhanced cognitive 

Chen et al. Page 5

Neuropharmacology. Author manuscript; available in PMC 2024 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



beneficial goal-directed behaviors and maladaptive detrimental goal-directed behaviors such 

as addictive behaviors, depending on when and in what contexts the A2AR inactivation 

occurs.

The “brake”/inhibitory control by striatopallidal A2AR is apparently inconsistent with a 

proposal that the D1R-expressing direct pathway selectively controls reward behavior while 

the indirect pathway selectively controls aversive behavior such as fear conditioning (Hikida 

et al., 2013). This proposal is based on the finding that selectively blocking striatopallidal 

neurons attenuates aversive learning (i.e. electric shock-induced fear conditioning) but has 

no effect on reward behavior (e.g. cocaine-induced place preference conditioning) and 

that the A2AR antagonist SCH58261 attenuates Pavlovian fear conditioning (Hikida et al., 

2013). However, brain-region specific A2AR KO mice allowed showing that the selective 

deletion of striatal A2AR enhances fear conditioning while forebrain A2AR (including the 

cortex, hippocampus and striatum) attenuate fear conditioning (Wei et al., 2014). Thus, the 

attenuation of fear conditioning by A2AR antagonists likely results from an action of cortical 

or amygdala A2AR (Simões et al., 2016), rather than striatopallidal A2AR. This would argue 

against a selective involvement of the indirect pathway, which promotes aversive behaviors, 

but supports the view that the activation of the indirect pathway inhibits fear conditioning.

Taken together, striatopallidal A2AR assume a common inhibitory control over diverse 

cognitive processes and thus function as a common "break" mechanism to constrain 

cognition. These findings not only herald the notion that the suppression of A2AR activity 

is pro-cognitive but also support the possibility that A2AR may be a target for selectively 

alleviating cognitive deficits in pathological conditions (see below). The control of cognition 

by striatopallidal A2AR is consistent with the critical role of striatopallidal MSN in 

instrumental learning as revealed by a series of studies with the deletion of Gpr6 (a 

striatopallidal-enriched gene) (Lobo et al., 2007), optogenetic stimulation of D2R-containing 

neurons (Kravitz et al., 2012; Tai et al., 2012) and enhanced glutamatergic synaptic 

transmission in striatopallidal MSN of the dorsolateral striatum (Yin et al., 2009).

The classic model of the basal ganglia predicts that experimental manipulations of the 

striatopallidal pathway with pharmacological, lesioning, genetic knockout and optogenetic 

approaches would produce a pronounced effect on motor activity (Carvalho Poyraz et 

al., 2016; Durieux et al., 2009). Altered motor activity would confound the dissection 

of the causal role of striatopallidal A2AR in the control of goal-directed and habitual 

behaviors. However, the use of brief light stimulation parameters in the instrumental training 

sessions (i.e. 10 mW, 2 s occurring randomly within 1 min) and the use of a behavioral 

paradigm whose main readout is performance accuracy (which is largely independent of 

motor activity), allow demonstrating that striatopallidal A2AR-mediated inhibitory control is 

largely independent of confounding motor activity.

As all behaviors are operated on the top of an arousal effect, this “break” mechanism may 

also be associated with the ability of striatopallidal A2AR to modulate arousal (Lazarus 

et al., 2012) and enhanced motivation (He et al., 2020). Indeed, A2AR play a crucial role 

in the regulation of sleep (Huang et al., 2005; Lazarus et al., 2011), and A2AR in the 

NAc mediates the arousal effect of caffeine, a non-specific antagonist of A1R and A2AR 
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(Lazarus et al., 2011). Interestingly, a recent study has identified a broad distribution of 

striatopallidal projections in the forebrain, diencephalon, and brainstem (Zhang et al., 2013), 

including the densest projection to the lateral hypothalamus (containing orexin/hypocretin) 

which can activate noradrenergic cells of the locus coeruleus, dopaminergic cells of the 

ventral tegmental area, serotonergic cells of the dorsal raphe, and histaminergic cells of 

the tuberomammillary nucleus, all of which cause arousal from sleep (Sakurai, 2007) 

(see Fig. 1). Meanwhile, sleep disorders impair cognitive function and caffeine exerts its 

wake-promoting effect by blockade of A2AR (Huang et al., 2005). Therefore, it is of great 

interest to investigate if and how the ability of A2AR to regulating sleep-wake cycle may be 

paramount to modulate inhibitory control and cognition.

3.1. Striatopallidal A2AR confer an homeostatic control of cognition

Importantly, despite its overall “break” control of cognition, striatopallidal A2AR confer a 

unique ability for homeostatic control of goal-directed behavior with enhanced cognitive 

flexibility. The neuromodulation role of adenosine is tightly associated with cellular ATP 

metabolism and purine synthesis. The production of adenosine results from an enhanced 

ATP breakdown under metabolically unfavorable conditions such as stress, hypoxia or 

inflammation. By acting at multiple receptors (such as A2AR), adenosine functions as 

a retaliatory metabolite to restore tissue homeostasis (Cunha, 2001), with a particular 

relevance in brain tissue, where A2AR are key mediators of synaptic stability in neuronal 

circuits (Gomez-Castro et al., 2021; Xu et al., 2022). Indeed, A2AR are part of a homeostatic 

control mechanism of cognition and behavioral inhibition by simultaneously acting at 

multiple sites with opposite effects. For example, A2AR located in different striatopallidal 

MSN differently affect goal-directed and habitual actions: the bidirectional manipulation 

of striatopallidal A2AR by optogenetic activation of A2AR signaling and Cre-mediated 

knockdown, unambiguously shows that the inactivation of A2AR in the dorsomedial striatum 

(DMS) and dorsolateral striatum (DLS) specifically enhances goal-directed and habitual 

actions, respectively (Li et al., 2016). The reciprocal competing and inhibitory control 

of the striatopallidal pathway in the DMS and DLS may be attributed to their distinct 

time-dependent plasticity (Perez et al., 2022) and their distinct corticostriatal networks, 

with DMS mainly receiving projections from medial prefrontal cortex (associative network) 

that encodes action-outcome contingency for goal-directed behavior while the DLS mostly 

receives projections from the motor cortex (sensorimotor network) that encodes stimulus-

response relationship for habitual behavior (Balleine et al., 2009; Yin and Knowlton, 2004). 

Furthermore, A2AR in presynaptic and postsynaptic elements of the corticostriatal synapse 

have an opposite impact on spatial working memory and psychomotor activity (Shen et al., 

2008b) as well as on fear conditioning (Wei et al., 2014) and cocaine-induced DARPP-32 

phosphorylation and c-Fos expression (Shen et al., 2013). Moreover, A2AR in striatopallidal 

neural bodies of NAc and output projection terminals of ventral pallidum exert an opposite 

effect on Pavlovian conditioning (Li et al., 2020), the former depressing and the later 

facilitating Pavlovian-to-instrumental transfer. Decision-making is also oppositely controlled 

by striatal A2AR (Clissold and Pratt, 2014; Salamone et al., 2018; Yu et al., 2009) and 

by prefrontocortical A2AR (Leffa et al., 2018), which exert inhibitory and facilitatory 

effects, respectively. Likewise, cognition is also under parallel control by striatal and 

hippocampal A2AR (Carvalho et al., 2019; Viana da Silva et al., 2016; Temido-Ferreira 
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et al., 2020). In addition, neuronal and astrocytic A2AR have opposite modulatory effects on 

working memory and MK-801-induced psychomotor activity since the blockade of neuronal 

A2AR promotes whereas astrocytic A2AR attenuates the efficiency of these behavioral 

outputs (Matos et al., 2015). Collectively, by multiple and often opposite actions of 

A2AR at different locus of striatopallidal A2AR-containing neurons (corticostriatal inputs 

or striatopallidal projections), A2AR signaling may reciprocally inhibit (and occasionally 

synergize) to modulate the final output pathway, in line with the interconnected self-control 

of striatal circuits (Gremel and Costa, 2013; Redgrave et al., 2010) (Fig. 2). This multiple 

action (like “Swiss-army”) feature prevents extreme behaviors and facilitates the smooth 

shifting between different types of behaviors. The parallel control over goal-directed and 

habitual actions exerted by striatopallidal MSN in DMS and DLS, striatal vs. cortical/

hippocampal, striatopallidal neuronal bodies vs. striatopallidal projections, or astrocytes vs. 
neurons, all endow a unique balance to smoothly switch between goal-directed and habitual 

action for maximized behavioral performance.

This homeostatic control of goal-directed behavior by A2AR signaling may constrain 

behavior processes from reaching extreme values: this allostatic property of striatopallidal 

A2AR may enforce rigidity control (either goal-directed or habit) and may underlie the 

ability of striatopallidal A2AR antagonism to preferentially enhance cognitive flexibility. 

Indeed, exploiting the Cre-loxP-mediated focal knockdown of A2AR in the DMS and 

NAc, allowed demonstrating that the knockdown of A2AR selectively in the NAc enhances 

cognitive flexibility by increasing set-shifting as well as reversal learning (Li et al., 2020; 

Zhou et al., 2019). While the reduced number of regressive errors facilitates a new strategy 

in the set-shifting phase, the suppression of the preservative errors inhibits the previous 

strategy in the reversal phase. These two distinct processes suggest that NAc A2AR dually 

control cognitive flexibility by distinctly controlling different glutamatergic inputs into 

the NAc, from medial prefrontal cortical and orbitofrontal cortex, respectively (Birrell 

and Brown, 2000; Cui et al., 2018; McAlonan and Brown, 2003). Thus, the knockdown 

of NAc A2AR selectively improves attentional set-shifting by increasing the ability of 

learning and maintaining the new extradimensional strategy (Li et al., 2020; Zhou et al., 

2019). This view is also consistent with the observations that A2AR KO enhances strategy 

shifting in the water maze paradigm (Wei et al., 2011), and that treatment with caffeine 

(a non-selective A2AR antagonist) significantly improves attention and cognitive deficits 

in an animal model of attention deficit and hyperactivity disorder (Pandolfo et al., 2013). 

Collectively, these findings suggest that the blockade of NAc A2AR enhances cognitive 

flexibility and thereby increases learning ability by maintaining a new extradimensional 

strategy and possibly inhibiting the old intradimensional old strategy. This is consistent with 

reports showing that inactivation of the NAc enhances learning of irrelevant stimuli in a 

set-shifting assay (Floresco et al., 2006; Jongen-Rêlo et al., 2002; Tai et al., 1995). Notably, 

this increased flexibility upon A2AR blockade is self-controlled, based on the opposite 

impact of striatopallidal and prefrontocortical A2AR in the control of decision-making (Leffa 

et al., 2018). This simultaneously emphasizes the overall ability of A2AR antagonists to 

increase behavioral flexibility, together with the overall homeostatic role of the adenosine 

modulation system (Cunha, 2001, 2016), with A2AR in different brain regions exerting 

opposite self-limiting effects on this behavioral flexibility, as has been reported for the 
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A2AR-mediated control of different brain functions such as schizophrenia, psychomotor 

activity or fear memory (Matos et al., 2015; Shen et al., 2008b; Wei et al., 2014).

3.2. Targeting striatopallidal A2aR for improving cognitive deficits in neuropsychiatric 
disorders

This presently proposed key role of striatopallidal A2AR in inhibitory control acting as a 

‘brake’ of cognition, entails the possibilities that the abnormal function of striatopallidal 

A2AR may be a causative factor for the onset of decision-making-related symptoms in 

different neuropsychiatric diseases and that A2AR antagonists may correct these behavior 

abnormalities. Indeed, animal studies have been paramount to support the preclinical 

utility of A2AR antagonists to control dysfunctions of cognition and inhibitory control in 

different brain disease models (reviewed Chen, 2014; Cunha, 2016). Thus, A2AR antagonists 

attenuate working memory impairments in animal models of PD (Carmo et al., 2019; 

Kadowaki Horita et al., 2013; Li et al., 2018a), HD (Li et al., 2015a), traumatic brain injury 

(Ning et al., 2013; Zeng et al., 2020), Alzheimer’s disease (AD) (Canas et al., 2009) as 

well as upon repeated stress (Kaster et al., 2015). Importantly, the benefits resulting from 

A2AR antagonism may be selective and long-lasting under brain pathological conditions, 

since the onset of brain dysfunction or noxious brain conditions is characterized by an 

upregulation of A2AR (reviewed in Cunha, 2016) and an overactivation of A2AR signaling 

in the brain (Canas et al., 2018; Carmo et al., 2019; Gonçalves et al., 2019,2022; Meng et 

al., 2019). In fact, A2AR overfunction is sufficient to trigger memory dysfunction (Li et al., 

2015b; Pagnussat et al., 2015) and the overexpression of A2AR seems paramount to bolster 

the susceptibility to memory dysfunction (Carvalho et al., 2019; Temido-Ferreira et al., 

2020). Conversely, the genetic or pharmacological inactivation of A2AR attenuates memory 

impairments in aging (Prediger et al., 2005a) and in disease models of AD (Carvalho et 

al., 2019; Dall’Igna et al., 2007; Gonçalves et al., 2019; Laurent et al., 2016; Viana da 

Silva et al., 2016), chemotherapy-induced cognitive impairment (Oliveros et al., 2022), 

propofol-anesthesia-induced loss of consciousness (Guo et al., 2022), childhood convulsions 

(Cognato et al., 2010) and attention deficit and hyperactivity disorder (Prediger et al., 

2005b), through a control of the dysfunction of glutamatergic synapses (Canas et al., 2018; 

Gonçalves et al., 2019; Kaster et al., 2015; Laurent et al., 2016; Silva et al., 2018; Temido-

Ferreira et al., 2020; Viana da Silva et al., 2016). The relation between A2AR and memory 

performance is further strengthened by the observations of an association between A2AR 

polymorphisms with Alzheimer’ disease (Siokas et al., 2022), pre-attentive visual sensory 

memory subprocesses (Beste et al., 2012), attentional domains of executive control (Renda 

et al., 2015) and memory dysfunction in mild cognitive impairment (Horgusluoglu-Moloch 

et al., 2017). The presently proposed central hypothesis that A2AR in striatopallidal neurons 

are a likely target for therapies aimed at alleviating cognitive deficits, implies 3 mechanistic 

working hypotheses: i) A2AR in striatopallidal neurons functions as a “brake” mechanism 

in the control of working memory and goal-direct behavior; ii) the indirect pathway in 

distinct striatal subregions or prefrontal cortex and hippocampus control distinct cognitive 

domains; iii) the inactivation of A2AR in the ventral striatum prevents cognitive impairments 

by dopamine overdosing. These working hypotheses are novel, and their validation will 

foster a new level of understanding of striatal learning and are crucial to guide the design 
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of clinical trial of A2AR antagonists for cognitive amelioration in different neuropsychiatric 

diseases.

The “brake” mechanism operated by striatopallidal A2AR also entails that the removal of 

this “break” mechanism by striatopallidal A2AR antagonism is a promising therapeutic 

strategy to foster a recovery from maladaptive habitual addictive or obsessive-compulsive 

disorders. This contrasts with most studies with pharmacological and genetic manipulation 

of neuromodulators (with the exception of the D1R agonists; Haluk and Floresco, 2009) 

and focal lesioning, which often disrupt normal behavior and impair cognitive flexibility 

(Ding et al., 2014; Grospe et al., 2018; Parikh et al., 2016). The potential to exploit 

A2AR antagonists for amelioration of neurobehavioral deficits in human cocaine addicts is 

highlighted by a recent functional MRI study showing greater activation of the orbitofrontal 

cortex upon treatment with the A2AR antagonist SYN115 in cocaine dependent subjects 

(Moeller et al., 2012) and by the increase of D2R/D3R density in the striatum after exposure 

to caffeine (a non-selective adenosine receptor antagonist) in humans (Volkow et al., 2015), 

although A2AR were not effective in some animal models of post-cocaine working memory 

deficits (Hámor et al., 2020). However, A2AR antagonism alleviated multiple symptoms of 

quinpirole-induced psychosis by rescuing abnormal excitatory synaptic function in MSN of 

the indirect pathway of sensitized mice (Asaoka et al., 2019). Indeed, polymorphisms of the 

A2AR gene seem to be a vulnerability factor for methamphetamine dependence/psychosis, 

especially in females (Kobayashi et al., 2010). Also, both the association of polymorphisms 

of the A2AR gene with major depression (Oliveira et al., 2019) and anxiety (Alsene et 

al., 2003; Domschke et al., 2012; Hohoff et al., 2010), as well as epidemiological studies 

linking the consumption of caffeine with a reduced incidence of depression (Grosso et 

al., 2016; Kim and Kim, 2018; Kimura et al., 2020; Lucas et al., 2011; Navarro et al., 

2018b) and studies in chronically stressed mice (Kaster et al., 2015; Zhu et al., 2022) 

have converged to the conclusion that A2AR control mood. Chronic stress shifts behavioral 

control from goal-directed toward habitual strategy (Radenbach et al., 2015), mainly through 

a frontostriatal reorganization involving DMS and NAc circuits (Dias-Ferreira et al., 2009; 

Taylor et al., 2014). The dysfunction of this behavioral control strategy may contribute to the 

pathogenesis of obsessive-compulsive disorder (Adams et al., 2018) and addiction (Dolan 

and Dayan, 2013). Importantly, caffeine and A2AR selective antagonists can prevent mood 

and memory dysfunction triggered by chronic stress (Kaster et al., 2015). Thus, it can be 

speculated that A2AR signaling in NAc might modulate the dysfunction of decision-making 

triggered by mood-related behavior, which need to be further examined. Careful clinical 

study designs for testing mood and cognitive impairments that are not confounded by 

changes in motor behavior and sensitivity to reward are needed to confirm the validity of 

targeting striatopallidal A2AR as an effective therapy for improving mood and cognitive 

impairments under neuropsychiatric conditions.

Finally, it is expected that the study of striatal A2AR in the control of cognition in humans 

may soon be feasible. Indeed, the U.S. Food and Drug Administration (FDA) approved 

the A2AR antagonist Nourianz (istradefylline) for treatment of PD with "off" episodes on 

August 27, 2019 (Chen and Cunha, 2020). This opens a new repurposing opportunity for 

pharmacological control of goal-directed behavior. However, the effect of istradefylline on 

cognition was not probed in the clinical trials testing A2AR antagonists in PD patients. 
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With the approval of istradefylline, it will now be possible to evaluate the ability of A2AR 

antagonists to reverse cognitive deficits in PD patients in phase IV trials (Chen and Cunha, 

2020).

4. Conclusions

The distinct features of striatopallidal A2AR to fine-tune dopamine and glutamate signaling 

by a conjunction of direct intramembrane receptor-receptor interaction and temporal 

integrative properties, enables striatopallidal A2AR to act as a “break” mechanism to 

constrain a variety of cognitive behaviors involving modulation of the arousal system as 

well as to confer homeostatic control of goal-directed/habitual behaviors with enhanced 

cognitive flexibility by acting at multiple circuit sites and behavioral elements. Overall, 

these properties prompt considering striatopallidal A2AR as novel and promising targets to 

modulate goal-directed behavior and cognitive flexibility. The translational potential of the 

pharmacological blockade of striatopallidal A2AR is further enhanced by the recent FDA 

approval of the A2AR antagonist istradefylline for PD treatment which opens up a new 

and real possibility to improve the deficits in goal-directed behavior that underlie these 

seemingly disparate symptoms across psychiatric disorders.
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mPFC medium prefrontal cortex
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NAc nucleus accumbens

PD Parkinson’s disease

RI random interval

RR random ratio
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Fig. 1. 
Broad distribution of striatopallidal projections in the forebrain, diencephalon and brainstem, 

including the lateral hypothalamus, ventral tegmental area and dorsal raphe, all of which 

cause behavioral arousal. OFC/mPFC: orbital frontal cortex/medium prefrontal cortex; S-M 

Ctx: sensory motor cortex; DMS: dorsomedial striatum; DLS: dorsolateral striatum; NAc: 

nucleus accumbens.
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Fig. 2. 
Different striatal subregions (DMS: dorsomedial striatum; DLS: dorsolateral striatum; 

NAc: nucleus accumbens) with the connecting cortical regions subserve distinct cognitive 

elements of goal-directed and habitual behaviors.
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Table 1

Receptor-Receptor (R-R) Interaction of the A2AR with GPCRs and ectonucleotidase.

R-R
Interaction

Main Findings References

A2AR-D2R Opposing action of A2AR agonist on D2R
Evidence for R-R interaction by FRET and BRET in cells

Ferré et al., 1991
Canals et al., 2003

A2AR agonist decreases D2R affinity dopamine in human striatum Díaz-Cabiale et al., 2001

A2AR-D3R Antagonistic interaction between A2AR and D3R Torvinen et al., 2005

A2AR-mGluR5 Synergistic interaction between A2AR and mGluR5 Ferré et al., 2002

R-R in the hippocampus Tebano et al., 2005

R-R in the striatum Rodrigues et al., 2005

A2AR-CB1 R-R in the striatal glutamatergic neurotransmission Martire et al., 2011

R-R in the dorsal striatum Moreno et al., 2018

R-R in the hippocampus and alters THC-induced cognitive impairment Aso et al., 2019

A2AR-CD73 Synergistic interaction between A2AR and CD73, an ecto-nucleotidase Augusto et al., 2013
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