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Abstract

Cannabis sativa is a global multi-billion-dollar cash crop with numerous industrial uses,

including in medicine and recreation where its value is largely owed to the production of

pharmacological and psychoactive metabolites known as cannabinoids. Often underappre-

ciated in this role, the lipoxygenase (LOX)-derived green leaf volatiles (GLVs), also known

as the scent of cut grass, are the hypothetical origin of hexanoic acid, the initial substrate for

cannabinoid biosynthesis. The LOX pathway is best known as the primary source of plant

oxylipins, molecules analogous to the eicosanoids from mammalian systems. These mole-

cules are a group of chemically and functionally diverse fatty acid-derived signals that gov-

ern nearly all biological processes including plant defense and development. The interaction

between oxylipin and cannabinoid biosynthetic pathways remains to be explored. Despite

their unique importance in this crop, there has not been a comprehensive investigation

focusing on the genes responsible for oxylipin biosynthesis in any Cannabis species. This

study documents the first genome-wide catalogue of the Cannabis sativa oxylipin biosyn-

thetic genes and identified 21 LOX, five allene oxide synthases (AOS), three allene oxide

cyclases (AOC), one hydroperoxide lyase (HPL), and five 12-oxo-phytodienoic acid reduc-

tases (OPR). Gene collinearity analysis found chromosomal regions containing several iso-

forms maintained across Cannabis, Arabidopsis, and tomato. Promoter, expression,

weighted co-expression genetic network, and functional enrichment analysis provide evi-

dence of tissue- and cultivar-specific transcription and roles for distinct isoforms in oxylipin

and cannabinoid biosynthesis. This knowledge facilitates future targeted approaches

towards Cannabis crop improvement and for the manipulation of cannabinoid metabolism.

Introduction

For millennia, the diploid dioecious shrub Cannabis sativa, has been cultivated for its fiber,

grain, and pharmacological properties [1]. Originating in Asia and now grown globally [2], C.

sativa is a multibillion-dollar cash crop [3, 4] with many uses [5] including feed [6], textile [7],
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biofuel [8], medicine [9], and recreation [10, 11]. The latter two of which are due to the pro-

duction of biologically active metabolites, known as cannabinoids, within the cannabis tri-

chomes [12]. Cannabinoids are a large chemical family with 130 currently known distinct

chemical species [13] grouped into 10 structural types [14]. Undeniably, the best understood

are the cannabidiol (CBD) [15] and psychoactive Δ9-tetrahydrocannabinol (THC) [16]. Given

their growing therapeutic uses and social acceptance, efforts are underway to produce chemo-

types with explicit cannabinoid content [17, 18], platforms for heterologous production [19],

and novel cannabinoid analogues [20].

The understanding of cannabinoid biosynthesis has made strides in recent years [12, 19,

21]. Briefly, cannabinoids are synthesized from the convergence of a fatty acid and terpene

pathway. Hexanoic acid is activated into hexanoyl-CoA by acyl-activating enzyme 1 and subse-

quently elongated with three molecules of malonyl-CoA by TETRAKETIDE SYNTHASE

(TSK, also known as OLIVETOL SYNTHASE). TKS functions in concert with OLIVETOLIC

ACID CYCLASE to generate olivetolic acid. Geranyl pyrophosphate produced from the non-

mevalonate-dependent isoprenoid pathway (MEP) is used by CANNABIGEROLIC ACID

SYNTHASE to prenylate olivetolic acid into cannabigerolic acid (CBGA), the first bona fide
cannabinoid. CBGA can then be shunted into one of at least three oxidocyclization sub-

branches to produce tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA), and

cannabichromenic acid (CBCA) by THCA SYNTHASE, CBDA-SYNTHASE, and CBCA

SYNTHASE, respectively. Later, THCA, CBDA, CBCA may undergo nonenzymatic decarbox-

ylation into the better-known THC, CBD, or cannabichromene (CBC). Lastly, cannabinoids

may also undergo spontaneous rearrangements that are responsible for the structural variation

found within this chemical family [12, 13, 22].

Despite the recent advances in the understanding of the cannabinoid biosynthetic pathway,

the origin of hexanoic acid (also known as caproic acid) remains unclear. It is often the rate-

limiting step in heterogenous systems [20, 23] requiring hexanoic acid as a feedstock [19]. In

planta, trichome-specific transcriptomic analysis observed co-expression of genes involved in

oxylipin biosynthesis, namely LIPOXYGENASE (LOX) and HYDROPEROXIDE LYASE
(HPL), with genes previously established in cannabinoid biosynthesis [24, 25]. This has

prompted the hypothesis that the oxylipin pathway provides the substrate required for canna-

binoid biosynthesis. Further, this putative oxylipin-cannabinoid interaction invites exploration

to understand the role of the oxylipins in cannabinoid biosynthesis and Cannabis biology.

Oxylipins are a large group of oxidized fatty acid-derivatives possessing potent signaling

activities that govern a multitude of physiological processes including, growth, development,

and defense [26]. In plants, the majority of oxylipin biosynthesis occurs via the LOX pathway.

It begins with the regio- and stereo-specific incorporation of molecular oxygen at either the

9th—or 13th -carbon of linoleic (C18:2) or linolenic (C18:3) acid by 9- or 13-LOX isoforms

[27]. The resulting 9- or 13-oxylipins can be fluxed into at least one of seven sub-branches to

produce chemically diverse groups of distinct chemical species, including alcohols, aldehydes,

divinyl ethers, esters, epoxides, hydroxides, hydroperoxides, ketols, ketones, and triols.

Though the biological role for the vast majority of plant oxylipins remains to be deciphered,

investigations of selected members of 13-oxylipins, namely jasmonates and green leaf volatiles

(GLVs) have spearheaded a framework towards understanding their physiological and ecologi-

cal roles.

Jasmonates are best known for their roles in providing defense against insects and necro-

trophic pathogens [28]. Jasmonates are cyclopentones produced through the ALLENE OXIDE

SYNTHASE (AOS) subbranch [29, 30]. Following the oxygenation of C18:3 to 13[S]-hydro-

peroxyoctadecatrienoic acid (13-HPOT) by 13-LOX activity, AOS [29, 31, 32] converts

13-HPOT to 12,13(S)-epoxy-octadecatrienoic acid (12,13-EOT) and ALLENE OXIDE
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CYCLASE (AOC) [33] converts 12,13-EOT to (+)-cis-12-oxo-phytodienoic acid (12-OPDA),

the first jasmonate in the pathway. LOX, AOS, and AOC are closely associated with each other

and participate in substrate channeling during jasmonate biosynthesis [34]. Aside from serving

as a substrate for downstream reactions, 12-OPDA possesses its own distinct activity [35–37].

12-OPDA is reduced via 12-OXO-PHYTODIENOIC ACID REDUCTASE (OPR) [38, 39] to

9S,13S-OPDA to 3-oxo-2-(20[Z]-pentenyl)-cyclopentane-1-octanoic acid (OPC-8:0) and then

undergoes three rounds of β-oxidations to produce (+)-7-iso-jasmonic acid (JA) [40]. Hexade-

catrienoic acid (C16:3) may also serve as a substrate for jasmonate biosynthesis, eliminating

the need for a round of β-oxidation [41–43]. While a multitude of JA derivates have been iden-

tified [29], (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile) is the best studied, owed to its service as a

ligand in receptor-mediated perception and subsequent signaling [44].

GLVs are best known as the scent of cut grass and are involved in defense signaling, plant-

to-plant and plant-to-insect communication [45]. They are C6 volatile aldehydes, alcohols, and

their acetyl esters produced through the HPL subbranch [46, 47]. Here, the 13-hydroperoxy

fatty acids produced from 13-LOX activity from either C18:2 or C18:3 are cleaved, respectively,

by 13-HPL [48–50] into the hexanal or (3Z)-hexenal and 12-oxo-(9Z)-dodecenoic acid. The

latter of which is the progenitor of the traumatin sub-group, of which some members display

signaling activity independent of GLVs [51]. Additionally, C16:3 may also serve as a fatty acid

substrate for GLV biosynthesis, yielding (7Z)-10-oxo-decenoic acid in place of traumatin [52].

The GLV aldehydes are reduced to alcohols through reductase [53] and acetylated through

acetyltransferase [54]. Finally, (3Z)-hexenal can also be isomerized through (3Z):(2E)-ENAL

ISOMERASE [55, 56].

Thus, this study sought to elucidate the Cannabis oxylipin biosynthetic pathway as a source

for cannabinoid substrate and molecular signals important in defense and development. Here,

a census was conducted on the C. sativa genome to catalog the major oxylipin biosynthetic

genes from the LOX, AOS, AOC, and OPR gene families. Respectively, their chromosomal

locations, conserved protein domains, genetic structures, and phylogenetic relationships were

determined. Collinearity analysis identified several genes in syntenic regions with Arabidopsis
and tomato. The promoter analysis revealed evidence for tissue- and stimulus-specific tran-

scriptional regulation, which stands in agreement with expression observed from a Cannabis
transcriptome atlas and publicly-available transcriptomes. Finally, gene co-expressional net-

work and functional enrichment analysis identified genetic modules that implicate oxylipin

biosynthetic genes in distinct Cannabis physiological processes.

Materials and methods

Gene model identification, protein domain analysis, and subcellular

localization prediction

The Cannabis sativa representative genome cs10 [57] was surveyed for LOX, AOS, HPL, AOC,

and OPR gene models using the NCBI BLASTP algorithm against the Arabidopsis sequences

as the input queries. The corresponding public transcriptome data was explored through the

NCBI Genome Data Viewer [58] to obtain gene models and evidence of transcription and

putative translation. Amino acid sequences were examined against the NCBI Conserved

Domain Database for the presence of canonical domains using Batch CD-Search [59, 60].

Conserved peptide sequence motifs were determined using MEME 5.4.1 [61, 62] for up to 25

motifs and any number of repetitions. Subcellular localization prediction analysis was per-

formed using DeepLoc 1.0 [63], LOCALIZER [64], Plant-mSubP [65], and TargetP 2.0 [66]

through their web servers with default settings.

PLOS ONE Cannabis oxylipin gene families

PLOS ONE | https://doi.org/10.1371/journal.pone.0272893 April 26, 2023 3 / 29

https://www.ncbi.nlm.nih.gov/assembly/GCF_900626175.2/
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
https://meme-suite.org/meme/tools/meme
https://services.healthtech.dtu.dk/service.php?DeepLoc-1.0
http://localizer.csiro.au/
http://bioinfo.usu.edu/Plant-mSubP/
https://services.healthtech.dtu.dk/service.php?TargetP-2.0
https://doi.org/10.1371/journal.pone.0272893


Multiple sequence alignment, phylogenetic analysis, and genetic structure

visualization

Peptide sequences were aligned through the online version of MAFFT [67, 68] using the

FFT-NS-I iterative refinement strategy, leaving gappy regions, and with other settings as

default. Phylogenetic trees were generated through the MAFFT website using neighbor-join-

ing, Jones-Taylor-Thornton substitution model, with estimated heterogeneity. Trees were

tested with bootstrapping of 1000 resampling and drawn with FigTree 1.4.1. Gene structures

were visualized with TBtools v1.098689 [69] using the NCBI Cannabis sativa Annotation

Release 100.

Promoter analysis of cis-regulatory elements

Putative cis-acting regulatory elements were determined using the 1.5 kb upstream nucleotide

sequences of gene models, analyzed with PlantCARE [70], and promoter diagrams were con-

structed with TBtools.

Comparative genomic analysis

Gene collinearity between C. sativa-Arabidopsis thaliana (reference genome TAIR10.1) and C.

sativa-Solanum lycopersicum (representative genome SL3.0) was performed using MCScanX

[71] feature of TBtools with an e-value 1e-10 and 5 BLAST hit cutoffs.

Transcriptomic profiling, regulatory network analysis

RNA-Seq SRP achieved data was retrieved from GEO Datasets, SRP234963 [72] and

SRP168446 [73], and trimmed with fastp v0.23.1 [74] using default settings. Transcripts Per

Million (TPM) were calculated using salmon [75] mapping-based mode against a decoy-aware

transcriptome file. Corrections were made for fragment-level GC content and random hex-

amer primer biases. Transcriptome indices were computed from the cs10 reference transcrip-

tome against its respective genome.

Gene co-expression networks were generated through an iterative weighted correlation net-

work analysis (WGCNA) using iterativeWGCNA with default parameters [76, 77]. Relation-

ships between highly interconnected gene modules were explored through an eigengene score

correlation matrix visualized through Cytoscape [78].

Functional enrichment analysis was performed with g:Profiler [79] using orthologues iden-

tified through PLAZA 5.0 [80] and cross-referenced against the Kyoto Encyclopedia of Genes

and Genomes [81–83] and Gene Ontology Database [84, 85].

Results

Cannabis oxylipin biosynthetic genes

To establish a foundation for Cannabis oxylipin biology, the C. sativa oxylipin biosynthetic

genes were determined. The C. sativa representative genome was queried against selected Ara-
bidopsis LOX, AOS, HPL, AOC, and OPR amino acid [19] sequences with BLASTP to detect

candidate C. sativa orthologues. The analysis identified 21 LOX, six CYP74, three AOC, and

five OPR gene models. Moreover, each was predicted to encode proteins that were functionally

annotated within NCBI as members of these groups of oxylipin biosynthetic genes (Table 1).

The genes were found asymmetrically distributed both across and within the 10 C. sativa
chromosomes (Fig 1) with the largest concentration of genes found on Chromosome 1, 2, and

9. Over 60% of the LOX isoforms were found on Chromosome 2, and with the exception of
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two, were in large gene clusters. CsLOX1, 2, 5, 6, and 7 were located in a 327 kb region in the

center of Chromosome 2, while CsLOX15, 16, 17, 18, 19, 20, and 21 were near the outer arm in

a 152 kb region (S1 Fig). A smaller 74 kb region on Chromosome 9 contained the cluster of

CsLOX8, 10, and 11 towards the end of a chromosomal arm. CsLOX9 and 12 were relatively

close together on Chromosome 2, while Chromosomes 1, 3, and 4 contained single LOX iso-

forms, CsLOX14, 4, and 13, respectively.

Similar to the LOX genes, members of the CYP74, AOC, and OPR gene families were found

in gene clusters at nearly the same proportions. On Chromosome 8, CsAOS2 and 5 were

within 57 kb from each other (S2 Fig). The other CYP74 genes, CsAOS1, CsHPL, CsAOS1, and

CsAOS4 were on Chromosomes 1, 8, and 9, respectively. AOC genes were found exclusively on

Chromosome X with CsAOC1 and 2 only 10 kb apart (S2 Fig). Strikingly, with the exception of

CsOPR5 located on Chromosome 9, the entire OPR gene family was confined to a 113 kb seg-

ment on Chromosome 1.

The C. sativa LOX gene family contains 21 members

To verify that candidate LOX gene models encode functional isoforms, their peptide sequences

were examined for the presence of the lipid-associated PLAT and catalytic LOX domains

archetypical of LOX proteins [27]. Amino acids were examined through the NCBI Conserved

Domain Database function and all 21 gene models encoded peptides that displayed both

domains, providing support that C. sativa possesses 21, bona fide, LOX isoforms (Fig 2A).

Unexpectedly, the analysis revealed that CsLOX17 also contained a RVT2 and a RNAse H-like

domain which may indicate the insertion of a retrotransposon in its upstream region [86, 87].

Analysis of conserved motifs showed that the majority of the LOX isoforms contain similar

composition and distribution of amino acid sequence patterns (Fig 2B). Nearly all isoforms

displayed the same 13 motif arrangement, typical of LOX proteins, on the N-terminus, a highly

conserved region which requires stringent composition for enzymatic activity. The exception

was CsLOX12 which was absent of motif 13. Aside from CsLOX1 and 14, the arrangement of

the first 5 motifs on the C-terminus was broadly consistent across all the proteins. However,

Fig 1. Distribution of the LOX, AOS, HPL, AOC, and OPR gene families across the C. sativa genome. Ruler depicts

chromosome length.

https://doi.org/10.1371/journal.pone.0272893.g001
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several isoforms possessed regions where no motifs were detected. In LOX proteins, these

regions typically contain highly divergent, transient peptide sequences that direct subcellular

localization [88]. In support of this notion, their amino acid sequences were tested against four

subcellular prediction algorithms, DeepLOC, LOCALIZER, mSUBP, and TargetP (Table 1). A

consensus of plastid localization was reached for only CsLOX13 and CsLOX18, along with an

agreement of the majority of the software localizing CsLOX2, CsLOX14, CsLOX15, CsLOX17,

CsLOX18, CsLOX19, CsLOX20, and CsLOX21 to this organelle. CsLOX1 and CsLOX3-11

were predicted to be found in the cytoplasm. Interestingly, CsLOX12 was predicted to be asso-

ciated with the mitochondria.

Motifs 17 and 20 located within the LOX domain showed the largest variability across the

LOX isoforms. The former was absent from CsLOX3, 13, and 14, the latter was missing from

CsLOX19 and 20, and both were missing from CsLOX12, 15, 16, 17, and 18, prompting the

speculation of divergent catalytic activity among even closely related members [89].

The C. sativa LOX gene models ranged in size from around 4 to 16 kb and over 75% pos-

sessed eight introns (Fig 2C). A recurrent observation in the genetic structures of some LOX
family members was the presence of a large first or second intron, e.g., CsLOX1, 6, 7, 8, 11,

and 20 comprising of about 50 to 60% of the entire gene. No data is yet available for alternative

splicing or transcript variants of these genes to provide insight into the role of these features.

Plant LOXs are typically grouped as 9- or 13-LOXs according to their major enzymatic

product and isoforms with similar activity display higher sequence similarity and evolutionary

relationships [27]. To designate the classification of C. sativa LOXs, their peptide sequences

were compared to dicot and monocot plant species with well-characterized LOX protein fami-

lies, namely, A. thaliana, C. sativa, S. lycopersicum, and Zea mays (Fig 2D). CsLOX1, 2, and 3

grouped with the Arabidopsis 9-LOXs, AtLOX1 and 5, respectively. Remarkably, eight

Fig 2. Phylogenetic, genetic, motif, and domain analysis of the CsLOX gene family. (A) Cladogram of peptide sequences and

conserved domains. (B) Distribution of conserved peptide sequence motifs. Colors are described in legend; x-axis represents

length of peptides in amino acids. (C) Diagram of genetic structure. Blue bars, orange bars, and gray lines represent untranslated

regions, exons, and introns, respectively; x-axis represents length of gene in nucleotides. (D) Polar cladogram depicting

evolutionary relationship with gene families of selected species. Node labels show confidence values from 1000 bootstrap

replications.

https://doi.org/10.1371/journal.pone.0272893.g002
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Cannabis LOXs peptides, CsLOX4-11, formed a Cannabis specific clade nested within mono-

cot and dicot 9-LOXs. CsLOX12 was difficult to place within the tree, a result which was likely

related to the absence of the three variable peptide motifs in its catalytic domain (Fix. 2B).

CsLOX13 and 14 clustered with clades containing dicot 13-LOXs. Interestingly, seven Canna-
bis LOX peptides, CsLOX15-21 grouped with the 13-LOX clade, and several of which may rep-

resent Cannabis-specific 13-LOXs. Thus, C. sativa possess eleven 9-LOXs (CsLOX1–11), nine

13-LOXs (CsLOX13–21), and one that remains to be empirically determined (CsLOX12).

The C. sativa CYP74 gene family contains six members

AOS and HPL belong to the atypical CYP74 clade of the P450 family involved in hydroperoxyl

fatty acid rearrangement or dismutation [90]. Amino acid sequence analysis found a single

CYP74 domain in all six Cannabis candidate CYP74s and four distinct patterns of conserved

sequence motifs (Fig 3A and 3B). The pattern variations were most pronounced towards the

N-termini where each possessed a distinctive starting motif. The N-terminus of CYP74s typi-

cally possess transient peptide signals involved in directing their subcellular localizations

towards plastids, and while subsequent analysis prediction supported this notion in CsHPL

and CsAOS1, a consensus among the four software prediction tools could not be reached for

CsAOS2-5 (Table 1). For gene structure analysis, CsHPL was notable for the presence of two

introns (Fig 3C), an unusual feature of CYP74 family members, one of which comprised the

majority of its gene model sequence.

While many CYP74 isoforms display multifunctionality [91], catalyzing varying propor-

tions of AOS, epoxy alcohol synthase (EAS), divinyl ether synthase (DES), and HPL products,

the CYP74A and CYP74B clade members show predominantly AOS and HPL activities,

respectively. To understand the potential function of C. sativa CYP74 family members, a phy-

logenetic analysis assessed their relationship within the relatively well-characterized CYP74

subclades from diverse plant species (Fig 3D). CsAOS1 and CsHPL were grouped within the

CYP74A and CYP74B clades, respectively. However, the placement of CsAOS2-4 proved chal-

lenging. Nonetheless, CsAOS2 and 3 and CsAOS4 and 5 grouped as pairs roughly within

CYP74C.

Taken together, this analysis suggests that C. sativa contains at least two dedicated CYP74

enzymes that, given their phylogenies and subcellular localization, are specialized for 13-AOS

Fig 3. Phylogenetic, genetic, motif, and domain analysis of the C. sativa CYP74 gene family. (A) Cladogram of peptide sequences and conserved domains.

(B) Distribution of conserved peptide sequence motifs. Colors are described in legend; x-axis represents length of peptides in amino acids. (C) Diagram of

genetic structure. Blue bars, orange bars, and gray lines represent untranslated regions, exons, and introns, respectively; x-axis represents length of gene in

nucleotides. (D) Polar cladogram depicting evolutionary relationship with gene families of selected species. Node labels show confidence values from 1000

bootstrap replications.

https://doi.org/10.1371/journal.pone.0272893.g003
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and HPL activity, thus capable of providing substrate for JA or GLV biosynthesis. Cannabis
also contains four CYP74 isoforms with unassigned activities.

The C. sativa AOC gene family contains three members

AOC provides steric hindrance for the stereospecific cyclization of allene oxide to

12-OPDA, the parent jasmonate species. All three CsAOC isoforms contain an AOC

domain and similar amino acid sequence patterns on the last six motifs of their C-termini

(Fig 4A and 4B). CsAOC2 and CsAOC3 displayed substantial variability in predicted motifs

at their N-termini, likely corresponding to putative plastid transient peptide sequences

(Table 1). CsAOC1 was predicted to localize outside of the plastids. The intron-exon distri-

bution of this gene family differed mildly with CsAOC1 and 2 having three exons while

CsAOC3 contained one (Fig 4C). To understand the evolutionary relationship of the C.

sativa AOC gene family, their peptide sequences were analyzed phylogenetically with AOC

members from other plant species [92]. CsAOC1 and 2 clustered close to each other within

a dicot specific clade and CsAOC3 grouped into a separate dicot-specific clade that con-

tained all Arabidopsis AOCs (Fig 4D).

The C. sativa OPR gene family contains five members

All five identified C. sativa OPR candidates were found to contain the conserved Old Yellow

Enzyme-like domain necessary for their activity (Fig 5A) [93]. CsOPR1-4 had nearly identical

patterns of amino acid sequence motifs and were largely similar to the motif arrangement of

CsOPR5, however, the latter isoform lacked four conserved motifs (Fig 5B). In regard to their

genetic structure, a substantial first intron was identified in CsOPR3, resulting in a gene model

roughly three times larger than the other isoforms (Fig 5C). It is important to note that the cur-

rent gene model of CsOPR3 appears chimeric with CsOPR2 in the current C. sativa represen-

tative genome (S2 Fig).

To investigate the evolutionary relationship between the C. sativa OPR gene family mem-

bers, the amino acid sequences were compared to OPR family members from dicots and

monocots. CsOPR1-4 formed a phylogenetic clade with the JA-producing AtOPR3. CsOPR5,

however, was grouped with Type-II OPRs (Fig 5D). Taken together, C. sativa contains four

Type-I OPR isoforms that are likely involved in classical JA biosynthesis.

Fig 4. Phylogenetic, genetic, motif, and domain analysis of the CsAOC gene family. (A) Cladogram of peptide sequences and conserved domains. (B)

Distribution of conserved peptide sequence motifs. Colors are described in legend; x-axis represents length of peptides in amino acids. (C) Diagram of genetic

structure. Blue bars, orange bars, and gray lines represent untranslated regions, exons, and introns, respectively; x-axis represents length of gene in

nucleotides. (D) Polar cladogram depicting evolutionary relationship with gene families of selected species. Node labels show confidence values from 1000

bootstrap replications.

https://doi.org/10.1371/journal.pone.0272893.g004
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Some LOX, CYP74, and AOC members are syntenic across Cannabis,
Arabidopsis, and tomato

To infer the ancestry of the C. sativa oxylipin pathway, a genetic collinearity analysis was per-

formed to compare physical co-localization of oxylipin biosynthetic genes in the genomes of

C. sativa against two dicot genomes with well characterized oxylipin biosynthetic pathways, A.

thaliana, and S. lycopersicum (tomato) (Fig 6). Remarkably, three LOX genes displayed collin-

earity across all three species. Of the 9-LOXs, CsLOX2 was in a syntenic region with AtLOX1
and SlLOX5 (also known as TOMLOXE). Two 13-LOXs display collinearity, CsLOX14 with

both AtLOX3 and AtLOX4 and with SlLOX4/ LOXD, while CsLOX13 was collinear with

AtLOX6 and SlLOX11. Two C. sativa CYP74 genes were in syntenic regions with tomato

genes. CsAOS2 matched with SlDES (also known as LeDES) and CsHPL matched with both

SlHPL and SlAOS3. Two CsAOC genes were collinear with either plant species although with

dissimilarities. CsAOC2 was in a syntenic gene block with SlAOC and CsAOC3 matched with

both AtAOC1 and AtAOC4.

Fig 5. Phylogenetic, genetic, motif, and domain analysis of the CsOPR gene family. (A) Cladogram of peptide sequences and conserved

domains. (B) Distribution of conserved peptide sequence motifs. Colors are described in legend; x-axis represents length of peptides in amino acids.

(C) Diagram of genetic structure. Blue bars, orange bars, and gray lines represent untranslated regions, exons, and introns, respectively; x-axis

represents length of gene in nucleotides. (D) Polar cladogram depicting evolutionary relationship with gene families of selected species. Node labels

show confidence values from 1000 bootstrap replications.

https://doi.org/10.1371/journal.pone.0272893.g005

Fig 6. Oxylipin biosynthetic gene collinearity between A. thaliana, C. sativa, and S. lycopersicum. The grey lines

represent collinear genetic blocks between the genomes of A. thaliana and C. sativa and between C. sativa and S.

lycospersicum. Bars represent chromosomes and the black, blue, and orange lines represent the collinear pairs of LOX,

CYP74, and AOC gene families, respectively.

https://doi.org/10.1371/journal.pone.0272893.g006
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Promoters of C. sativa oxylipin biosynthetic genes carry tissue-specific,

conditional, and phytohormone-inducible cis-acting regulatory elements

(CAREs)

To elucidate the involvement of Cannabis oxylipin genes in diverse developmental and stress

responses, an in silico promoter analysis was conducted to identify cis-regulatory elements

involved in plant tissue-specific expression (endosperm, meristem, mesophyll, seed), adapta-

tion to environmental conditions (anaerobic, circadian rhythm, drought, light, and low tem-

perature), and phytohormone signaling, namely, abscisic acid (ABA), gibberellic acid (GA),

indole-3-acetic acid (IAA), JA, and salicylic acid (SA).

All promoters varied considerably in the content, arrangement, and position of their

CAREs (Fig 7 and S1 Table). Overall, the oxylipin biosynthetic gene promoters possessed

CARE motifs with lengths of 8 to 32 nucleotides. For the LOX gene family, the promoter of

CsLOX12 gene was found to contain the most regulatory elements with 32 and followed by

CsLOX16 and 21, each with 28, while CsLOX2, 7, 11, and 17 displayed the least, with around

10 each. The Cannabis-specific 9-LOX group (CsLOX4-11) displayed the most motifs followed

by the amplified GLV-producing 13-LOXs (CsLOX15-21). With the exception of CsLOX5, all

contained several regulatory elements involved in conditional responses, though few contained

elements involved in tissue expression. CAREs involved in light responses dominated most

promoters with all genes having at least three such motifs. Interestingly, CsLOX12 light-

responsive motifs constituted over 60% of all its identified motifs. Promoters associated with

the presence of phytohormone inducible cis-regulatory elements varies considerably, spanning

from 0 to 8 regulatory elements. With the exception of CsLOX2, 4, 7, 8, and 17, all had at least

one CARE related to ABA responses. Incidentally, CsLOX2, 4, 7, 8, and 17 were also among

Fig 7. Cis-acting regulatory element distribution across C. sativa oxylipin biosynthetic gene promoters. (A)

Physical distribution of motifs throughout a 1.5 kb region upstream of corresponding gene model. Gene symbols are

presented on the left with grey line representing promoter regions with motif positions. Legend describes motifs

associate with tissue-specific expression, environmental responses, and phytohormone inducibility. (B) Summary of

cis-acting regulatory motif content. Heatmap depicts number of motifs identified in gene promoter region. The y-axis

depicts C. sativa oxylipin biosynthetic genes and x-axis depicts associated condition for motif. Cell values are number

of motifs identified and are colored according to legend.

https://doi.org/10.1371/journal.pone.0272893.g007
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the few members that showed motifs involved in GA responses, suggesting a role mediated by

ABA-GA antagonism [94]. SA-responsive motifs were limited and predominately associated

with the 9-LOXs.

Of the CYP74 gene family, the largest number of CAREs were identified on promoters of

CsAOS4 and 5, followed by CsHPL (Fig 7). Relatively few were found on the putative JA-pro-

ducing CsAOS1, namely those associated with anaerobic conditions, light, and ABA signaling

responses. Unlike the pattern observed for LOXs, the disparity between light-related motifs

and other CAREs was not as dramatic in the CYP74 family, with the exception of the CsAOS4

and 5 pair. Nearly all CYP74s had ABA-responsive motifs, with the exception of CsAOS3 and

CsHPL which were also the only ones to possess GA-related motifs. CsAOS3, 4, and CsHPL

each had two JA-related motifs, while CsAOS1 had none; this suggests a limited contribution

of positive feedforward control of JA biosynthesis.

Analysis of the AOC gene family found only a single tissue-type related to CAREs across

the promoters of all members: CsAOC1 for meristem expression. While non-light condi-

tional-response motifs were the most numerous in CsAOC2 compared to the other two iso-

mers, the opposite was seen for light-responsive motifs, where only three were found in

CsAOC2. This was a sharp contrast with CsAOC1, which showed more than twice the number

of these CAREs compared to its paralogs (Fig 7). No AOC was found to have SA-related, and

only CsAOC2 had JA-related motifs, while all had ABA-related motifs.

Promoters of the OPR gene family contained similar patterns of CAREs compared with the

other gene families, albeit with reduced CARE content. No tissue-related CARE was detected

for any OPR member. However, all other members possessed motifs for anaerobic responses,

with the exception of CsOPR1 (Fig 7). ABA motifs were found in CsOPR1, CsOPR2, and

CsOPR5. CsOPR5 was also the only member to show GA motifs, and JA motifs were found in

CsOPR1, 3, and 4. The notable difference in CARE patterns found within the JA-producing

OPRs (CsOPR1-4), suggests that the 12-OPDA to JA balance is maintained in Cannabis via

transcriptional control of distinct OPR members responses to the plant’s environment and

during phytohormone signaling [95].

C. sativa oxylipin biosynthetic genes show tissue-, developmental-, and

cultivar-specific expression

Promoter analysis suggested that expression of C. sativa oxylipin biosynthetic genes would dis-

play distinct patterns. To understand the transcriptional profile of oxylipin biosynthetic genes

and to elucidate their role in Cannabis development and physiology, the gene expression of 23

tissues from a C. sativa transcriptome atlas [72] were examined (S2 Table). Overall, the major

contributor associated with levels of expression appeared to be the identity of the specific gene

family member, i.e., patterns of expression levels were generally consistent across the tissues

examined (Fig 8A). Moreover, several members in all gene families had few if any detected

transcripts across all tissues, suggesting a limited role for those isoforms under basal condi-

tions or in the tissues profiled.

Of the 9-LOXs, CsLOX1, 2, 4, 7 and 8 showed pronounced levels of expression across most

tissues. CsLOX4 is particularly notable as the highest expressed oxylipin biosynthetic gene ana-

lyzed, by one order of magnitude, in root and trichome tissues (Fig 8A), highlighting the prob-

able importance of this isoform grouping within the Cannabis-specific 9-LOX clade (Fig 2).

Curiously, CsLOX9 and 10 had minimal levels of expression in all but root tissues, where their

levels were 20-fold higher compared to other tissues. With respect to the 13-LOXs, with the

exception of CsLOX13 and 18, all had elevated expression in reproductive-related tissue. How-

ever, under these basal conditions, only CsLOX14 showed modest expression in roots.
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Remarkably, despite possessing the greatest number of identified CAREs (Fig 7B), nearly no

expression was detected for CsLOX12 (Fig 8A) which implies a non-basal role for this gene.

In regards to the CYP74-related genes, the likely non-JA producing CsAOS2 displayed the

most abundant expression levels, predominantly in early stages of flower and trichome devel-

opment (Fig 8A, S3 Fig). The putative JA-producing, CsAOS1, also showed its greatest levels of

expression in the female flowers, while minimally expressed in other tissues. While CsAOS5
showed modest levels of expression across tissues, transcripts of its closest paralogue CsAOS4
were only detected at low levels in few tissues. For the GLV- and cannabinoid-producing

CsHPL, expression remained consistent across tissues, disregarding low levels in root tissues

(Fig 8A). Interestingly, CsHPL expression remained relatively consistent across all stages of

flower and trichome development (S3 Fig).

In the majority of tissues, CsAOC2 showed the most uniform levels of expression from this

gene family (Fig 8), suggesting this member is the prominent isoform involved in JA biosyn-

thesis under basal conditions. CsAOC1 and CsAOC3 showed moderate to modest levels of

expression across most tissue types with several exceptions, prompting the idea that these

members participate in inducible processes.

Only CsOPR2 and 5, displayed mentionable levels of expression. CsOPR2 transcript levels

were an order of magnitude higher than the other Type II paralogs, suggesting this is the

major JA-producing isoform under basal conditions (Fig 8). It is also notable that the majority

of its expression was in tissues related to flower structures. The sole Type I OPR, CsOPR5 dis-

played even greater levels of expression in flower tissues, especially developing trichomes, rais-

ing the possibility for the involvement of CsOPR5 in reduction or detoxification of metabolites

during trichome development.

To understand the variation in gene expression across Cannabis diversity, transcriptomes

of trichomes from nine cultivars of mixed ancestry [73] were profiled for their expression of

oxylipin biosynthetic genes (S3 Table). With the exception of expression of CsLOX15, of which

transcript levels showed nearly a bimodal distribution across the cultivar tested, i.e., Black

Berry Kush, Cherry Chem, Mamma Thai, and Terple possessed half of the expression com-

pared to the five other lines (Fig 8B). Few differences were observed in the other oxylipin bio-

synthetic gene expression. In particular, decreased expression was seen in CsLOX14, CsLOX16,

Fig 8. Heatmaps showing expression of oxylipin biosynthetic genes from the C. sativa gene expression atlas (A) or female trichomes of

diverse marijuana lines (B). Cells values are rounded TPM values and are colored according to the legend.

https://doi.org/10.1371/journal.pone.0272893.g008
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and CsOPR2 from Cherry Cham, Terple, and Black Berry Kush, respectively, relative to the

other Cannabis lines. On the other hand, Mama Thai and Black Berry Kush showed elevated

levels for transcripts of CsLOX4 and CsAOC1, respectively, and trichomes of White Cookies

had increased expression of both CsAOS3 and CsAOC1. Interestingly, in sharp contrast to

expression levels seen in the transcriptome atlas, transcripts of CsLOX15 dominated in the tri-

chomes of these cultivars followed by those of CsLOX4. In agreement with the oxylipin-derived

hexanoic acid hypothesis [96], the expression of CsHPL levels were also two- to 10-fold higher

compared to the other CYP74s, likely owed to the selection of these cultivars for high cannabi-

noid production.

Cannabis oxylipin biosynthetic genes are found in gene networks

associated with stress responses, growth, and development

To obtain a more detailed picture of the regulation of the Cannabis oxylipin biosynthetic

genes, an iterative weighted gene co-expression network analysis was performed, using multi-

tissue expression data from the Cannabis transcriptome atlas [72]. This analysis revealed that

11 oxylipin biosynthesis genes were found clustering in seven multi-gene modules (Fig 9A),

while the rest did not exhibit clustering with other genes, using the data available to us. The

four largest modules contained between 1130–1852 genes each, in total containing a regulatory

network up to 30% of the C. sativa gene models. One of these larger modules contained

CsAOS5, while the other three modules contained multiple oxylipin biosynthetic genes:

CsLOX3 and 10, CsOPR3 and 4, and CsLOX5, 9 and CsOPR1. The 15 smallest modules had

under 200 genes each and together accounted for only 5% of the C. sativa transcriptome.

We also performed functional enrichment analysis of the oxylipin gene-associated co-

expression network for Gene Ontology and KEGG identified terms related to molecular func-

tions, biological process, and cellular component orthologs (Fig 9B). Among the top 10 terms

Fig 9. Weighted co-expression genetic network derived from the C. sativa transcriptome expression atlas. (A)

Clusters represent modules of highly connected genes containing at least one oxylipin biosynthetic gene. (B) Functional

enrichment analysis of gene modules containing oxylipin biosynthetic genes: Gene Ontologies for Molecular Functions

(MF), Biological Processes (BP), and Cellular Components (CC) and KEGG.

https://doi.org/10.1371/journal.pone.0272893.g009
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for molecular functions, 60% were related to nucleic acid binding and transcription. Of the

biological processes, 80% were related to development or physiological responses. For cellular

components, 40% and 30% described organelle- and membrane-related terms, respectively.

KEGG terms described secondary metabolism, particularly α-linolenic acid metabolism and

branch-chain amino acid degradation. As expected, individual modules were enriched for dif-

ferential functional terms (S4 Table). Taken together, these results suggest similar members of

oxylipin biosynthesis pathways may be regulated in specialized manner, but in general, certain

members may be part of transcriptome-wide regulatory networks. Further, focused expression,

biochemical, and proteomic experiments will need to be performed to assess the importance

of these patterns.

Discussion

Enthusiasm is growing to understand the physiological and ecological functions of plant oxyli-

pins [90]. JA has long served [97] as the model oxylipin, and over the last fifty years, many

aspects of its biosynthesis, metabolism, signaling, and activities have started to be defined [98–

101]. However, this knowledge has been generated predominantly in the model plant species,

Arabidopsis, and investigations focusing on oxylipin biology in crop species have been

launched only in recent years. Here, we cataloged the major oxylipin biosynthetic genes fami-

lies of the agro-economically important crop species, C. sativa, described their expression pat-

terns, and delineated connections between their putative physiological functions.

LOX gene family

This study adds Cannabaceae to the collection of plant families with described LOX gene fami-

lies, a group which so far includes Araceae: duckweed [102]; Actinidiaceae: kiwi [103]; Brassi-

caceae: Arabidopsis thaliana [104–106], radish [107], and turnip [108]; Caricaceae: papaya

[106]; Cucurbitaceae: cucumber [109, 110], melon [111], and watermelon [112]; Fabaceae:

Medicago truncatula, peanut [113], and soybean [114]; Malvaceae: cotton [115] Muscaceae:

banana [116]; Poaceae: maize [117], rice [105], Setaria italica [118], sorghum [119]; Polygona-

ceae: buckwheat [120]; Rhamnaceae: jujube [121]; Rosaceae: apple [122], peach [123], pear

[124]; Salicaceae: poplar [125]; Solanaceae: pepper [126] and tomato [127, 128]; Theaceae:

Camellia sinensis [129]; and Vitaceae: grape [130].

Of the 21 C. sativa LOX isoforms identified (Fig 1), 11 are likely responsible for the produc-

tion of 9-oxylipins, nine are producers of 13-oxylipins, and one member (CsLOX12) remains

to be empirically determined. Of the hallmark 9-LOXs AtLOX1 and AtLOX5, two and one C.

sativa LOX members grouped with each respectively, while eight formed their own clade.

Within 9-LOX phylogenies, monocots typically display their own grouping [102, 116, 118],

while the divergence of 9-LOXs in dicots is less common; yet still observed in Cucurbitaceae

[111], Salicaceae [125], and Vitaceae [130]. Interestingly, seven members were identified in

nearly one large tandem gene array (S1 Fig), which fell within the clade containing both mono-

cot and dicot isoforms required for GLV biosynthesis [45, 131]. Similar substantial gene ampli-

fication of this LOX clade has been found to various degrees, in Cucurbitaceae [109–112],

Salicaceae [125], and Vitaceae [130]. As AtLOX2 was not found to be syntenic across the

Rosids [106], the gene duplications likely occurred independently in ancestors following the

divergence of Rosales, Cucurbitales, Malpighiales, and Vitales.

Proteomic analysis [132] has verified that several lipoxygenases are found with spatial speci-

ficity in Cannabis flowers and components of their glandular trichomes. Of particular interest

was the presence of isoforms from the tandem duplicated 13-LOXs, namely, CsLOX15, 16 and

17 within the trichome head. It is tempting to speculate that these gene duplications may serve
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to maintain the pool of hexanoic acid substrate available for cannabinoid biosynthesis. In Can-
nabis, tandem gene arrays have previously been implicated in regulating lipid biosynthesis,

particularly the ratios of volatile terpenes that subsequently determines the scent of specific

cultivars [133]. This amplification of the 13-LOX paralogues in a tandem gene array may be

due to the origin of the representative C. sativa genome [57] from CBDRx, a high CBD pro-

ducing line. The ubiquity of tandem gene arrays among other Cannabis species and cultivars

remains to be examined, especially in regards to the agronomic characteristics that drive the

selection of economically important cultivars. Interestingly, the 9-LOXs, CsLOX4 and 7 were

also found within the flower and trichomes where they are likely to contribute to the 9-oxylipin

volatiles of Cannabis [134].

CYP74 gene family

Despite its importance in oxylipin metabolism, few studies have examined CYP74 gene fami-

lies from a genome-wide perspective [135–137]. In C. sativa, six CYP74 isoforms were identi-

fied Specifically CsAOS1 and CsHPL, were distinctly found within the JA- and GLV-

producing CYP74 clades, respectively (Fig 3D). Both contained a transient peptide signal

sequence predicting localization in plastids (Table 1), although the unique motifs found at

their N-terminus suggest an association with different sub-plastid locations. This is similar to

tomato where LeAOS was found with the inner chloroplast envelope while LeHPL was tar-

geted to the outer plastid envelope [138]. Four isoforms were found with the CYP74C subfam-

ily, a more irregular group of enzymes with members possessing varying levels of AOS, EAS,

and/or HPL activity [139]. It is interesting to note that CsAOS2 was syntenic to the DES of

tomato (Fig 6), however, a comprehensive survey and validation of Cannabis oxylipins

remains to be performed to understand if this species indeed produces divinyl ethers. Ulti-

mately, these isoforms will require biochemical characterization, as even a single amino acid

change can result in a new function or protein activity [140, 141]. Four CYP74 peptides

(CsAOS1,2,5 and CsHPL) have been detected in association with Cannabis flowers, and of

these, CsHPL was the only isoform found within trichome heads and stalks [132].

AOC gene family

AOC activity yields the first JA and is the last enzymatic step of JA biosynthesis performed in

the chloroplast [101]. Three members of the AOC gene family were identified in C. sativa, a

number consistent with four of Arabidopsis [33], six of soybean [142], and two of maize [26].

Isoforms typically display organ- and tissue-specific expression and function as heterodimers

[143]. Only CsAOC2 and CsAOC3 were predicted to localize to plastids (Table 1), supporting

the function of these isoforms in JA-biosynthesis. Remarkably, CsAOC3 showed synteny with

both Arabidopsis (AtAOC1 and AtAOC4) and tomato (SlAOC) orthologues. In Arabidopsis,
heteromers containing AtAOC1 and AtAOC4 display the greatest enzymatic activity [144],

suggesting an evolutionary advantage of this conserved genomic region for JA production.

OPR gene family

A larger variability in OPR gene content exists across plant species analyzed so far: three in

Arabidopsis [38], five in pea [145], five in watermelon [146], eight in maize [147], 10 in cotton

[148], 13 in rice [149], and 48 in wheat [150]. This study identified one Type I OPR and four

Type II OPRs in the C. sativa genome. Both subgroups reduce α, β -unsaturated double bonds

and are involved in reactive electrophilic species (RES) detoxification [151, 152]. While Type

II OPRs are well-characterized for their peroxisomal role in reducing 12-OPDA to OPC8:0

during JA biosynthesis, Type I OPRs are less understood. They have been shown to reduce 4,
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6-trinitrotoluene (TNT) [93] and were recently demonstrated to be involved in producing JA

through reduction of an endogenous cyclopentenone JA-analog [42]. Tandem duplication has

been implicated as playing a major role in the size of OPR gene families across plant species

[153] and interestingly, while all Type II OPRs were found together in a gene cluster, no OPR

displayed synteny across the species tested, suggesting OPR gene duplication was a relatively

recent event in the C. sativa ancestor.

Oxylipins in Cannabis
To date, the interaction between the Cannabis oxylipin and cannabinoid pathways has largely

been overlooked. Several investigations have sought to increase cannabinoid content using JA

or methyl-JA treatments on Cannabis flowers [154], leaves [155], or cell cultures [156] and

have been met with mixed results. Studies that analyze oxylipin levels in Cannabis tissues or

products have focused on volatiles from above-ground tissues [157], seeds [158], or seed oil

[159, 160] as components of their odor profiles. Recently, it was found that sex impacts the dis-

tinct oxylipin species that accumulate in the Cannabis flower. While male flowers have

increased accumulation of the 9-LOX-derived, 9-oxo-octadecadienoic acid, female flowers

accumulated higher levels of 12-OPDA [161].

Conclusion

While the LOX pathway is the hypothetical origin of the hexanoic acid moiety used for canna-

binoid biosynthesis [12, 19, 24, 25, 96], the precise mechanisms for its production are largely

unknown. Here, we provide a comprehensive description of the C. sativa LOX pathway,

Fig 10. Working model of C. sativa oxylipin biosynthetic enzyme isoforms and pathways involved in cannabinoid,

GLV, and JA biosynthesis. Abbreviations: [enzymes]: allene oxide cyclase (AOC), allene oxide synthase (AOS),

2-alkynal reductase (2-AR), hydroperoxide lyase (HPL), lipoxygenase (LOX), methylerythritol 4-phosphate pathway

(MEP), 12-oxo-phytodienoic reductase (OPR); [metabolites]: (9Z, 11E, 13S, 15Z)-12,13-epoxy-

9,11,15-octadecatrienoic acid (12,13-EOT), (9Z, 11E, 13S)-13-hydroperoxy-9,11-octadecadienoic acid (13-HPOD),

(9Z, 11E, 13S, 15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid (13-HPOT), cannabigerolic acid (CBGA), linoleic

acid (C18:2), α-linolenic acid (C18:3), jasmonic acid (JA), 12-oxo-phytodienoic acid (12-OPDA), 3-oxo-2-(20[Z]-

pentenyl)-cyclopentane-1-octanoic acid (OPC8:0). The gray box indicates uncertainty in subcellular localization.

https://doi.org/10.1371/journal.pone.0272893.g010
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including the major oxylipin biosynthetic gene families, to establish a working model (Fig 10)

for further investigations.

Within this context, it will become important to understand the co-localization of the sub-

strates with their corresponding enzymes. LOX activity depends on a 1,4-dipentadiene struc-

ture found in either C18:2 or C18:3 [27], both of which, in tomato, account for the most

abundant fatty acids in its trichomes [162]. However, while HPL-cleavage of 13-hydroperoxy-

dienoic acid would generate a statured C6-aldehyde, the GLV-producing 13-LOXs and HPL

are likely localized to the C18:3-rich chloroplasts [163, 164]. Additionally, the GLV-producing

AtLOX2 oxygenates C18:3 more efficiently than C18:2 [104], which together may explain why

unsaturated GLVs prevail as the major C6 volatile in plants [165].

Enzymatic production of hexanoic acid from the C18:3 HPL-product, Z-3-hexenal is unex-

plored, but would reasonably require distinct enzymatic reactions. Chemical or enzymatic

isomerization by (3Z):(2E)-enal isomerase would generate (2E)-hexenal [46, 55] which could

be reduced to hexanal by 2-alkenal reductase [166] or by OPR [167]. The conversation of the

fatty aldehyde to fatty acid likely requires an aldehyde dehydrogenase [168], the product of

which would be readily diffused across cell membranes [169]. In an alternative scenario,

13-LOX may oxygenate C18:2 directly, however this would presumably require the cytosolic

localization of both 13-LOX and HPL. A 13-LOX isoform in melon was shown to have prefer-

ence for C18:2 and localized to non-chloroplast organelles [170]. This strategy would take

advantage of the relatively high C18:2 content in the inflorescences of some Cannabis cultivars

[171].

Understanding and applying knowledge of the Cannabis oxylipin biosynthetic pathway is

expected to provide novel environmentally friendly approaches towards improving the crop

and its desirable consumer traits. Similar technologies in maize and soybeans in development

aim at increasing disease resistance [172], drought tolerance [173], and seed flavor [174].

Exploiting the diversity in Cannabis cultivars via oxylipin biosynthetic gene expression and

variability in the predominant oxylipin biosynthetic pathway branch across cultivars and spe-

cies (e.g., C. sativa vs C. indica) should also provide opportunities for manipulating cannabi-

noid content and other traits through marker-assisted selection or identification of superior

alleles.
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