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Abstract

Aim

In a retrospective and exploratory case-control study, we examined the genetic association

of two common polymorphisms in the 3’ untranslated region (UTR) of DICER1 (rs3742330)

and DROSHA (rs10719) genes in primary open-angle glaucoma (POAG) and primary

angle-closure glaucoma (PACG), and its related clinical phenotypes in a Saudi cohort.

Methods

DNA genotyping was performed using TaqMan real-time PCR assays in 500 participants,

including 152 POAG, 102 PACG, and 246 non-glaucomatous controls. Statistical analyses

were performed to examine the association(s).

Results

Allele and genotype frequency of rs3742330 and rs10719 did not vary significantly in POAG

and PACG compared to controls. No significant deviation was observed from Hardy-Wein-

berg Equilibrium (p > 0.05). Gender stratification revealed no significant allelic/genotype

association with glaucoma types. Also, these polymorphisms showed no significant geno-

type effect on clinical markers such as intraocular pressure, cup/disc ratio, and the number

of antiglaucoma medications. Logistic regression showed no effect of age, sex, rs3742330,

and rs10719 genotypes on the risk of disease outcome. We also examined a combined alle-

lic effect of rs3742330 (A>G) and rs10719 (A>G). However, none of the allelic combinations

significantly affected POAG and PACG.
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Conclusions

The 3’ UTR polymorphisms rs3742330 and rs10719 of DICER1 and DROSHA genes are

not associated with POAG and PACG or its related glaucoma indices in this Middle-Eastern

cohort of Saudi Arab ethnicity. However, there is a need to validate the results on a broader

population and other ethnicities.

Introduction

Glaucoma is a chronic neurodegenerative disease. It is characterized by high intraocular pres-

sure (IOP), trabecular meshwork (TM) dysfunction, apoptosis of the retinal ganglion cells

(RGC), damage to the optic nerve head, and progressive visual field loss leading to blindness

[1]. The most common types of glaucoma are primary open-angle glaucoma (POAG) and pri-

mary angle-closure glaucoma (PACG). POAG is characterized by an open iridocorneal angle,

and PACG has a narrow or closed iridocorneal angle that blocks the aqueous humor (AH) out-

flow pathway leading to high IOP and subsequent glaucoma features [1]. PACG is far more

common among Asians, including Saudi Arabs [2,3]. Aging, high IOP, race, myopia, family

history, and genetic factors are well-known glaucoma risk factors [4]. POAG and PACG com-

monly follow a genetically complex inheritance pattern wherein genes and environmental fac-

tors contribute significantly to disease pathogenesis [5]. Many genome-wide association

studies have identified genes and loci associated with these glaucoma types [6–8]. However,

most of these studies have been performed on Asians and Caucasians, with conflicting reports

on other ethnicities, including Saudi Arabs [9–11]. The specific genetic factors and molecular

mechanisms contributing to glaucomatous eye damage are still elusive.

POAG patients exhibit a wide variety of both ocular and non-ocular vascular abnormalities.

These critical vascular abnormalities must be addressed to understand the underlying patho-

genic mechanisms in RGC and optic nerve degeneration [12]. For example, common genetic

variations in NOS3 and the CAV1/CAV2 genomic regions, which code for proteins involved in

setting the vascular tone, are associated with POAG [13,14]. Thus the systemic involvement in

POAG cannot be completely ruled out. Likewise, although the mechanism for PACG is pri-

marily mechanical, the overlapping clinical features among different glaucoma types suggest a

common down-stream mechanism(s) in the development and/or progression of these dis-

eases. Genetic association studies have identified polymorphisms common between glaucoma

types [15–18]. These mechanisms may not represent a unifying hypothesis in our understand-

ing of POAG or PACG development, but they do appear to play an essential role in disease

pathogenesis. As the genetic basis of POAG and PACG in the middle-eastern Saudi Arabs is

still largely unknown, we explored the genetic association between two common polymor-

phisms, rs10719 (A>G) in DROSHA1 and rs3742330 (A>G) in DICER1 and POAG and

PACG in this ethnic population.

DROSHA and DICER are two critical RNase III enzymes, involved in the biogenesis and

regulation of microRNAs (miRNAs). DROSHA is involved in the cleaving of primary-miRNA

into a 70-bp stem loop precursor-miRNA in the nucleus. Whereas, DICER cleaves the double-

stranded precursor-miRNA, transported into the cytoplasm by exportin-5, to produce miRNA

and small interfering RNA (siRNA) [19]. MiRNAs are small (~22bp), conserved, non-coding

RNAs that bind to complementary sequences in the 30 untranslated region (3’ UTR) of mes-

senger RNAs (mRNAs) and regulate posttranscriptional gene expression by inducing transla-

tional inhibition [20]. Differential expression of miRNAs with diagnostic potential in
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glaucoma-affected tissues, such as AH, plasma, tears, TM, and retina, and the demonstrated

essential role for miRNAs in IOP regulation, RGC survival, and optic nerve damage suggests

their potential involvement in glaucoma pathogenesis [21–24].

Dysregulation of miRNA processing has been demonstrated to facilitate cellular transfor-

mation and tumor formation [25]. Polymorphisms rs10719 (A>G) in DROSHA1 and

rs3742330 (A>G) in DICER1 are located in the 3’ UTR region of their respective genes. The

region may be necessary for miRNA binding, transcription factor binding, DNA methylation,

and histone modification, suggesting that these genes might have critical regulatory functions

[26–28] (S1 Fig). Interestingly, these polymorphisms have been reported to result in aberrant

expression of these enzymes [29–32] that may alter miRNA expression in the cells [33,34],

thus affecting the expression of corresponding genes and thereby deregulating downstream

mechanisms/pathways that control cellular functions and have pathological consequences

[29,35,36] (S2 Fig). Moreover, these polymorphisms have also been previously associated with

several complex human diseases. These include hypertension, endometriosis, cancer, athero-

sclerosis, Parkinson’s, and pseudoexfoliation glaucoma [37–43].

DICER and DROSHA are critical enzymes in miRNA biogenesis, but their association with

POAG and PACG has not been investigated [19]. We have previously reported an association

of rs3742330 in DICER1 in pseudoexfoliation glaucoma [43]. We hypothesize that polymor-

phisms (rs10719 and rs3742330) in DROSHA/DICER1 genes would alter these enzymes’

expression, affecting miRNA production or regulation which might affect downstream path-

ways related to glaucoma processes (e.g., extracellular matrix remodeling and trabecular mesh-

work homeostasis) and influence the disease development and progression. Thus, we

investigated their genetic association in POAG and PACG patients of Saudi origin.

Materials and methods

Study design and participants

We performed a retrospective and exploratory case-control study. The study adhered to the

guidelines of the Declaration of Helsinki for human research and was approved by the Institu-

tional Review Board committee (IRB protocol number # 08–657) at the College of Medicine,

King Saud University, Riyadh, Saudi Arabia. Written informed consent was obtained from all

participants. Study participants were recruited at the King Abdulaziz University Hospital in

Riyadh, Saudi Arabia. Trained glaucoma specialists carried out the patient phenotyping. In

general, we adopt the European Glaucoma Society [44] guidelines for diagnosis in our facility.

A standardized ophthalmic examination was performed on all the participating patients This

included measurement of IOP by Goldmann applanation tonometry mounted at the slit lamp,

examination of anterior chamber angles by gonioscopy, dilated pupil examination of the lens

and fundus, and visual field testing by Humphrey automated field analyzer. POAG patients

(n = 152) satisfied the following clinical criteria: (1) the presence of glaucomatous optic neu-

ropathy (defined as loss of neuroretinal rim with a vertical cup-to-disc ratio of>0.7 or an

inter-eye asymmetry of>0.2, and/or notching attributable to glaucoma); (2) and correspond-

ing visual field (Humphrey Field Analyzer II, Carl Zeiss Meditec, Inc., Dublin, CA, USA; using

a full threshold 24–2 program) abnormalities typical of glaucoma such as nasal step defect,

arcuate or paracentral scotomata, or generalized tunnel vision; (3) bilaterally open anterior

chamber angles by gonioscopy; (4) adult-onset of the disease; (5) IOP�21 mmHg in one or

both eyes before initiation of glaucoma treatment; (6) and absence of secondary causes of glau-

comatous optic neuropathy with identifiable causes such as exfoliative glaucoma; angle-clo-

sure; pigmentary glaucoma; post-traumatic, infectious or inflammatory glaucoma (e.g.,

uveitis), post-surgical and post-medication (after corticosteroids, for example) [45]. The angle-
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closure glaucoma participants included chronic PACG patients (n = 102) exhibiting clinical evi-

dence of anatomically closed angle showing the occurrence of appositional or synechial closure

of the anterior chamber angle (~270˚ of the angle is occluded); high IOP (�21 mmHg); optic

disk damage with cup/disc ratio of ~0.7 (at least in one eye); and evidence of peripheral or

advanced visual field defect [46]. A representative image of visual field finding in POAG and

PACG patients is shown in S3 Fig. Participants with secondary types of glaucoma cases such as

pigmentary glaucoma, uveitic, pseudoexfoliation, history of optic neuropathies or visual

impairment not related to glaucoma, use of steroids, ocular trauma, absence of sufficient fundus

visualization for disk assessment, or refusal to participate were excluded from the study.

A group of healthy non-glaucomatous Saudi Arab participants (n = 246) recruited from our

ophthalmology screening clinics were included as controls in the study. These participants were:

>40 years of age, with normal IOP without medication (<21 mmHg), open angles on gonio-

scopy, healthy optic disc (cup/disc ratio<0.5), free from any form of glaucoma on examination,

and no family history of glaucoma. Subjects refusing to participate in the study were excluded.

Genotyping of rs3742330 in DICER1 and rs10719 in DROSHA
DNA samples extracted from peripheral EDTA blood were genotyped for these polymor-

phisms as described earlier [43]. Commercially available TaqMan1 assays: C__27475447_10

and C___7761648_10 (Catalog number: 4351379, Applied Biosystems Inc., Foster City, CA,

USA) were used for genotyping rs3742330 [A>G] and rs10719 [G>A], respectively under rec-

ommended amplification conditions on ABI 7500 Real-Time PCR System (Applied Biosys-

tems). Each PCR reaction was performed in a total volume of 25 μL consisting of 1X

TaqMan1 Genotyping Master Mix (Applied Biosystems), 1X SNP Genotyping Assay Mix, and

20 ng DNA. Each 96-well plate included two no-template (negative) controls. The fluorescence

analysis used the automated 2-color allele discrimination software to identify the rs3742330

(DICER1) and rs10719 (DROSHA) genotypes on a two-dimensional graph.

Statistics

The deviation from Hardy-Weinberg Equilibrium (HWE) and dichotomous variables such as

gender distribution between cases and controls, allele and genotype frequency distribution

between cases and controls were tested using Pearson’s Chi-square analysis and Fisher’s test

where applicable. Normality testing of continuous variables was done using the Kolmogorov–

Smirnov test. Accordingly, the Mann-Whitney U test was used for a two-group comparison

and the Kruskal-Wallis test for a three-group comparison. Logistic regression analysis was per-

formed to test the effects of multiple risk factors (age, sex, and genotypes) on disease outcomes.

The analyses were performed using SPSS version 22 (IBM Inc., Chicago, Illinois, USA), Stat

View software version 5.0 (SAS Institute, Cary, NC, USA), and SNPStats online software

(https://www.snpstats.net/start.htm) [47]. The combined allelic effect was estimated using

SHEsis (http://analysis.bio-x.cn/myAnalysis.php). Power analysis used an open-source online

PS program version 3.1.2 for unmatched case-control (dichotomous) testing (https://

vbiostatps.app.vumc.org/ps/). A p< 0.05 (two-tailed) was considered statistically significant.

Bonferroni’s correction p-value for multiple testing was considered where applicable.

Results

Demographic characteristics of the participants

The mean age of POAG patients was 60.9 y (± 10.4), PACG patients were 60.6 y (± 7.2), and

controls were 59.5 y (± 7.2). The age differences were insignificant between POAG and
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controls (p = 0.112) and PACG and controls (p = 0.225). Similarly, there was no significant dif-

ference in gender distribution between POAG (84 men and 68 women) and PACG (45 men

and 57 women) as compared to controls (132 men and 114 women). The demographic charac-

teristics of participants are shown in Fig 1.

Allele frequency distribution of rs3742330 (DICER1) and rs10719

(DROSHA)

Genotyping of rs3742330 and rs10719 was performed in 246 controls, 152 POAG, and 102

PACG DNA samples. Genotyping results were available for 241 controls, 152 POAG, and 102

PACG patients for DICER1 rs3742330 polymorphism, and 246 controls, 150 POAG, and 101

PACG patients for DROSHA rs10719 polymorphism. These genotyping results were used to

test for allele and genotype association between polymorphisms and POAG/PACG, and for

clinical markers in the patient groups. However, eight samples missing either rs3742330 (n = 5

controls) or rs10719 (n = 2 POAG and n = 1 PACG) genotypes were excluded from regression

and haplotype analysis.

The polymorphisms showed no significant deviation from HWE (p> 0.05). The rs3742330

[G] minor allele frequency (MAF) did not show any significant association with POAG

(MAF = 0.08) and PACG (MAF = 0.07) as compared to the controls (MAF = 0.08). Further-

more, gender stratification also showed no significant association. Likewise, the MAF of

rs10719 [A] also showed no association with POAG (MAF = 0.42) and PACG (MAF = 0.45) in

comparison to controls (MAF = 0.43). Furthermore, both polymorphisms showed no gender-

specific association with both glaucoma types compared to controls. The overall and gender-

stratified MAF distribution of rs3742330 and rs10719 in cases and controls are shown in

Table 1.

Genotype association analysis of rs3742330 (DICER1) in POAG and PACG

There is no clear inheritance pattern of the common polygenic forms of glaucoma, such as

POAG and PACG. Hence, we examined the association between DICER1 and DROSHA poly-

morphisms and the risk of POAG and PACG using SNPStat, an online software. This web tool

uses different genetic models, such as co-dominant, dominant, recessive, over-dominant, and

log-additive, to determine the best fit genetic model. The rs3742330 genotypes in DICER1

Fig 1. Demographic data of patients and controls. (A) The graph with error bars represents mean age and standard

deviation with a p-value estimated by Mann-Whitney U-test compared to controls. (B) The gender distribution is

represented as a frequency bar graph, and the p-value is calculated by Pearson’s Chi-square analysis.

https://doi.org/10.1371/journal.pone.0284852.g001
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showed no significant association with POAG and PACG (Table 2) in any of the tested genetic

models. Similarly, no gender-specific genotype association was observed in POAG and PACG

cases (S2 and S2 Tables).

Genotype association analysis of rs10719 (DROSHA) in POAG and PACG

No significant genotype association of rs10719 was observed in POAG and PACG cases com-

pared to controls in the co-dominant, dominant, over-dominant, recessive, and log-additive

genetic models (Table 3). Likewise, the gender-stratified analysis showed no significant geno-

type distribution in POAG and PACG (S3 and S4 Tables).

Regression analysis and genotype influence on clinical parameters

A binary regression analysis was performed to assess the influence of multiple risk factors like

age, sex, and genotypes of rs3742330 and rs10719 on POAG/PACG outcome. None of the vari-

ables significantly contributed to the risk of POAG and PACG (Table 4). In addition, both the

polymorphisms rs3742330 (DICER1) and rs10719 (DROSHA) showed no significant genotype

influence on glaucoma-specific clinical indices such as IOP, cup/disk ratio, and the number of

antiglaucoma medications (Fig 2).

Combined allelic association analysis of rs3742330 and rs10719 with POAG

and PACG

In order further examine the association of variants rs3742330 (A>G) and rs10719 (A>G) in

POAG and PACG, a combined allelic association analysis was performed using the SHEsis

online software. However, none of the allelic combinations of the two variants showed any sig-

nificant association with POAG and PACG, as shown in Table 5.

Table 1. Distribution of minor allele frequency of DICER1 rs3742330[G] and DROSHA rs10719[A] variants in study participants.

SNP ID [minor allele] Controls Cases Odds ratio (95% Confidence Interval) p-value

rs3742330[G]

POAG

Total 0.08 0.08 0.96 (0.56–1.64) 0.87

Men 0.08 0.10 1.25 (0.62–2.52) 0.53

Women 0.08 0.05 0.63 (0.26–1.55) 0.3

PACG

Total 0.08 0.07 0.86 (0.45–1.64) 0.63

Men 0.08 0.07 0.84 (0.33–2.17) 0.72

Women 0.08 0.07 0.86 (0.35–2.12) 0.74

rs10719[A]

POAG

Total 0.43 0.42 0.97 (0.73–1.29) 0.84

Men 0.45 0.42 0.88 (0.60–1.30) 0.53

Women 0.41 0.43 1.09 (0.71–1.67) 0.7

PACG

Total 0.43 0.45 1.08 (0.78–1.48) 0.65

Men 0.45 0.38 0.75 (0.46–1.23) 0.25

Women 0.41 0.51 1.42 (0.92–2.18) 0.11

Abbreviations: POAG, primary open-angle glaucoma; PACG, primary angle-closure glaucoma.

https://doi.org/10.1371/journal.pone.0284852.t001
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Discussion

Genome-wide association studies have previously investigated the role of different genes in

POAG and PACG and identified several genetic loci that account for a small percentage of the

disease or are associated with specific ethnic groups [9]. Although substantial molecular

insights have been gained through these studies, further studies are still warranted to identify

other genetic variants that may be linked to the development or progression of the disease.

Although studies have reported the genetic association of miRNA biogenesis gene polymor-

phisms, DICER1 (rs3642330) and DROSHA (rs10719), in a wide variety of human diseases

[41,48–51], however, their genetic contribution in glaucoma has not been much investigated.

In this study, we report no association of polymorphisms (rs3742330 and rs10719) in genes

(DICER1 and DROSHA, respectively) involved in miRNA biogenesis in the POAG and PACG

Middle-Eastern cohort of Saudi Arab ethnicity.

The MAF of rs3742330(G) in DICER1 was 0.08, 0.07, and 0.08 in POAG, PACG, and con-

trol samples of Saudi ethnicity, respectively, which were not statistically significant. As com-

pared to the NCBI database (https://www.ncbi.nlm.nih.gov/snp/rs3742330), the allele

frequency was similar to that of the Europeans (0.09), lower than Asians (0.36) but higher than

Africans (0.028) and African Americans (0.029). According to the NCBI (https://www.ncbi.

nlm.nih.gov/snp/rs10719), rs10719[A] is a reference and a major allele in Africans, East

Asians, and Japanese but is a minor allele in Europeans, South Asians, and Americans as

observed in our study cohort. Accordingly, the MAF of rs10719(A) in DROSHA was 0.42, 0.45,

and 0.43 among POAG, PACG, and controls of this ethnic group, respectively, which were

Table 2. Genotype association analysis of rs3742330 variant in DICER1 with primary open-angle glaucoma and primary angle-closure glaucoma.

Group Genetic Model Genotype Control

n (%)

Cases

n (%)

Odds ratio (95% Confidence Interval) p-value p-value§

POAG Co-dominant A/A 204 (84.7) 130 (85.5) 1.00 0.910 0.920

A/G 36 (14.9) 21 (13.8) 0.92 (0.51–1.64)

G/G 1 (0.4) 1 (0.7) 1.57 (0.10–25.31)

Dominant A/A 204 (84.7) 130 (85.5) 1.00 0.810 0.770

A/G-G/G 37 (15.3) 22 (14.5) 0.93 (0.53–1.65)

Recessive A/A-A/G 240 (99.6) 151 (99.3) 1.00 0.740 0.800

G/G 1 (0.4) 1 (0.7) 1.59 (0.10–25.60)

Over-dominant A/A-G/G 205 (85.1) 131 (86.2) 1.00 0.760 0.730

A/G 36 (14.9) 21 (13.8) 0.91 (0.51–1.63)

Log-additive† --- --- --- 0.96 (0.56–1.64) 0.870 0.820

PACG Co-dominant A/A 204 (84.7) 88 (86.3) 1.00 0.670 0.700

A/G 36 (14.9) 14 (13.7) 0.90 (0.46–1.75)

G/G 1 (0.4) 0 (0) 0.00 (0.00-NA)

Dominant A/A 204 (84.7) 88 (86.3) 1.00 0.700 0.700

A/G-G/G 37 (15.3) 14 (13.7) 0.88 (0.45–1.70)

Recessive A/A-A/G 240 (99.6) 102 (100) 1.00 0.400 0.430

G/G 1 (0.4) 0 (0) 0.00 (0.00-NA)

Over-dominant A/A-G/G 205 (85.1) 88 (86.3) 1.00 0.770 0.770

A/G 36 (14.9) 14 (13.7) 0.91 (0.47–1.76)

Log-additive† --- --- --- 0.86 (0.45–1.64) 0.630 0.640

†Additive model also non-significant
§p-value adjusted for age and sex in the overall group and by age in men and women groups.

Abbreviations: POAG, primary open-angle glaucoma PACG, primary angle-closure glaucoma.

https://doi.org/10.1371/journal.pone.0284852.t002
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non-significant. In comparison to the NCBI database, the allele frequency was lower than

Asians (0.69), Africans (0.63), and African Americans (0.63), but higher than Europeans

(0.20), South Asians (0.39), and Americans (0.34). The allele frequency distribution indicates

the ethnic variability of these polymorphisms across different populations.

The catalytic role of DROSHA and DICER in synthesizing miRNAs is central to RNA-

mediated gene silencing or RNA interference [19]. Deletion of DROSHA and DICER in

human cell lines completely abolished or markedly reduced miRNA production in the canoni-

cal pathway [52]. Emerging evidence suggests that polymorphism(s) in these genes (DICER1
and DROSHA) may alter the biological functions of miRNAs and contribute to the pathogene-

sis of various systemic and neurodegenerative diseases [37–39,53,54]. miRNAs exhibit tissue-

specific expression and are known to express in glaucoma-related ocular tissues [55]. Several

studies have highlighted the significant functional role of miRNAs in glaucoma [56]. Also,

miRNA-related variants are reported to be associated with POAG endophenotypes [57].

Although there are no published reports of these polymorphisms (rs3742330 and rs10719)

being examined in glaucoma types, Chatzikyriakidou et al. reported a different DICER1 vari-

ant, rs1057035 (C>T), which conferred protection (OR of 0.69) in patients with pseudoexfolia-

tion syndrome [40] but was not associated with POAG. Using the LDlink analysis (https://

ldlink.nci.nih.gov/?tab=ldpop), we have previously examined the linkage between rs1057035

and rs3742330 in DICER1 across the 1000 Genomes database and noted no linkage between

these two SNPs (r2 = 0.032) [43]. Nonetheless, the data further support the absence of any asso-

ciation of the DICER1 variant with POAG observed in our patient cohort. There are no pub-

lished reports of variant(s) in these genes investigated in PACG.

Table 3. Genotype association analysis of rs10719 variant in DROSHA with primary open-angle glaucoma and primary angle-closure glaucoma.

Group Genetic Model Genotype Control

n (%)

Cases

n (%)

Odds ratio (95% Confidence Interval) p-value p-value§

POAG Co-dominant G/G 82 (33.3) 49 (32.7) 1.00 0.820 0.840

A/G 116 (47.1) 75 (50) 1.08 (0.68–1.71)

A/A 48 (19.5) 26 (17.3) 0.91 (0.50–1.64)

Dominant G/G 82 (33.3) 49 (32.7) 1.00 0.890 0.920

A/G-A/A 164 (66.7) 101 (67.3) 1.03 (0.67–1.59)

Recessive G/G-A/G 198 (80.5) 124 (82.7) 1.00 0.590 0.610

A/A 48 (19.5) 26 (17.3) 0.86 (0.51–1.47)

Over-dominant G/G-A/A 130 (52.9) 75 (50.0) 1.00 0.580 0.620

A/G 116 (47.1) 75 (50.0) 1.12 (0.75–1.68)

Log-additive† --- --- --- 0.97 (0.73–1.29) 0.840 0.830

PACG Co-dominant G/G 82 (33.3) 34 (33.7) 1.00 0.620 0.630

A/G 116 (47.1) 43 (42.6) 0.89 (0.53–1.52)

A/A 48 (19.5) 24 (23.8) 1.21 (0.64–2.27)

Dominant G/G 82 (33.3) 34 (33.7) 1.00 0.950 0.900

A/G-A/A 164 (66.7) 67 (66.3) 0.99 (0.60–1.61)

Recessive G/G-A/G 198 (80.5) 77 (76.2) 1.00 0.380 0.410

A/A 48 (19.5) 24 (23.8) 1.29 (0.74–2.24)

Over-dominant G/G-A/A 130 (52.9) 58 (57.4) 1.00 0.440 0.420

A/G 116 (47.1) 43 (42.6) 0.83 (0.52–1.33)

Log-additive† --- --- --- 1.08 (0.78–1.48) 0.650 0.700

†Additive model also non-significant; §p-value adjusted for age and sex in the overall group and by age in men and women groups.

Abbreviations: POAG, primary open-angle glaucoma, PACG, primary angle-closure glaucoma.

https://doi.org/10.1371/journal.pone.0284852.t003
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DROSHA initiates miRNA maturation in the nucleus by recognizing and cleaving hairpin

precursors embedded in primary transcripts [58]. Accumulating evidence suggests a molecular

role of DROSHA in the regulation of diverse aspects of RNA metabolism, protection against

genotoxic stresses and potentially harmful elements at the cellular level, and regulation of cell

fate determination and timely differentiation at the physiological level [58]. However, beyond

miRNA biogenesis, little is known about DROSHA regulation in pathological conditions.

Yang et al. revealed that p38 MAPK directly phosphorylates and triggers degradation of

DROSHA under stress conditions and inhibits cell survival [59]. The same group also showed

that 6-hydroxydopamine (6-OHDA), a neurotoxin associated with Parkinson’s disease, desta-

bilized DROSHA via p38 MAPK phosphorylation in a mouse model of Parkinson’s disease.

Interestingly, restoring the DROSHA level protected the dopamine-releasing neurons and

improved the motor deficits, highlighting DROSHA’s role in survival of dopaminergic neu-

rons [41].

DICER is essential in development and angiogenesis [60,61]. Carriers of DICER1 mutants

are reported to have optic nerve damage and retinal abnormalities [62]. Donor human eyes

with geographic atrophy, a form of age-related macular degeneration, was reported to have

reduced DICER1 mRNA in macular RPE [63]. Conditional ablation of Dicer1 was demon-

strated to induce Alu RNA accumulation in human and mouse RPE cells leading to RPE cyto-

toxicity and degeneration. These findings revealed a miRNA-independent role of DICER1 in

cell survival [63]. Inactivation of Dicer in the mouse retina can cause retinal degeneration [64].

Aberrant DROSHA and DICER1 expression are associated with various types and stages of

cancers, albeit with inconsistent findings [65–68]. The underlying potential mechanism(s)

linking DROSHA and DICER1 polymorphisms (rs10719 and rs3742330) to glaucoma

Table 4. Binary logistic regression analysis to determine the effect of age, sex, and polymorphisms on glaucoma risk.

Group

Variables

B SE Wald Odds ratio (95% Confidence Interval) p-value

POAG

Age 0.016 0.012 1.704 1.01 (0.99–1.04) 0.192

Sex 0.076 0.210 0.130 1.08 (0.71–1.63) 0.719

Rs3742330 0.243 0.886

A/G -0.123 0.303 0.165 0.88 (0.49–1.60) 0.685

G/G 0.384 1.426 0.072 1.46 (0.09–24.00) 0.788

Rs10719 0.286 0.867

A/G 0.085 0.236 0.130 1.09 (0.68–1.73) 0.718

A/A -0.056 0.307 0.034 0.94 (0.51–1.72) 0.855

Constant -1.495 0.760 3.870 0.22 0.049

PACG

Age 0.021 0.016 1.817 1.02 (0.99–1.05) 0.178

Sex -0.337 0.241 1.966 0.71 (0.44–1.14) 0.161

Rs3742330 0.098 0.952

A/G -0.108 0.343 0.098 0.898 (0.45–1.76) 0.754

G/G -20.473 40192.970 0.000 0 (0) 1.000

Rs10719 1.234 0.540

A/G -0.131 0.274 0.228 0.87 (0.51–1.50) 0.633

A/A 0.217 0.328 0.439 1.24 (0.65–2.36) 0.508

Constant -1.952 0.966 4.086 0.142 0.043

Abbreviations: POAG, primary open-angle glaucoma; PACG, primary angle-closure glaucoma.

https://doi.org/10.1371/journal.pone.0284852.t004
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Fig 2. Genotype effects of rs3742330 in DICER1 and rs10719 in DROSHA on intraocular pressure, cup/disc ratio,

and the number of antiglaucoma medications in POAG and PACG patient groups. The bar graphs represent the

mean ± standard deviation for intraocular pressure, cup/disc ratio, and the number of antiglaucoma medications. The
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pathogenesis is unknown. Plausibly, altered levels of DROSHA and DICER1 (as a result of

these polymorphisms) may thus either directly affect enzyme function or indirectly, via differ-

ential regulation of miRNA expression profiles, can influence disease pathogenesis as dis-

cussed above. Rs3742330 polymorphism has been related to DICER1 mRNA dysregulation,

wherein the polymorphic A/G and G/G genotypes harbored lower levels of DICER1 mRNA

[31,69]. However, the polymorphisms rs3742330 in DICER1 and rs10719 in DROSHA were

not associated with POAG and PACG or its related clinical endophenotypes (e.g., IOP and

cup/disc ratio) in our Saudi cohort.

POAG and PACG are genetically complex traits with multiple genetic variants implicated

in their etiology. Due to their complex pattern of inheritance, the molecular mechanism(s) of

the disease could highly likely involve the epistatic interaction of gene-gene and gene-environ-

ment factors. Each of these could have a relatively small effect and low penetrance, but may

still contribute to many cases in a population. However, analysis of combined allelic haplotypes

of rs3742330 and rs10719 showed no significant association with POAG and PACG.

The study has certain limitations. The study is limited by sample size, with no mechanistic

evidence. Only a single variant in these genes was investigated in a group of patients of a spe-

cific ethnicity. Since our hospital is a tertiary care center, there may be a potential sample bias.

Though the sample size was limited, based on the observed allele frequencies, our study had an

estimated power of>0.8 per allele for rs3742330 (DICER1) and>0.9 per allele for the rs10719

(DROSHA) variant to detect an odds risk of 2.0 with an alpha type I error of 5%. Nonetheless,

it needs investigation in a much larger population-based sample size to detect an odds risk

�1.5, as is commonly observed in genetic association studies of complex polygenic diseases.

In conclusion, our study revealed that the 3’ UTR polymorphisms, rs3742330 in DICER1
and rs10719 in DROSHA, are neither associated with POAG and PACG nor the clinical indices

of glaucoma, such as IOP, cup/disc ratio, and the number of antiglaucoma medications in the

Middle-Eastern cohort of Saudi Arab ethnicity. This is the first study to investigate and report

no association of these polymorphisms in POAG and PACG patients in Arabs of Saudi origin.

p-value shown is calculated by the Kruskal-Wallis H test for three genotype groups and the Mann-Whitney U-test for

the two genotype groups observed for the rs3742330 polymorphisms in the PACG group, where no homozygous G/G

genotype was observed.

https://doi.org/10.1371/journal.pone.0284852.g002

Table 5. Combined allelic association analysis in POAG and PACG.

Allele combination* Cases (Frequency) Control (Frequency) Chi2 Fisher’s p Odds Ratio (95% Confidence Interval)

POAG†

A-G 0.51 0.53 0.198 0.656 0.93 (0.70~1.25)

A-A 0.40 0.38 0.352 0.553 1.09 (0.81~1.46)

G-G 0.06 0.04 1.317 0.251 1.48 (0.75~2.92)

G-A 0.02 0.04 3.054 0.080 0.43 (0.16~1.13)

PACG‡

A-G 0.51 0.53 0.256 0.612 0.92 (0.66~1.27)

A-A 0.41 0.38 0.561 0.453 1.13 (0.81~1.58)

G-G 0.04 0.04 0.014 0.904 0.95 (0.40~2.26)

G-A 0.03 0.04 0.225 0.635 0.80 (0.32~1.97)

* In the order of rs3742330 and rs10719.
† Global Chi2 = 4.52, df = 3, Fisher’s p-value is 0.210.
‡ Global Chi2 = 0.69,df = 3, Fisher’s p-value = 0.875.

https://doi.org/10.1371/journal.pone.0284852.t005
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The findings of this study add to the genetic basis of glaucoma literature in POAG and PACG

in this ethnicity. However, the sample size of this study is relatively small (but sufficient for an

exploratory analysis using a candidate gene approach). But we cannot completely rule out the

role of different polymorphisms in these or other genes (e.g., DGCR8, XPO5) significant to the

miRNA biogenesis pathway in glaucoma. Hence, the findings require additional molecular

epidemiological studies for further confirmation in a more comprehensive population-based

sample, probably with age and sex-matched control groups and in other ethnicities.
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