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The features underlying the memorability of objects
Max A. Kramer1,2*, Martin N. Hebart3,4, Chris I. Baker5, Wilma A. Bainbridge1,6*

What makes certain images more memorable than others? While much of memory research has focused on
participant effects, recent studies using a stimulus-centric perspective have sparked debate on the determi-
nants of memory, including the roles of semantic and visual features and whether the most prototypical or
atypical items are best remembered. Prior studies have typically relied on constrained stimulus sets, limiting
a generalized view of the features underlying what we remember. Here, we collected more than 1 million
memory ratings for a naturalistic dataset of 26,107 object images designed to comprehensively sample concrete
objects. We establish amodel of object features that is predictive of imagememorability and examined whether
memorability could be accounted for by the typicality of the objects. We find that semantic features exert a
stronger influence than perceptual features on what we remember and that the relationship between memo-
rability and typicality is more complex than a simple positive or negative association alone.
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INTRODUCTION
What is it that makes something memorable? Much research has
focused on this question using a subject-centric framework, tackling
the neurocognitive processes underlying memory and individual
differences across people. This framework is motivated by the
state-dependent and highly personal nature of memory. It is
known that an individual’s memory for an item is affected by situa-
tional factors, such as their attentional state (1) or the context
imposed by the items they have observed thus far (2–4). In addition,
it is well known that every person has their own experiences that
influence what they will later remember, demonstrated in research
focusing on individual differences in the ability to discriminate
similar items in memory (5, 6). However, a complementary stimu-
lus-centric framework has arisen out of the unexpected finding that,
despite our diverse prior individual experiences, we also largely re-
member and forget the same images (7, 8). This stimulus-centric
perspective allows for a targeted examination of what we remember,
beyond the influence of these individual- and situation-specif-
ic factors.

Examinations of memory performance across large groups of
participants have revealed that images have an intrinsic memorabil-
ity, defined for a stimulus as the likelihood that any given person
will remember that stimulus later (7). Thus, while variable factors
such as task context, experimental context, and individual differ-
ences are known to play a role in memory (1, 2, 9, 10), memorability
acts as a stable stimulus property that is thought to contribute to
memory independent of these other factors (11, 12). By using aggre-
gated task scores for each stimulus rather than individual partici-
pant responses, memorability for a given stimulus can be
quantified, repeatedly demonstrating a high degree of consistency
in what people remember (7, 13) across stimulus types (7, 8, 14,
15) and across different experimental contexts (16). These

memorability scores can account for upward of 50% of variance
in memory task performance (8) and demonstrate remarkable resil-
iency across tasks and robustness to attention and priming (11).
This high consistency allows one to make honed predictions
about what people will remember, which could have far-reaching
implications for fields including advertising, marketing, public
safety (13), patient care (17), and computer vision (18). However,
despite these high consistencies in what individuals remember,
what specific factors determine the memorability of an image is
still largely unknown.

Prior research has often sought to explain memorability as either
a proxy for a given stimulus feature (e.g. attractiveness and bright-
ness) or has attempted to reduce memorability to a linear combina-
tion of features in a constrained stimulus set (8, 19). Classic studies
have used highly controlled artificial stimuli to show that visual sim-
ilarity (in terms of color, shape, size, or orientation) of a target rel-
ative to other studied images within the same experiment is
predictive of successful memory (2, 3). However, one of the pre-
dominant theories of what makes an image memorable concerns
an image’s location in a multidimensional representational space
constructed from stimulus features (15) that represents the global
perceptual organization of objects. Thus, while prior work has iden-
tified a clear impact of specific stimuli on memory given the local
experimental context, here, we focus on the impact of stimuli on
memory given people’s general perceptual experience with
objects. Studies in the face domain have revealed an effect
whereby visual dissimilarity in such a perceptual feature space is
predictive of memory [e.g., the caricature effect; (9, 20, 21)]. More
recent work has also shown a mix of results where the most mem-
orable items are the most prototypical (22, 23) or the most atypical
items (16, 24, 25). There are also ongoing debates about the roles of
low-level visual features such as color and shape and semantic in-
formation such as animacy in determining what we remember and
what we forget (15, 26–29). One open question is the extent towhich
any of these findings apply to memory for more complex, natural-
istic stimuli representative of the objects that we see in the real
world. By examining a set of objects and a feature space that
broadly captures our natural world, we may be able to form more
generalizable models of what makes an image memorable and
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answer questions about the roles of typicality and the feature space
on our memories.

Here, we test what features and organizational principles of per-
ceptual object representations influence recognition memory across
observers. Specifically, we identify the object features that drive our
memories through a comprehensive characterization of visual
memorability across an exhaustive set of picturable object concepts
in the American English language [THINGS database; (30)]. We
collected more than 1 million memorability scores for all 26,107
images in the THINGS database, which we have made publicly
available on the Open Science Framework (OSF; https://osf.io/
5a7z6). We then leveraged three complementary measures—
human judgments, multidimensional object features, and predic-
tions from a deep convolutional neural network (DCNN)—to
examine the relationship of memorability to object typicality. We
construct a feature model that is able to predict a majority of the
variance in image memorability. Among those features, our
results uncover a primacy of semantic over visual dimensions in
what we remember. Furthermore, while we find evidence of the
most prototypical items being best remembered, our discovery of
high variance in the relationship between memorability and typical-
ity at multiple levels suggest that typicality alone cannot account for
memorability. These results highlight the importance of consider-
ing not only the characteristics of the observer or experiment when
modeling memory but also the large impact of stimulus features and
the global relationships across stimuli.

RESULTS
To explore memorability across concrete objects, we collected mem-
orability scores for the entire image corpus of the THINGS database
of object images (30) and uncovered a dispersion of memorability
across the hierarchical levels of THINGS. We examined the roles of
semantic and visual information by predicting memorability from
semantic and visual features using multivariate regression, revealing
that semantic dimensions contribute primarily to object memora-
bility. We then analyzed multiple measures of object typicality along
with the memorability scores and found a small but robust effect of
the most prototypical items being best remembered.

THINGS is a hierarchically structured dataset containing 26,107
images representing 1854 object concepts (such as aardvark, tank,
and zucchini) derived from a lexical database of picturable objects
in the English language (see Materials and Methods), 1619 of which
are assigned to 27 higher categories (such as animal, weapon, and
food). The concepts were assigned to categories in prior work
through a two-stage process where one group of participants pro-
posed categories for a given concept while a second group narrowed
the potential categories further, with the most consistently chosen
category becoming the assigned category for the concept (31). The
concepts and images are also characterized by an object space con-
sisting of 49 dimensions that capture 92.25% of the variance in
human behavioral similarity judgments of the objects (31). Each
concept and each image thus can be described by a 49-dimensional
embedding that corresponds to the representation of that item in
the object space. We additionally provide a set of computationally
generated labels for each dimension based on a semantic feature
norm derived from a large language model (see OSF repository)
(32). This overall dataset structure enables the analysis of memora-
bility at the image, concept, category, and dimensional levels.

Memorability is highly variable across objects
To quantify memorability for all 26,107 images in THINGS, we con-
ducted a continuous recognition memory task (N = 13,946) admin-
istered over the online experiment platform Amazon Mechanical
Turk (AMT) wherein participants viewed a stream of images and
were asked to press a key when they recognized a repeated image
that occurred after a delay of at least 60 s. Memorability was quan-
tified as the corrected recognition (CR) score for a given image, cal-
culated as the proportion of correct identifications of the image
minus the proportion of false alarms on that image (23). The
overall pattern of results remains unchanged when CR is instead
substituted with hit rate (HR) or false alarm rate (FAR; figs. S1
and S2). Each participant only saw a random subset of 187
images in their experiment, sampled from the broader set of
26,107 images, each from a different image concept. Thus, the
measure of memorability is specific to the image, across varying
image contexts. To test whether we observe consistency across
people in what they remember and forget despite these different
contexts, we conducted a split-half consistency analysis across
1000 iterations and found significant agreement in what indepen-
dent groups of participants remembered (Spearman-Brown cor-
rected split-half rank correlation, mean ρ = 0.449, P < 0.001),
which is notable given the diversity of the THINGS images. This
consistency in memory performance suggests that memorability
can be considered an intrinsic property of these stimuli.

Given prior work highlighting the impact of experimental
context on memory performance (2–4, 16), we ran multiple addi-
tional analyses to test the degree to which our measures of memo-
rability were image-specific or modulated by context. First, we
tested whether ResMem, a residual DCNN for predicting memora-
bility trained on an independent image set (18), could predict mem-
orability scores for the THINGS database. Unlike a human
participant, ResMem makes a prediction for each image without
any exposure to the other images in the experiment; thus, the result-
ing predictions are independent of local contextual effects imposed
by the stimulus set. ResMem predictions were significantly correlat-
ed with human memory performance for the THINGS images
(ρ = 0.276, P = 5.643 × 10−66). This is particularly noteworthy
given the noise ceiling of ρ = 0.449 (the correlation in performance
between random participant halves) and demonstrates that there is
an effect of individual item memorability robust to effects of local
stimulus context.

Second, because each participant saw a different random set of
images, we could directly test the role of experimental context on
memory. For the three most common higher categories (food,
animals, and clothing), we split participants into quartiles based
on who saw many exemplars in that category (“high-context” con-
dition) and who saw few exemplars (“low-context” condition). Re-
gardless of the experimental context, we found that participants
tended to remember and forget the same images; for example, re-
gardless of whether there were many (M = 50, range = 35 to 66) or
few (M = 13, range = 3 to 22) other animals, participants tended to
remember and forget the same animal images (ρ = 0.303,
P = 8.336 × 10−7), with no significant difference in memorability
between the two context conditions (Wilcoxon rank sum test:
P = 0.209). This correlation was not significantly lower than when
compared with shuffled quartiles where context differences across
quartiles were eliminated (shuffled ρ = 0.344, one-sided permuta-
tion test P = 0.186), suggesting that memorability remains stable
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across differences in experimental context. The same general trend
held true for images of food (ρ = 0.228, P = 6.298 × 10−5; rank sum
test between conditions: P = 0.934; shuffled ρ = 0.303, permutation
test P = 0.037) and clothing (ρ = 0.254, P = 6.314 × 10−4; rank sum
test between conditions: P = 0.554; shuffled ρ = 0.313, permutation
test P = 0.123). We repeated all of these analyses examining separate
effects of HR and FAR (table S3). We also show the results of this
analysis for stimulus context and all THINGS categories in the Sup-
plementary Materials and our OSF repository (https://osf.io/5a7z6)
and observe that across categories, memorability does not vary by
experimental context, even for very small contextual windows (one
to three items). Last, we tested whether participants remembered
and forgot the same images, regardless of whether their experimen-
tal context had more semantically driven images or visually driven
images. For each participant, we quantified the average weights
across semantic dimensions and across visual dimensions for the
set of images that they saw, on the basis of the object space dimen-
sions defined in the next section (also see Materials and Methods).
We then compared their memory performance across median splits
and found that participants who saw images with high weights for
visual and low weights for semantic properties remembered similar
images to those who saw images with high weights for semantic and
low weights for visual properties (ρ = 0.272, P = 5.087 × 10−20). In
summary, the results from these analyses demonstrate that memo-
rability effects manifest at the level of individual images, with a ro-
bustness to experimental context.

When assessing memorability at the concept level (e.g., candy
bars and windshields), we observed that memorability varied
widely across the concepts (Fig. 1A). This dispersion of CR suggests
that not all concepts in THINGS are equally memorable. For
example, candy bars were highly memorable overall with a
maximum CR of 1, a mean of 0.873, and a minimum of 0.756
(range = 0.127), while windshields were less memorable with a
maximum CR of 0.756, a mean of 0.649, and a minimum of 0.404
(range = 0.352). We observe a similar diversity of memorability pat-
terns at the higher category level (e.g., dessert and part of car;
Fig. 1B). The average CR across the THINGS categories is 0.793,
with some categories demonstrating a higher average memorability
than others; body parts attained the highest average memorability at
0.855, while part of car had the lowest average memorability of
0.753. These measures highlight the rich variation present within
the THINGS database as it relates to memorability.

The previously reported embeddings along 49 dimensions for
each of the object concepts (31) allow us to determine whether
certain dimensions are more strongly reflected in memorable
stimuli (Fig. 1C). Specifically, we examined Spearman rank correla-
tions between the memorability of the THINGS concepts and the
concepts’ embedding values for each of the 49 dimensions. We
found that 36 dimensions showed a significant relationship to
memorability [false discovery rate (FDR)–corrected q < 0.01], of
which 9 were positive and the remaining 27 were negative. These
correlations reveal that some properties used to characterize an
object do show a relationship to memorability. For example, the
positive relationship for the body/body part dimension
(ρ = 0.257, P = 1.873 × 10−29) indicates that stimuli related to
body parts tend to be more memorable, while a negative correlation
like that with metal/tools (ρ = −0.323, P = 1.689 × 10−15) implies
that stimuli made of metal tend to be less memorable.

Having explored memorability across the structure of THINGS,
we can readily observe that memorability varies at the exemplar,
concept, higher category, and dimensional levels. We also observe
that memorability can be measured for individual images, largely
invariant to the context of the other images in the experiment.
With this understanding, the question becomes the following:
What determines some concepts/categories/dimensions to be
more memorable than others?

Semantic information contributes most to memorability
To examine which object features are most important for explaining
what is remembered and what is forgotten, we used the object space
dimensions to predict the average memorability scores of the
THINGS concepts (Table 1). Our regression model used the 49-

Table 1. Categorization of THINGS object space dimensions across
semantic, visual, and mixed dimensions. Dimension names were
derived from naïve observers viewing the highest weighted images on
each dimension. Dimensions are listed in order of highest to lowest
correlation with memorability score (31).

Semantic Visual Mixed

Metal/tools Colorful/colors Furniture/bland to
colorful

Food/carbs Circular/round Green/vegetables

Animal/animals Patterns/piles Wood/brown

Clothes/clothing Long/thin Royalty/gold

Backyard/garden Red/color Dirt/grainy

Cars/vehicles Round/circular Black/accessories

Body/body parts Pattern/
patterned

Long/rope

Technology/electronic Tall/big Paper/white

Sports/sport Mesh/nets Rope/bands

Tools/hand tools Construction/long

Paper/books Unknown/colorful

Liquids/containers White/winter

Water/ocean Shiny/jewels

Feminine/flowers

Bathroom/hygiene

War/military

Instruments/music

Flight/air

Insects/bugs

Feet/body parts

Fire/heat

Face/head

Wheels/can sit on

Containers/hold
other things

Baby/children

Medicine/medical

Candles/crafts
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dimensional embedding of each concept to predict the average CR
score for the concept. Overall, the model explained 38.52% of the
variance in memorability (Fig. 2B). Because of the large number
of predictors in our regression model, we also tested whether our
model would generalize out of sample using 10-fold cross-valida-
tion repeated across 1000 iterations, with each fold including an en-
tirely distinct set of THINGS image concepts. We found a
significant correlation between CR predictions and true CR scores
of the held-out data (average r = 0.591, P < 0.001), corresponding to
34.90% of the variance in memorability. These results suggest that
this regression model generalizes to image concepts outside those
that it has been trained on. Because memorability scores contain
some noise, with our base model using all the data, we also calcu-
lated performance of this model in comparison to a noise ceiling
estimated by predicting split halves of the memory data across
100 iterations (see Materials and Methods). We found that our
model explained 61.66% of the variance given the noise ceiling,

implying that these dimensions capture a majority of variance in
memorability.

The explanatory power of our model serves as a strong starting
point for an analysis of the types of dimensions that contribute most
to memorability. We sorted the dimensions into two main catego-
ries: visual and semantic dimensions. Although such dimensions
likely vary along a continuum from low level (visual) to high level
(semantic), we decided to examine the two ends of this continuum,
in line with prior studies in the field (33–35). Dimension names
were determined in a prior study (31), as the top two-word
phrases selected by naïve observers for sets of the most heavily
weighted images on those dimensions (see Materials and
Methods). On the basis of these human-derived dimension
names, we defined visual dimensions of an image to be those con-
cerned primarily with color and shape information, such as “red/
color,” “long/thin,” “round/circular,” and “pattern/patterned”
(Table 1). We defined semantic dimensions as categorical

Fig. 1. Descriptive analyses of memorability across the concept and category levels of the THINGS database and the 49 object dimensions. (A) The spread of CR
across the 1854 object concepts revealed that not all concepts are equally memorable. For concepts like candy bars, the entire range of component image memorability
values was contained above the average value for a concept like windshields. (B) Visualizing the same spread across higher-order categories revealed variation in average
memorability across the 27 categories, with some categories including part of car displaying a CR score below the overall average memorability of 0.793 represented by
the dotted horizontal line, while others like body parts displayed a score above the average. (C) This high variability in memorability continues when examining the
correlation between memorability and embeddings along the object dimensions. Thirty-six of 49 dimensions displayed a significant association with memorability
(shaded bars, FDR-corrected q < 0.01), with 9 showing a positive relationship (e.g., body/body parts being more memorable) and 27 showing a negative relationship
(e.g., metal/tools being less memorable). Note that in this figure, THINGS database images were replaced by similar looking images from the public domain images
available in THINGSplus (48).
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information that did not include references to color or shape, such
as “food/carbs,” “technology/electronic,” and “body/body parts.”
Any dimensions that contained both semantic and visual informa-
tion as defined above were classified as mixed, such as “green/veg-
etables,” “black/accessories,” and “white/winter.” We also provide
automatically generated dimension labels based on semantic
feature norms for each dimension, derived from the large language
model Generative Pre-trained Transformer-3 (GPT-3) (see OSF re-
pository) (32).

With these dimensions labeled, we can differentiate the contri-
butions of primarily semantic and primarily visual dimensions to
memorability. By analyzing the embeddings of each concept in
the multidimensional object space, we revealed that 70.44% of the
concepts were more heavily embedded in dimensions classified as
semantic than dimensions classified as visual (Fig. 2A). We ran a
regression model that predicted memorability only from the dimen-
sions strictly classified as either semantic or visual (excluding mixed
dimensions). The resulting 36-dimensional model (27 semantic and
9 visual) explained 35.16% of the variance in memorability, and the
semantic dimensions contributed 31.22% of the variance, while
visual dimensions only accounted for 1.62% with a shared variance
of 2.32% (Fig. 2C). This result suggests a clear dominance of seman-
tic over visual properties in memorability. To examine the effects of

dimensions labeled as mixed, we also broke down the unique and
shared variance contributions from semantic, visual, and mixed di-
mensions in the full 49-dimensional model, demonstrating that
mixed dimensions contributed 1.03% of variance in memorability
(see the Supplementary Materials), suggesting again that it is the
most semantic dimensions that contribute most to image
memorability.

However, because there are also a larger number of semantic di-
mensions than visual dimensions in that model, we conducted a
follow-up analysis with a model using just the top nine highest
weighted semantic dimensions and the top nine highest weighted
visual dimensions. This model accounted for 19.15% of variance
in memorability, with the top nine semantic dimensions contribut-
ing 15.21% of variance while the top nine visual dimensions con-
tributed 1.87% of variance with a shared variance of 2.07%
(Fig. 2D). A summary of all regression results is displayed in Fig. 2B.

Together, our results indicate that semantic properties contrib-
ute far more than visual properties toward the memorability of an
image. While the results reveal contributions of visual properties,
these contributions are largely captured by shared variance with se-
mantic properties.

Fig. 2. Analyses of relative contributions of semantic and visual properties to memorability. (A) Histogram of averaged embedding values in semantic (pink) and
visual (blue) dimensions across concepts. The purple histogram represents the difference between the visual and semantic embeddings (blue− pink). The embeddings of
the 1854 concepts in the object space reveal that 70.44% of the concepts are more heavily embedded in semantic dimensions than in visual dimensions. (B) Table of
regression models. A model of all 49 dimensions captures 38.52% of the variance in memorability. The semantic and visual models use all 27 semantic and 9 visual
dimensions, respectively, and exclude the mixed dimensions. The "top" models use only the nine most heavily embedded semantic and visual dimensions to balance the
number of semantic and visual dimensions in the model. Across models, the majority of variance is captured by semantic dimensions. (C) Venn diagram displaying the
unique contributions to memorability from semantic and visual dimensions. For the model using all nonmixed dimensions, the majority of variance is captured by the 27
semantic dimensions, with a smaller contribution from the 9 visual dimensions. Note the larger shared variance than visual variance, suggesting that most of the con-
tribution of visual dimensions may be contained in shared variance with semantic dimensions. (D) The same type of Venn diagram as in (C) but with a model including
equal numbers of semantic and visual dimensions (nine regressors each). Again, the majority of explained variance comes from semantic dimensions.
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Memorability is more than just typicality
While we have determined that semantic features are the most pre-
dictive dimensions of the object space for memorability, there is still
the question of whether it is the most prototypical or most atypical
items that are best remembered along these dimensions. In terms of
the object feature space, items that are clustered closely together are
the most prototypical items, while items spaced further apart are the
most atypical items. The relationship between typicality and
memory has been studied extensively in face processing, scene rec-
ognition, and related fields (2–4, 24, 26, 36), with some studies using
memorability interchangeably with atypicality or distinctiveness
[e.g., (21)]. Prior work has suggested three different hypotheses,
where the relationship between typicality and memorability is
either always negative (20, 24), always positive (2–4, 15), or a specific
combination of the two (26). Here, we leverage the scale of THINGS
to determine this relationship using converging methods for defin-
ing typicality based on the multidimensional object space derived
from human similarity judgments, a deep neural network for
object recognition, and behavioral ratings. These three complemen-
tary approaches allow for testing a wide range of hypotheses con-
cerning whether the most prototypical or atypical items are most
often remembered.
Object space typicality
We dub our first measure of typicality “object space typicality,” and
it is derived from the object space used in the previous analysis of
the visual and semantic dimensions (Fig. 3A). Specifically, we

quantify an object’s typicality as the average similarity of a given
example image (e.g., a particular example of a squirrel) to all
other examples of that image’s concept (e.g., all images of squirrels
in THINGS; see Materials and Methods). This metric is commonly
used in classic theories of memory, which posit that memory per-
formance can be predicted by an item’s relationship to all other
studied items (2) or the greater perceptual space (9). This 49-dimen-
sional space has been demonstrated to capture human similarity
judgments in excess of 90% of the noise ceiling (31), and in the anal-
yses reported above, we demonstrated that it is able to predict mem-
orability with high accuracy.

We first tested the overall relationship between CR and object
space typicality scores for the 26,107 image corpus of THINGS.
We found a significant positive relationship between object space
typicality and memorability across the THINGS dataset
(r = 0.309, P = 6.131 × 10−7). This suggests that more memorable
images tend to be more prototypical of their concept in their repre-
sentations across these dimensions, arguing against a general
primacy of atypicality in memorability. This analysis was also con-
ducted using both the HR and FAR (table S1). We also analyzed the
relationship between object space typicality and memorability
within each of the 1854 concepts in THINGS by correlating mem-
orability and typicality values across the exemplar images of each
concept. In other words, within each concept, what is the relation-
ship between typicality and memorability? We determined that
overall, the concepts were more likely to display a relationship

Fig. 3. Generating typicality scores from object space dimensions, DCNN activations, and behavior. (A) To generate typicality scores from the object space dimen-
sions, we begin with loadings on each of the 49 dimensions of the object space for each of the 26,107 THINGS images. Correlating the resulting dimension loadings within
each of the object concepts allowed for the generation of similarity matrices for each object concept. From thesematrices, we compute the typicality of each image as the
mean correlation between that image and all other images of a given object concept, resulting in a typicality score for every image in relation to its concept. (B) The
procedure for generating typicality scores from a DCNN is largely the same as the process for the object space dimensions but relying instead on layer activations at each
of the 22 layers of the VGG-F network as the representations for each image, which were then correlated to form similarity matrices. (C) For behavioral typicality, par-
ticipants on AMT used a 0 to 10 Likert scale to assess the typicality of a given object concept (snake) to its higher category (animals). Note that in this figure, THINGS
database images were replaced by similar looking images from the public domain images available in THINGSplus (48).
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where more prototypical images tended to be more memorable (one
sample t test: t1852 = 2.074, P = 0.038).

While this finding of most object concepts showing a positive
relationship between object space typicality and memorability
seems to provide evidence for memorability corresponding to
object prototypicality, it is important to note that many object con-
cepts (917) show the opposite relationship where more atypical
images are more memorable. For example, for coats, more prototyp-
ical images were more memorable (r = 0.857, P = 3.66 × 10−4), but
for other concepts such as handles, more atypical images were more
memorable (r = −0.798, P = 0.001).

Additional mixed evidence is also apparent when relating the
object space typicality and memorability of concepts within each
of the 27 higher categories present in THINGS, in contrast to the
previously described analyses that tested the typicality of images
in relation to their concepts. For any given concept, the category
typicality score reflects the typicality of that concept (e.g., squirrels)
relative to all other concepts of its higher category (e.g., animals).

When examining the relationship between memorability and
object space typicality at the category level, we observed that
certain categories, such as containers (r = −0.213, P = 0.029) and
electronic devices (r = −0.232, P = 0.047) showed negative relation-
ships (e.g., more atypical containers were more memorable), while
animals (r = 0.159, P = 0.034) and body parts (r = 0.473, P = 0.005)
demonstrated positive relationships. Across all categories, the distri-
bution of memorability-typicality relationships did not differ signif-
icantly from 0 (one sample t test: t26 = −0.528, P = 0.602). In other
words, across all high-level categories, there were an equal number
of positive and negative significant relationships, demonstrating
further mixed evidence within the THINGS dataset.
DCNN-based typicality
We term our second measure of typicality “DCNN-based typicali-
ty,” as it uses the Visual Geometry Group-Funnel (VGG-F) DCNN
to compute similarity ratings across the 22 layers of the network
(Fig. 3B). Deep neural network models have demonstrated

success in predicting the neural responses of different regions in
the visual system (37–38). A critical insight from these studies sug-
gests that earlier layers in the network represent low-level visual in-
formation such as edges, while later layers represent more complex
and semantic features such as categorical information (34). Unlike
the object space–derived scores, these typicality values are directly
computed from image features rather than based on behavioral sim-
ilarity judgments in response to the images themselves.

Recent analyses using DCNNs have suggested that the relation-
ship between typicality and memorability may differentially depend
on similarity across semantic and visual features; for example, for a
set of scene images, images that were the most visually atypical (i.e.,
atypical at early layers) but semantically prototypical (i.e., prototyp-
ical at late layers) tended to be the most memorable (26). We can
directly address this hypothesis using our DCNN-based typicality
measure, as we can directly compare typicality values at both
early and late layers of the VGG-F network. If the pattern displayed
by Koch et al. (26) holds true, then we would expect to see a strong
negative correlation between memorability and early layer typicality
(i.e., visually atypical items are best remembered) and a strong pos-
itive correlation with late layer typicality (i.e., semantically proto-
typical items are best remembered).

We test this hypothesis by producing two correlations for each
object concept: the correlation between CR and early layer (layer 2)
typicality and the correlation between CR and late layer (layer 20)
typicality. This produces a pair of correlations for each of the 1854
object concepts. We then visualize these correlation pairs (Fig. 4A)
and provide a best fit line, which demonstrates the relationship
between each correlation pair. The resulting correlation
(r = 0.253, P = 2.504 × 10−28) suggests that in general, visual and
semantic features (as represented in early and late layers) show
similar correlations with memorability across the object concepts.

We also segment the concepts into quadrants, which represent
four potential patterns for the correlation pairs for a given object
concept. The first quadrant contains concepts that display positive

Fig. 4. Examining relationships between typicality, memorability, and semantic and visual content. (A) Visualizing the correlation of DCNN-based typicality and
memorability for all 1854 concepts in terms of an early layer (layer 2) and late layer (layer 20) allows for the observation of an overall positive relationship between early
and late layer typicality scores across the concepts (r = 0.253, P = 2.504 × 10−28). A chi-square analysis of the four quadrants of the scatterplot demonstrated significantly
more concepts than chance showed a pattern where the most memorable items were prototypical in terms of both early and late layer features (χ2 = 38.046,
P = 6.909 × 10−10). Contrastingly, we find significantly fewer concepts that demonstrate “mixed” patterns where more memorable items demonstrated early layer pro-
totypicality and late layer atypicality (χ2 = 8.454, P = 0.004) or the opposite pattern (χ2 = 20.286, P = 6.668 × 10−6). We found no significant difference from chance for
concepts where the most memorable items were atypical across both early and late layer features (χ2 = 8.399, P = 0.553). This suggests that, in general, memorable
concepts tend to be both visually and semantically prototypical. (B) Example concepts that fell into each quadrant of the scatterplot seen in (A). Note that in this
figure, THINGS database images were replaced by similar looking images from the public domain images available in THINGSplus (48).

Kramer et al., Sci. Adv. 9, eadd2981 (2023) 26 April 2023 7 of 14

SC I ENCE ADVANCES | R E S EARCH ART I C L E



correlations for both early and late layers (i.e., visually and seman-
tically prototypical items are best remembered). The second quad-
rant contains concepts that have positive early layer correlations but
negative late layer correlations (i.e., visually prototypical and se-
mantically atypical items are best remembered). The third quadrant
contains concepts with negative correlations for both early and late
layers (i.e., visually and semantically atypical items are best remem-
bered), and the fourth quadrant contains concepts with negative
early layer and positive late layer correlations (i.e., visually atypical
and semantically prototypical items are best remembered). This
fourth quadrant can be considered a representation of the hypoth-
esis of Koch et al. (26), as it corresponds to visually atypical and se-
mantically prototypical items being best remembered.

A chi-square analysis on each quadrant revealed that signifi-
cantly more concepts than chance showed a pattern where the
most memorable items were prototypical in terms of both early
and late layer features (χ2 = 38.046, P = 6.909 × 10−10). In contrast,
we find significantly fewer concepts than chance show a mixed
pattern, where memorable items were determined by early layer
prototypicality and late layer atypicality (χ2 = 8.454, P = 0.004) or
the opposite pattern of early layer atypicality and late layer prototy-
picality (χ2 = 20.286, P = 6.668 × 10−6). Last, there was no difference
from chance in the proportion of concepts that showed a pattern
where the most memorable items were the most atypical items for
both early and late DCNN layers (χ2 = 8.399, P = 0.553). These
results suggest that in general, memorable images tend to be those
that are both visually and semantically prototypical of their object
concept, although there are also concepts for which memorable
images may tend to be either visually or semantically atypical.
Behavioral typicality
Our third and final measure of typicality, referred to as “behavioral
typicality,” consists of behavioral ratings derived from a concept to
category matching task (Fig. 3C) (31). In this prior study, partici-
pants on AMT used a 0 to 10 Likert scale to assess the degree to
which a given concept was typical of a category (e.g., how typical
is a snake of animals?). These ratings allow us to capture human in-
tuition regarding typicality.

A correlation between CR scores and behavioral typicality scores
across all higher categories showed no significant relationship
between typicality and memorability (r = 0.139, P = 0.576). When
examining the distribution of correlations between typicality and
memorability within the higher categories, we observed a marginal
effect of more atypical (rather than prototypical) categories being
more memorable (t26 = −2.022, P = 0.054). When examining the
correlations for each of the 27 categories separately (fig. S6), we
found that home décor (r = −0.384, P = 0.009), office supplies
(r = −0.430, P = 0.032), and plants (r = −0.429, P = 0.003)
showed significant negative relationships, implying that more mem-
orable examples of each category were more atypical. In contrast,
animals (r = 0.176, P = 0.020), food (r = 0.115, P = 0.050), and veg-
etables (r = 0.317, P = 0.041) had positive relationships, implying
that more memorable examples were more prototypical. Overall,
when examining typicality using behavioral ratings, we find addi-
tional evidence suggesting that memorability is not accounted for
by either object prototypicality or atypicality.

Together, our results demonstrate that memorability cannot be
considered synonymous with either prototypicality or atypicality, as
had been suggested in previous studies [e.g., (21, 22, 24)]. Certain
results collected using both object space–derived and DCNN-

derived typicality scores suggest a trend toward more prototypical
stimuli being more often remembered, but the large number of
counterexamples present across the different typicality scores and
levels of analysis suggest that the relationship between memorability
and typicality is likely more complex than a simple positive or neg-
ative association, varying strongly from concept to concept.

DISCUSSION
We acquired and analyzed a large dataset of memory ratings for a
representative object image database to uncover what makes certain
objects more memorable than others. Specifically, we investigated
the roles of semantic and visual features and revealed that semantic
properties more strongly influence what is remembered than visual
properties. We leveraged three complementary measures of object
typicality to determine whether the most prototypical or most atyp-
ical images are best remembered, and uncovered some evidence
suggesting that more prototypical items are more memorable.
However, overall, we observed a high degree of variance across con-
cepts and categories, suggesting that memorability is not just a
measure of the typicality of an object or image. These findings
shed new light on the determinants of what we remember and
stand in contrast to previous studies that have claimed both that se-
mantic information is not required to determine memorability (39)
and that memorability is synonymous with atypicality (20, 21) or
prototypicality (2–4). Such results have strong implications not
only for understanding memorability but also for memory more
broadly: A sizeable portion of memory performance can be predict-
ed from just the features of the stimulus itself.

Semantic primacy of memorability
We analyzed the contributions of semantic and visual dimensions
to memorability to determine whether the two types of information
contribute differentially to the THINGS stimuli. Our results reveal a
primacy of semantic dimensions in explaining memorability based
on multiple regressions comparing the relationship of the entire
object dimensional space to memorability. Even after equalizing
the number of semantic and visual dimensions inputted to the
model, 88.02% of the variance in memorability captured by the
space was exclusively from the top nine semantic dimensions.

Previous findings of the ability of DCNNs (27) and monkeys (28)
to predict human performance on memorability tasks and examples
of memory performance robust to semantic degradation (39) have
led to the assertion that semantic knowledge is not required to make
an image memorable. However, recent research has demonstrated
that semantic similarity is predictive of memorability and lexical
stimuli also display intrinsic memorability despite a lack of rich
visual information (15, 29). A recent study investigating the rela-
tionship of memory for 1000 objects to semantic feature norm sta-
tistics and visual statistics observed that both were predictive of
memory, but semantically-based statistics played a particularly
strong role for both visual and lexical memorability (40). Further-
more, prior work has shown that conceptual distinctiveness has
more of an impact on memory capacity and interference than
visual distinctiveness (33). Our current study extends these findings
using a larger, more naturalistic stimulus set representative of the
objects in the real world and examines the comprehensive collection
of features defined by these objects. Accordingly, our model is able
to generalize across different image concepts and experimental
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contexts and holds the strongest explanatory power of memorability
to date. Other studies have demonstrated that both visual and se-
mantic features contribute differentially with regard to both
object memory (40) and the typicality-memorability relationship,
where visually atypical but semantically prototypical scene images
may be the most memorable (26). In addition, recent research in
memorability prediction suggests that adding semantic information
to a deep neural network improves the prediction of memorability
scores (18). Our results demonstrate a strong semantic primacy in
memory, which lends additional support to these recent findings
demonstrating the importance of semantic information in deter-
mining what we remember.

Beyond behavior, our findings align with the results from recent
neuroimaging studies that have examined the neural correlates of
memorability. One such study found a lack of memorability-
related activation in the early visual cortex, suggesting that areas in-
volved in lower-level perception may not be sensitive to memorabil-
ity (22). This result, coupled with a study demonstrating faster
neural reinstatement for highly memorable stimuli in the anterior
temporal lobe, an area typically associated with semantic processing
(15), could potentially reflect a neural signature of the observed
outsize influence of semantic features in determining what is best
remembered. In this study, memorability for word stimuli could
be predicted by the semantic connectedness of these words,
where words that exist at the roots of a semantic structure tended
to be more memorable (15). This suggests that memorability
could reflect our semantic organization of items in a memory
network. Other work has also found sensitivity to memorability
in late perceptual areas, such as the fusiform face area and the para-
hippocampal place area (22, 23), often associated with the patterns
seen in late DCNN layers (37, 38).

Our findings are particularly unexpected given the fact that the
object space dimensions explained 61.66% of the variance in mem-
orability. Unlike previous studies of memorability using single attri-
butes (19) or linear combination models with constrained stimulus
sets (8), we are able to explain a large degree of the variance in mem-
orability, further highlighting the importance of semantic proper-
ties. While the current study dichotomizes the feature dimensions
by mainly focusing on semantic versus visual properties, we also
observe a limited contribution of the dimensions that are in
between (1.03% variance explained). However, future work
should examine the continuum of low-level to high-level properties,
to see whether a more nuanced predictive model can be formed.
Meanwhile, the success of the current model means that this
same model can be applied to selecting stimulus sets intended to
drive memory in specific ways; given an object’s feature space, we
can predict which items are likely to be remembered or forgotten.
However, given the remaining unexplained variance, it is clear that
there are still lingering questions about the determinants of what we
remember and what we forget.

Typicality as it relates to memorability
Here, we observe that across our images, concepts, and categories,
there are some by which the most prototypical are the most mem-
orable, while there are others where the most atypical are the most
memorable. These results suggest that memorability does not just
reflect an object’s typicality, and it is not merely that memorable
items are the most distinctive, atypical items. Across multiple

levels of analysis, we observe the opposite, where, in general,
more prototypical items tend to be the most memorable.

This is unexpected, given that typicality has long been thought to
encapsulate the effect of memorability based on evidence from faces
(9, 20) and scenes (16), whereby more atypical items are thought to
be easier to remember. Other studies have rebutted this claim by
demonstrating that semantic similarity is predictive of memorabil-
ity (15, 40, 41) or by relating memory success to visual similarity
with other studied items (2–4). Furthermore, late visual area
regions show neural patterns reflective of our current behavioral
findings, where memorable face and scene images show more
similar neural patterns to each other (i.e., have more prototypical
patterns), while forgettable images have more dissimilar neural pat-
terns (i.e., more atypical patterns) (22, 23). Furthermore, Koch and
colleagues (26) found a complex relationship with typicality, where
visually distinct and semantically similar images were most often
remembered in an indoor-outdoor classification task. Our diver-
gent findings could possibly be explained by the constrained stim-
ulus sets used in prior studies. While prior work focused on narrow
stimulus sets such as faces, a smaller sampling of scene images, or
simple artificial stimuli varying along singular visual properties, our
study examines a comprehensive, representative set of object images
across the human experience. Our divergent findings from these
earlier studies may suggest that while previous findings are reason-
able extrapolations from the stimulus domains examined, they are
not characteristic of memorability as a whole. When assessed at a
global scale, it is neither prototypicality nor atypicality of an item
that makes it memorable.

Many models of memory assume that the probability of a correct
recognition is determined by the similarity of a given item to other
items in the same space (2–4, 9). However, here, we have shown that
measures of typicality or across-item similarity are not sufficient for
predicting memory performance. What else might memorability
then reflect about a stimulus? Memorability may still represent an
alternate statistical measure of the world to perceptual feature sim-
ilarity such as object co-occurrence statistics (15), and future work
should test other visual and statistical combinations of features,
such as those examined by Hovhannisyan and colleagues (40).
Another possibility is that memorability could reflect the fluency
by which we process an image and the ease at which it is
encoded. It is also interesting that we observed divergent findings
across our different measures of typicality and different levels of
analysis. It is likely that the DCNN-based representations are
more rooted in the specific images and their pixels, while the
object space features may rely more on the object being represented
in the image (e.g., ignoring irrelevant background information).
Even more interesting is the high disagreement between human be-
havioral ratings and these other scores, suggesting that people are
relying on other information than just feature similarity to make
their judgments. Future work will need to compare these different
measures of typicality to find the most harmonious measure.

The observation of variability in the typicality-memorability re-
lationship may have important ramifications for neuroimaging re-
search examining the neural correlates of memorability and
memory more broadly. Observations of prototypicality in neuroim-
aging research reference a phenomenon called pattern completion
as a means by which the hippocampus retrieves a complex represen-
tation from a given cue (42). This process depends on another hip-
pocampal phenomenon termed pattern separation, where similar
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inputs are assigned distinct representations to facilitate the mne-
monic discrimination required in memory (43). Whole-brain func-
tional magnetic resonance imaging analyses have revealed that
different areas involved in memory use separated and overlapping
information to facilitate memory (42), suggesting a potential role
for both prototypicality (as represented by pattern completion)
and atypicality (as represented by pattern separation) in facilitating
memory. Future neuroimaging research could identify potential
neural markers of prototypicality and atypicality and determine
whether the effects of semantic and visual information are dissoci-
able at a neural level.

Future directions
Here, we have created the best-performing model to date of the
object features that are predictive of image memorability. From
this model, we have observed a primacy of semantic properties in
determining what we remember. This underscores recent findings
of the important role of semantic information in memory (15, 40)
and emerging work with DCNNs that demonstrate a classification
performance benefit when including semantic information into
their models (18).

Beyond highlighting the roles of semantic and visual dimen-
sions, our results demonstrate that neither prototypicality nor atyp-
icality fully explains what makes something memorable. Our
findings challenge decades of prior research suggesting that we
best remember more atypical items (9, 20, 21, 24, 25) or more pro-
totypical items (2–4, 15, 22, 23). Many prior theories assumed that
memory performance was mostly determined by feature similarity
across items within the same memory or perceptual space (2–4, 9).
However, these prior studies often used constrained and artificial
stimulus sets varying along few features to uncover such findings.
The current study takes a more naturalistic, data-driven approach,
examining what features and principles related to similarity natural-
ly emerge during memory for a comprehensive set of real-world
objects. With this more naturalistic set, we do not observe a
simple link between memorability and typicality (i.e., feature simi-
larity). This highlights the importance of using a combination of
these two complementary approaches of theory-driven work with
well-controlled stimulus sets and data-driven work with naturalistic
stimulus sets. We hope that future work will discover a better metric
beyond typicality that is able to predict memory for individu-
al items.

Our findings shed new light on the features and organizational
principles of memory, opening up awide variety of potential follow-
up studies. With this large-scale analysis, we have identified the
stimulus features that govern memorability within and across a
comprehensive set of objects and make this data publicly available
for use (https://osf.io/5a7z6/). This will allow researchers to make
honed predictions of memory within these categories or use these
dimensions to design ideal stimulus sets. For example, our analysis
found that animal images are highly memorable, while man-made,
metal images are highly forgettable, so memorability is an impor-
tant factor to consider in studies looking at visual perception of
animacy (44). Furthermore, given the success of our feature
model in predicting memorability, this model could be potentially
used to identify memorable images in other image datasets. While
THINGS representatively samples concrete object concepts, there
are additional stimulus domains beyond objects including
dynamic stimuli such as movies, scenes, and nonvisual stimuli

that could be analyzed in the context of our results. With the under-
standing that neither prototypicality nor atypicality alone fully char-
acterizes the relationship between typicality and memorability,
there is the question of what biases certain stimuli toward one or
the other. The current work also reveals what may be considered
episodic memory for individual images, while relating it to a seman-
tic memory space (45). Future work will be needed to directly link
how the memorability of entire concepts and categories relates to
memory performance for singular images of those concepts.
Future work should also investigate how memorability works in
conjunction with other factors of memory, such as experimental
image context and observer characteristics, to determine
memory success.

We uncover both a semantic primacy in explaining memorabil-
ity and determine that the relationship between typicality and mem-
orability is more complex than either prototypicality or atypicality
alone. We provide this comprehensive characterization in pursuit of
a nuanced understanding of the underlying determinants of mem-
orability and memory more broadly. Developing this understanding
further will have implications far beyond cognitive neuroscience in
realms such as advertising, patient care, and computer vision. With
the development of generative models of stimulus memorability, it
is more important than ever before to ground these models in an
empirical understanding of what makes something memorable.

MATERIALS AND METHODS
Participants
A total of 13,946 unique participants completed a continuous rec-
ognition repetition detection task on the THINGS images over
AMT (see the “Obtaining memorability scores for THINGS”
section). All online participants acknowledged their participation
and were compensated for their time, following the guidelines of
the National Institute of Health Office for Human Subjects Re-
search Protections (OHSRP). Participants had to be located
within the United States and have participated in at least 100
tasks previously on AMT with at least a 98% approval rating
overall to be recruited for the experiment. Participants who made
no responses on the task were removed from the data sample.
Human participant data were collected anonymously, with no per-
sonally identifiable information, so this study was exempt from
review by the National Institutes of Health Internal Review Board.
However, participants agreed to engage in the study following the
guidelines of the OHSRP. As part of those guidelines, they acknowl-
edged participation after reading this text: www.wilmabainbridge.
com/research/acknowledgement.html. All participants were com-
pensated for their participation.

Stimuli: THINGS
To examine memorability across a broad range of object concepts,
we used the entire 26,107 image corpus of the THINGS database
(https://osf.io/jum2f/) (30) for all of our experiments. The
THINGS concepts span a wide and representative range of concrete
objects, including animate and inanimate, as well as man-made and
natural concepts, such as aardvarks, goalposts, tanks, and boulders.
These 1854 concepts were generated from the WordNet lexical da-
tabase through a multilevel web scraping process (30). Each concept
has a minimum of 12 exemplar images, although some have as
many as 35. These concepts were sorted into 27 overarching
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categories including animal-related, food-related, and body parts.
These higher categories were generated using a two-stage AMT
experiment.

At the concept level, we used the representational embedding of
each concept supplied by THINGS as the multidimensional space
for our analyses (31). The original 49-dimensional behavioral sim-
ilarity embeddings (31) had been generated on the basis of the 1854
object concepts. Dimension names were generated by two pools of
naïve observers in a categorization task (31). The first pool of ob-
servers viewed the most heavily reflected images along a given di-
mension of the space and generated potential labels from the
images. The second pool of observers then narrowed down the
list of labels until the top two labels remained for each dimension,
which was then assigned as the name for that dimension. To derive
49-dimensional embeddings for each of the 26,107 images in the
THINGS database, we used predictions from a DCNN as a proxy.
The prediction was carried out for each dimension separately using
Elastic Net regression based on the activations of object images in
the penultimate layer of the CLIP Vision Transformer (46), which
has been shown to yield the most human-like behavior of all avail-
able DCNN models in a range of tests (47). The Elastic Net hyper-
parameters were tuned and evaluated using nested 10-fold cross-
validation, yielding high predictive performance in most dimen-
sions (mean Pearson correlation between predicted and true dimen-
sion scores: r > 0.8 in 20 dimensions, r > 0.7 in 32 dimensions, and
r > 0.6 in 44 of 49 dimensions). We then tuned the hyperparameters
on all available data using 10-fold cross-validation and applied the
regression weights to the DCNN representations of THINGS
images, yielding 49-dimension scores for all 26,107 images.

We additionally include a set of semantic feature norms to in-
crease the interpretability of each dimension (see OSF repository).
These norms were originally derived in (32) and constitute semantic
features for all 1854 objects in THINGS (e.g., “is an animal,” “is
round,” and “is used for sports”), generated automatically by
probing the large language model GPT-3 with the object words,
which yielded similar quality embeddings as those produced by
humans (32). We took these feature norms to generate a score of
how strongly individual features loaded on each of the dimensions,
across all objects. First, we normed each of the 49 dimensions to a
summed weight of 1 to equalize their overall importance. Then, we
created a features × objects matrix containing the production fre-
quency of each feature, normed by the term frequency-inverse
document frequency to downweigh highly frequent features. Next,
we multiplied this matrix with the 49-dimensional objects × dimen-
sions matrix, yielding a features × dimensions matrix of feature im-
portance scores within each dimension across all objects. To further
reduce the impact of features highly prevalent across dimensions
(e.g., “is white”), for a given dimension, we next subtracted the
mean feature vector of all other dimensions, effectively highlighting
features that distinguish between dimensions. Last, we sorted the
features according to their weight in this matrix, yielding the fea-
tures that load the highest on individual dimensions.

Obtaining memorability scores for THINGS
To examine memorability in the context of the THINGS space, we
collected memorability scores for all 26,107 images (publicly avail-
able in an online repository: https://osf.io/5a7z6). To quantify the
memorability of each stimulus, each participant viewed a stream
of images on their screen and was instructed to press the R key

whenever they saw a repeated image. Each image was presented
for 500 ms, and the interstimulus interval was 800 ms. For each re-
peated stimulus, there was a minimum 60-s delay between the first
and second presentation of that image, although this delay was jit-
tered so that repetitions could not be predicted on the basis of
timing. The task also included easier “vigilance repeats” of one to
five images apart, to ensure that participants were paying attention
to the task. Each participant only saw a pseudorandom subset of 187
of the images from the THINGS database, each from a different
concept. Thus, the experiment image context for each participant
was unique. The presentation of images was such that approximate-
ly 40 participant responses were gathered per image. Of the 1854
concepts in THINGS, each concept was either represented with a
single exemplar or not represented at all during a participant’s set
of trials to control for within-concept competition effects on
memory performance.

Because of the large number of trials, we exhausted the set of
usable AMT participants. We therefore allowed AMT workers to
participate in the study more than once. However, to avoid famil-
iarity effects or interference from prior participation, workers had
towait a minimum of 2 weeks to retake the task. To ensure that there
was no memory interference, we compared the memory perfor-
mance measures for workers who participated only a single time
versus those who participated multiple times. Repeat participants
had significantly higher CR scores (t21,132 = 12.903,
P = 6.060 × 10−38), higher HRs (t21,132 = 10.904,
P = 1.131 × 10−27), and lower FARs (t21,135 = 8.689,
P = 3.932 × 10−18) than one-time participants. Given that these
effects were consistent with memory facilitation rather than inter-
ference for repeated participation, these results suggest that there
was little to no effect of interference, although repeat participants
may have been more experienced higher-quality workers, thus re-
sulting in higher performance. Future works should assess the
effect of repeated participation in memory tasks on memorability
scores or eschew repeated testing altogether in favor of nonbehav-
ioral measures of memorability, such as the predicted HR values
generated by the ResMem network. Another potential avenue in-
volves the use of rank-based statistics, as improved memory perfor-
mance as a result of repeat participation would likely not affect the
rank ordering of memorability ratings.

Memorability was quantified in THINGS using CR scores for
each image. CR is calculated by subtracting the FAR for a given
stimulus from the HR for the same stimulus. HR is defined as the
proportion of correct repetition detections, whereas FAR is defined
as the proportion of incorrect detections. CR allows for a single
metric that integrates information about both HR and FAR.
However, we also replicate all results using HR and FAR separately
(figs. S1 to S5). We also collected predicted memorability scores
using the ResMem DCNN (18). ResMem is a residual neural
network trained to predict image memorability, trained from a
large set of real-world photographs with no overlap with
THINGS. For each THINGS image, we obtained its ResMem mem-
orability score prediction, with no retraining.

We ran a split-half consistency analysis to determine whether
participants were consistent in what they remembered. The analysis
randomly partitioned participants into two halves and calculated a
Spearman rank correlation between the CR scores for all images, as
defined by the two random halves of participants. In other words,
this analysis determines how similar the memory performance is for
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each image between these two independent halves of participants.
This process was repeated across 1000 iterations, and an average
correlation rho was calculated. This rho was then corrected using
the Spearman-Brown correction formula for split-half correlations.
If there is no consistency in memory performance across partici-
pants, we would expect a zero value for rho, whereas a high value
would suggest that what one-half of participants remembered, so
did the other. To estimate chance, we correlated one half of partic-
ipants’ scores with those for a shuffled image order of the other par-
ticipant half, across 1000 iterations. The P value was calculated as
the proportion of shuffled correlations higher than the mean con-
sistency between halves.

Given prior work suggesting an influence of studied image
context on memory performance (2–4), we also ran an analysis to
look at the relationship of experiment image context and memora-
bility. We ran this analysis with the three categories with the most
concepts: food, animals, and clothes. For each participant, we
counted the number of images that they saw during their experi-
ment from one of these categories. We then split all the participants
into quartiles based on this number. The lowest quartile represented
low-context participants who saw few members of that category
(e.g., saw few animals), while the highest quartile represented
high-context participants who saw many members of that category.
To examine whether memorability effects persisted regardless of
context, we then took the Spearman rank correlation between the
memorability scores (CR) for all images of that category shown in
the low-context experiments versus the scores when shown in the
high-context experiments. This correlation coefficient was then cor-
rected with Spearman-Brown correction by quartiles. To calculate a
P value, we ran a similar analysis, but we first randomly shuffled
participants across the quartiles so that there were no context differ-
ences across these quarters of the data. This should estimate an
upper bound of consistency where experimental context does not
differ. These permuted shuffles were conducted 1000 times, and
then, the one-sided P value was calculated as the proportion of shuf-
fled correlations lower than the correlation between the quartiles
differentiated by context. We also tested whether low-context and
high-context conditions had different distributions of memorability
scores, via Wilcoxon rank sum tests.

We also conducted an analysis to look at the average memorabil-
ity at varying levels of context. We could not conduct a statistical test
of extremely low context (one to three items), given the small
number of participants who saw a given image with no or few
other images of the same category (usually zero to one participant).
However, we can see whether the average memorability of items in a
category systematically increases or decreases with increasing
numbers of items of the same context. To this end, we calculated
the average CR for the items in each category in THINGS across
participants who saw varying numbers of images from that category
(i.e., across participants who saw one musical instrument, two
musical instruments, and so on). We plot average CR by context
for each conceptin our OSF repository (https://osf.io/5a7z6) and
provide a representative example (musical instruments) and an
average across all categories in the Supplementary Materials. All
analyses were also conducted for HR and FAR (table S2).

We also ran a similar analysis looking at semantic versus visual
experiment context. For each participant’s set of images, we calcu-
lated the average weight along the semantic dimensions and the
weight along the visual dimensions (as defined in Table 1). We

compared these values to the median semantic dimension weight
across all THINGS images and the median visual dimension
weight across all THINGS images, respectively. To test the role of
visual and semantic experimental contexts on image memorability,
we then took the Spearman rank correlation (Spearman-Brown cor-
rected) between the memorability scores for participants who had
image sets with low visual weights and high semantic weights with
those who had high visual and low semantic weights.

Semantic/visual contribution and regression model
analyses
With memorability scores at the image level available, we can relate
the memorability of THINGS stimuli with the associated represen-
tational space and determine the relative contributions of semantic
and visual dimensions to memorability. To accomplish this, we an-
alyzed the embeddings of the 1854 concepts in the 49 dimensions
and separated them into semantic and visual dimensions. Of the 49
dimensions, 27 were identified as semantic, 9 as visual, and the re-
maining 13 as mixed (Table 1).

To determine the effects of semantic and visual dimensions on
memorability, we ran a series of multiple regression models. We
began with an omnibus model predicting average memorability
for each of the 1854 concepts using the full set of 49 dimensions.
This model assessed the total variance in memorability explained
by the dimensions. We then used a model predicting memorability
from the 36 dimensions classified as either semantic or visual to de-
termine the differential contributions of each type of information.
As there were more semantic dimensions than visual dimensions,
we also ran a model that only used the nine most heavily reflected
semantic and nine most heavily reflected visual dimensions to
control for the overrepresentation of semantic information. To
assess the potential variance explained by dimensions classified as
mixed, we also break down the unique variance contributed by
mixed dimensions to the full 49-dimensional model (see the Sup-
plementary Materials). In all models, we also analyzed the unique
and shared variance contributions of the two types of dimensions to
memorability using variance partitioning. Unique semantic vari-
ance was calculated as the overall R2 value for the full model
minus the R2 value for a model containing only the visual dimen-
sions and vice versa for visual variance. The shared variance was
calculated as the overall model R2 minus both the unique semantic
and unique visual variance.

To compare the performance of the omnibus model (all 49 di-
mensions) to the noise ceiling, we conducted a split-half regression
analysis. Across 100 iterations, the participant sample was split into
two random halves, and we ran two models. For the first model, we
looked at the ability of the 49 dimensions to predict the memorabil-
ity scores derived from the first half of participants. For the second
model, we included an additional 50th predictor, which was the
memorability scores derived from the second half of participants,
for the same images. This second model serves as a noise ceiling
of memorability from which we can compare the first model. To
see the proportion of variance explained in comparison to this
noise ceiling, we then averaged the ratio of the R2 of the first
model to the second model, across iterations.

To test for the generalizability of our regression model, we also
assessed its performance using 10-fold cross-validation. For the
base regression model with all 49 dimensions, we randomly parti-
tioned the object concepts into 10 folds of equal size. We then
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trained our regression model using 9 of 10 folds, leaving the 10th
fold to serve as a test set. To assess model performance, we calculat-
ed the Pearson correlation between the true CR scores of the held-
out test data with the CR scores predicted by the trained model. This
10-fold cross-validation procedure was then repeated 1000 times,
each time with a different random split into 10 folds. The final ac-
curacy was determined as the average correlation across all 1000 it-
erations, and significance was determined with a one-sample t test
comparing these Fisher z-transformed correlations versus a null hy-
pothesis of 0.

Memorability-typicality relationship analyses
To determine whether memorability is reflective of object prototy-
picality or atypicality, we assessed the relationship between typical-
ity and memorability of the THINGS images. We conducted these
analyses at two levels: mapping images to concepts and mapping
concepts to categories. We used typicality scores using three
methods, derived from the object space dimensions, the VGG-F
DCNN, and behavioral ratings of typicality.

To create our object space typicality scores, we leveraged the 49-
dimensional object space and embeddings of all 26,107 images
within that space. For each concept, we generated a similarity
matrix containing the embedding values of the component
images of that concept along all 49 dimensions. From that matrix,
we can extract a single value for each image that is the average sim-
ilarity (Pearson correlation) between that image’s dimensional em-
beddings and those of the other images of that concept, which we
define as the typicality of that image. In other words, a low mean
correlation would imply a highly atypical stimulus (distinct from
other exemplars of the same concept), while a high mean correla-
tion would imply a highly prototypical stimulus (very similar to ex-
emplars of the same concept). We use the same paradigm to
generate typicality values for each concept in relation to other con-
cepts under a given category using an embedding of each concept in
the object space and comparing its similarity to the embedding of all
other concepts within the same category.

For our DCNN-based typicality scores, we leveraged the VGG-F
DCNN object classification network to compute typicality directly
from image features. Early layers of DCNNs are more sensitive to
low-level image features, such as edges, while later layers are more
sensitive to higher-level and semantic features, such as animacy
(34). We can therefore extract information at these various points
in the network to test the separate contributions of visual and se-
mantic typicality. The paradigm for extracting typicality values
was similar to the object space typicality values: For each concept,
similarity matrices were generated on the basis of the flattened layer
output values for all component images. The typicality for each ex-
emplar was then calculated as the mean of its similarity (Pearson
correlations) with all other exemplars in the concept. This
measure tells us how similar a given exemplar is to all other exem-
plars in terms of its DCNN-predicted features. This procedure is
repeated for every layer in VGG-F, resulting in 21 typicality
values for each image in relation to its object concept, one for
each layer of VGG-F. Note that we can only run this analysis
looking at the typicality of images in relationship to their concept,
as it is unclear how to quantify concept-level layer vectors to look at
their relationship to their broader category.

For our behavioral typicality scores, we used the ratings collected
as part of the THINGS database (31). These ratings were collected

for each of the 1854 THINGS concepts and represent the typicality
of the concept in relation to its higher category on a scale of 0 to 10.
For example, the typicality rating for stomach under the higher cat-
egory body parts reflects how typical a stomach is as a body part
(considering other body parts like legs or shoulders). Note that
we do not have behavioral ratings of typicality for each image in re-
lation to its concept, given the large experimental scale needed to
collect such ratings.

To analyze the relationships between typicality and memorabil-
ity across the THINGS dataset, we use our object space, DCNN-
based, and behavioral typicality scores at two different levels of anal-
ysis: image level and concept level. At the image level, we analyze the
object space and DCNN-derived typicality values to examine their
relationship to memorability across all 26,107 images in THINGS,
which gives a single value for the overall typicality-memorability re-
lationship of the THINGS images. Beyond the overall trend, we also
examine the relationship within each of the 1854 image concepts by
correlating the typicality scores and memorability scores of their
component images. This allows for the visualization of more
nuanced relationships between the THINGS concepts. At the
concept level, we perform a correlation between the behavioral
and object space typicality scores with the CR scores and examine
the resulting distributions of the relationships for each of the 27
higher categories.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S7
Tables S1 to S3

View/request a protocol for this paper from Bio-protocol.
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