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Druggable proteins influencing cardiac structure and
function: Implications for heart failure therapies and
cancer cardiotoxicity
Amand F. Schmidt1,2,3,4†*, Mimount Bourfiss3†, Abdulrahman Alasiri3,5†, Esther Puyol-Anton6,
Sandesh Chopade1,2, Marion van Vugt1,2,3,4, Sander W. van der Laan7, Christian Gross3,
Chris Clarkson1,2, Albert Henry1,2,8, Tom R. Lumbers2,8, Pim van der Harst3, Nora Franceschini9,
Joshua C. Bis10, Birgitta K. Velthuis11, Anneline S. J. M. te Riele3,12,13, Aroon D. Hingorani1,2,
Bram Ruijsink3,6, Folkert W. Asselbergs1,3,4,8,13‡, Jessica van Setten3‡, Chris Finan1,2,3‡

Dysfunction of either the right or left ventricle can lead to heart failure (HF) and subsequent morbidity and
mortality. We performed a genome-wide association study (GWAS) of 16 cardiac magnetic resonance (CMR)
imaging measurements of biventricular function and structure. Cis-Mendelian randomization (MR) was used
to identify plasma proteins associating with CMR traits as well as with any of the following cardiac outcomes:
HF, non-ischemic cardiomyopathy, dilated cardiomyopathy (DCM), atrial fibrillation, or coronary heart disease.
In total, 33 plasma proteins were prioritized, including repurposing candidates for DCM and/or HF: IL18R (pro-
viding indirect evidence for IL18), I17RA, GPC5, LAMC2, PA2GA, CD33, and SLAF7. In addition, 13 of the 25 drug-
gable proteins (52%; 95% confidence interval, 0.31 to 0.72) could be mapped to compounds with known
oncological indications or side effects. These findings provide leads to facilitate drug development for
cardiac disease and suggest that cardiotoxicities of several cancer treatments might represent mechanism-
based adverse effects.
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INTRODUCTION
Dysfunction of the right or left ventricle (RV, LV), arising due to
intrinsic heart muscle disease, coronary artery disease, or pulmo-
nary or systemic hypertension, leads to the clinical syndrome of
heart failure (HF) (1). HF can be accompanied by ventricular hyper-
trophy or dilation (depending on the cause) and with impairment of
either cardiac contraction or relaxation, leading to HF syndromes
defined according to impaired or preserved ejection fraction (EF).
Notwithstanding the recent advance offered by SGLT2 inhibitors

for the treatment of HF, drug development for cardiac disease has
been met with high failure rates, often occurring during costly late-

stage clinical testing (2–4). These late-stage failures are indicative of
the poor predictive potential of preclinical experiments for cardiac
drug target identification. This is complicated further by the consid-
erable phenotypic heterogeneity that underlies diagnoses such as
HF (5), potentially resulting in compounds failing for futility that
may genuinely benefit a subset of patients. Conversely, several
drugs—predominantly for cancer indications—have been found
to cause cardiotoxicity, which may confront patients with treat-
ment-induced heart problems (6).
Cardiacmagnetic resonance (CMR) imaging is the gold standard

for quantification of biventricular function and morphology, and
has become an integral diagnostic modality for cardiac disease
(see table S1). Here, we used CMR images from the UK Biobank
(UKB) to extract measures from both LV and RV using a
purpose-built deep-learning algorithm (7).
Proteins constitute most drug targets (8), which are increasingly

analyzed through high-throughput assays measuring the levels of
hundreds to thousands of (plasma) proteins (9). To leverage pro-
teins and CMR measurements for drug target validation, we have
developed an analytical framework (10) to perform drug target
analyses using human genetic data. Specifically, through two-
sample Mendelian randomization (MR), one can anticipate the
on-target effect a drug target protein will have on disease-relevant
traits such as CMR measurements. Previously, this approach has
been extensively validated for cardiovascular drug targets (11–19).
To prioritize circulating plasma proteins for their involvement

with LV and RV traits, we first performed a genome-wide associa-
tion study (GWAS) on 16 CMR traits measured in up to 36,548
UKB subjects. Subsequently, we format-normalized protein quanti-
tative trait loci (pQTLs) data sourced from three independent
GWAS involving cross-platform measurement of plasma protein
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concentrations using Somalogic (9), Olink (20), and Luminex (21)
assays spanning 2900+ plasma proteins. Drug targetMRwas used to
prioritize proteins on their likely causal contribution to CMR traits,
as well as cardiac outcomes including HF, dilated cardiomyopathy
(DCM), and atrial fibrillation (AF). Repurposing opportunities
were identified by extracting cardiovascular indications and side
effects from ChEMBL (22) and the British National Formulary
(BNF). Results were further annotated with tissue-specific mRNA
expression data from the Human Protein Atlas (HPA) database
(23), and with protein-protein interaction data information from
IntAct (24) (see Fig. 1).

RESULTS
UKB participants with LV and RV CMR measurements
CMR measurements were obtained from a sample of up to 36,548
UKB subjects using an extensively validated deep-learning ap-
proach (7), excluding people with preexisting (cardiac) disease
(figs. S1 and S2 and tables S1 and S2). Specifically, the following
CMRmeasurements were extracted: structural measures on end-di-
astolic, end-systolic, or stroke volumes (EDV, ESV, SV), end-dia-
stolic mass (EDM), and LV mass to EDV ratio (LV-MVR), and

functional measures on EF, peak ejection rate (PER), and peak
(atrial) filling rates (PAFR, PFR).
On average, subjects were 63.9 (SD, 7.6) years old, and 18,879

(51.8%) were women. Participants had a mean systolic blood pres-
sure (SBP) of 138.2 mmHg (SD, 18.4), a mean diastolic blood pres-
sure (DBP) of 78.6 mmHg (SD, 10.0), and a mean heart rate of 62.5
beats per minute (bpm) (SD, 10.2) (see table S3).

Genomic loci associated with LV and RV CMR
measurements
We performed a GWAS on 16 CMR traits, leveraging genotyped
and imputed variants from the Affymetrix BiLEVE and Axiom
arrays, and applying BOLT-LMM conditional on age, sex, body
surface area (BSA), SBP, genotype measurement batch, 40 principal
components (PCs), and assessment center. This resulted in 91
unique lead variants (Fig. 2 and tables S4 and S5), which passed
the standard GWAS significance threshold of 5.00 × 10−8, and 32
variants passing a more conservative threshold of 7.14 × 10−9, ac-
counting for the number of PCs necessary to explain 90% of the
CMR trait variance (figs. S3 and S4). This included lead variants
in or around genes known to affect cardiac outcomes, such as
BAG3, TTN, SMARCB1, SYNPO2L, TBX5, and IGF1R. Please see

Fig. 1. Study infographic leveraging neural network analysis of biventricular CMR data and GWAS to prioritize plasma proteins with an effect on cardiac
outcomes. CMR, cardiac magnetic resonance imaging (MRI); GWAS, genome-wide association study.
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Supplementary Results, figs. S4 to S8, and tables S5 to S8 for a full
description of the GWAS findings.

Proteins with MR effects on CMR measurements
Drug target MRwas used to identify plasma proteins affecting CMR
traits. Specifically, we identified 304 circulating proteins with a
causal effect on RV and/or LV traits by performing a two-sample
cis-MR (Fig. 3), leveraging aggregated genetic data on protein
levels from three sources (SCALLOP, Framingham, and INTER-
VAL), and associating these with results from the CMR GWAS dis-
covery analysis (Fig. 4 and figs. S8 and S9). Subsequently, we
identified CMR-associated proteins that were either drugged or
druggable (figs. S10 and S11 and tables S9 to S12). Because of
novel ways of drug delivery and developments such as small inter-
fering RNA–based therapeutics, the current definition of druggabil-
ity will likely change in the future. In anticipation of this, we
additionally identified a set of proteins with directionally concor-
dant effects on at least three CMR traits and used protein-protein
interaction data to identify “nearest druggable” proteins with suffi-
cient pQTL data to conduct follow-upMR analysis with (Fig. 5, figs.
S13 and S14, and tables S13 to S15). This resulted in a set of 72 pro-
teins, which were further prioritized by using MR to identify pro-
teins associated with at least one of the following cardiac outcomes:
HF, DCM, non-ischemic cardiomyopathy (CM), AF, and/or coro-
nary heart disease (CHD). This strategy resulted in a final set of 33
prioritized proteins, where 9 proteins affected HF, 13 DCM, 7 non-
ischemic CM, 12 AF, and 9 CHD (Fig. 6, fig. S15, and table S16).
The prioritized proteins included 25 targets that were directly or

indirectly (where the indexing protein interacted with a drugged or
druggable protein) drugged or druggable: IL6RA, IL8, CO6A1,
LYAM1, PA2GA, ISK2, CD33, PPAC, COFA1, GPC5, TIE2,
IL18R, LAMC2, I17RA, SLAF7 (Table 1). From a level 1 look-up
of Anatomical Therapeutic Chemical (ATC) entries, we know that
171 (15%) registered compounds have a cardiovascular indication.
Compared to this, we observed significant cardiovascular enrich-
ment, with 15 [60%; 95% confidence interval (CI), 39 to 79] of
the 25 drugged or druggable proteins having a known cardiovascu-
lar indication or side effect (figs. S13 and S14).

Proteins with MR effects on HF, DCM, or non-ischemic CM
Twenty-five proteins associated with HF, DCM, or non-ischemic
CM (Figs. 3 and 6 and figs. S10 to S12). These included BAG3,
TNF12, C1QC, and IL18R, which affected more than one cardiac
trait, as well as proteins targeted by approved compounds: CD33,
SLAF7, CO6A1, LAMC2, I17RA, and CAH6 (Figs. 3 and 6 and
figs. S10 to S14). Specifically, higher plasma concentrations of
BAG3 (BAG family molecular chaperone regulator 3) improved
six CMR traits and decreased the risk of HF [odds ratio (OR),
0.75; 95% CI, 0.72 to 0.79], non-ischemic CM (OR, 0.30; 95% CI,
0.25 to 0.36), and DCM (OR, 0.14; 95% CI, 0.11 to 0.17) (Fig. 6,
fig. S12, and table S16). BAG3 directly interacts with HSP7C,
which is targeted by forigerimod acetate, a phase 3 compound for
lupus erythematosus (Fig. 5 and table S14). Higher levels of TNF12
(tumor necrosis factor ligand superfamily member 12) decreased
the risk of non-ischemic CM (OR, 0.82; 95% CI, 0.77 to 0.88) and
DCM (OR, 0.80; 95% CI, 0.75 to 0.85). TNF12 is targeted by two
phase 1 inhibiting compounds indicated for neoplasm and rheuma-
toid arthritis (tables S11, S12, and S16). Higher levels of C1QC
(complement C1q subcomponent subunit C) detrimentally affected

Fig. 2. Manhattan plots of genome-wide CMR associations with genomic an-
notations. Purple dots indicate associations that pass the conservative significant
threshold of 7.14 × 10−9, with orange dots associating between 5.00 × 10−8 and
7.14 × 10−9; labels indicate the lead gene in the region. CMR, cardiac MRI; LV, left
ventricle; RV, right ventricle; EDV, end-diastolic volume; ESV, end-systolic volume;
SV, stroke volume; EF, ejection fraction; PER, peak ejection rate; PAFR/PFR, peak
(atrial) filling rate; EDM, end-diastolic mass; MVR, ratio between end diastolic
mass and volume. Results are based on an analysis of up to 36,548 subjects.
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three CMR traits but nevertheless decreased the risk of HF (OR,
0.97; 95% CI, 0.96 to 0.98) and DCM (OR, 0.86; 95% CI, 0.82 to
0.90) (Fig. 6, fig. S12, and table S16). Increased levels of CD33
(myeloid cell surface antigen CD33) decreased the risk of HF
(OR, 0.96; 95% CI, 0.95 to 0.98) and reduced LV-EDM. CD33 is tar-
geted by monoclonal antibodies (mAbs) such as gemtuzumab,
which are indicated in cancer such as acute myeloid leukemia and
have documented cardiovascular side effects (fig. S13 and tables S9
and S10). SLAF7 (SLAM family member 7) is targeted by inhibiting
compounds indicated for the treatment of cancers, which have
known cardiometabolic side effects (fig. S13 and tables S9 and
S10). Through MR, we found that SLAF7 improved RV-EF and
RV-PAFR, but nevertheless increased the risk of HF (OR, 1.07;
95% CI, 1.05 to 1.08) (Figs. 3 and 6 and fig. S10). Higher plasma
levels of IL18R improved four LV CMR traits and decreased the
risk of DCM (OR, 0.88; 95% CI, 0.83 to 0.92). IL18R directly inter-
acts with IL18, which is targeted by developmental compounds for
diabetes and inflammatory bowel disease (fig. S14 and table S14).

Proteins with an MR effect on AF
The 12 proteins associated with AF included COFA1, PPAC,
LYAM2, BGH3, IL8, TDGF1, MK03, ERAP1, LYAM1, CD33,
ILRA, and TNF12 (Figs. 3 and 6 and figs. S10 to S14). Specifically,
higher levels of IL8 (interleukin-8) increased LV-EDM, improved
RV-PER, and decreased the risk of AF (OR, 0.83; 95% CI, 0.77 to
0.89), as well as HF (OR, 0.74; 95% CI, 0.69 to 0.81). IL8 is targeted
by a mAb in development for the treatment of neoplasms and
chronic lung disease (Fig. 6, figs. S11 and S13, and tables S11 and
S12). TDGF1 (teratocarcinoma-derived growth factor 1) is targeted
by BIIB015, which is being developed as an immunoconjugate for
the treatment of tumors. Higher levels of TDGF1 improved LV and
RV cardiac traits (EF, SV, PER, and RV-PFR) and increased the risk
of AF (OR, 1.01; 95% CI, 1.01 to 1.01) while decreasing the risk of
non-ischemic CM (OR, 0.93; 95% CI, 0.92 to 0.94). MK03
(mitogen-activated protein kinase 3) is targeted by multiple extra-
cellular signal–regulated kinase 1/2 (ERK1/2) kinase inhibitors for
the treatment of neoplasms. Higher levels of MK03 associated with
RV-ESV and RV-EF, and decreased the risk of AF (OR, 0.86; 95%
CI, 0.82 to 0.91) as well as HF (OR, 0.85; 95% CI, 0.80 to 0.91) (Figs.

Fig. 3. Volcano plots of the plasma protein effect on CMR traits. Proteins were annotated if they were part of the drugged, druggable, directionally concordant, or
nearest druggable protein sets. Results were colored by LV and RV if they passed a P value threshold of 7.81 × 10−6. The MR effects per unit (in SD) change in the protein
are plotted on the x axis, against the −log10(P value) on the y axis. Nomenclature: Proteins are referred to by their UniProt entry name to differentiate them from the
encoding genes.
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3 and 6 and fig. S11). ERAP1 and ERAP2 [endoplasmic reticulum
aminopeptidase 1 and 2, which form a protein complex (25)], both
play a role in peptide trimming for presentation onmajor histocom-
patibility complex (MHC) class I, and are both targeted by tosedo-
stat, which is currently in development for the treatment of cancers
(fig. S13 and tables S11 and S12). Higher ERAP1 decreased the risk
of AF (OR, 0.99; 95% CI, 0.98 to 0.99) and CHD (OR, 0.98; 95% CI,
0.97 to 0.98) and increased the risk of non-ischemic CM (OR, 1.10;
95% CI, 1.07 to 1.13). Higher levels of ERAP2 increased the risk of
CHD (OR, 1.03; 95% CI, 1.02 to 1.03).

Proteins with an MR effect on CHD
The nine proteins associated with CHD included UD16, SPA12,
MANBA, IL6RA, ERAP1, ERAP2, TIE2, IL8, and TDGF1 (Figs. 3
and 6 and fig. S10 to S14). Specifically, IL6RA (interleukin-6 recep-
tor subunit α) had a directionally discordant effect on nine LV and
RV traits (fig. S10 and tables S9 and S10), with increased levels being
associated with decreased risk of CHD (OR, 0.94; 95% CI, 0.93 to
0.94) and AF (OR, 0.95; 95% CI, 0.94 to 0.96) (table S16). Higher
UD16 (UDP-glucuronosyltransferase 1-6) worsened four LV CMR
traits and increased the risk of DCM (OR, 1.62; 95%CI, 1.46 to 1.80)
and CHD (OR, 1.06; 95% CI, 1.04 to 1.08). TIE2 (angiopoietin-1
receptor) is targeted by inhibiting compounds indicated for the
treatment of cancers, which have known cardiometabolic side

Fig. 4. Drug target MR pipeline to identify plasma proteins associating with CMR traits and cardiac outcomes. Plasma proteins were associated with CMR traits
through cis-MR leveraging genetic variants (pQTLs) associated with the protein of interest. Multiplicity-corrected results were prioritized by identifying 4 sets of proteins:
(i) whether the protein was targeted by an approved drug (’drugged proteins’ set), (ii) whether the protein was targeted by a developmental drug compound (’druggable
proteins’ set), (iii) whether the protein showed a directionally concordant (table S1) effect on at least three CMR traits (’concordant proteins’ set), and (iv) for the direc-
tionally concordant proteins we additionally identified their nearest druggable protein through protein-protein data from IntAct and included proteins with pQTLs
available in the three available datasets (SCALLOP, Framingham, INTERVAL) (’nearest druggable proteins’ set). These 72 proteins were finally prioritized on an MR asso-
ciation with HF, DCM, CM, and/or AF.
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effects (fig. S13). Higher levels of TIE2 affected LV-EF (0.43%; 95%
CI, 0.32 to 0.55), RV-ESV (−0.68 ml; 95% CI, −0.89 to −0.48), and
RV-PAFR (5.47 ml/s; 95% CI, 4.15 to 6.79) and increased the risk of
CHD (OR, 1.10; 95% CI, 1.06 to 1.15). Higher concentrations of
MANBA improved five CMR traits (ESV, EF, and LV-PFR) and de-
creased CHD (OR, 0.93; 95% CI, 0.91 to 0.96) and DCM risk (OR,
0.76; 95% CI, 0.72 to 0.81) (Figs. 3 and 6 and fig. S12).

Tissue-specific expression and phenome-wide scan
To inform possible drug development of these 33 prioritized plasma
proteins, we next explored tissue-specific mRNA expression and
performed a phenome-wide scan to identify the potential spectrum
of effects of on-target perturbation (Figs. 6 and 7, figs. S15 and S16,
and table S16). Tissue specificity did not differ between prioritized
proteins and nonprioritized proteins (P = 0.20). We did observe a
significant difference in tissue-specific expression (P = 9.01 × 10−3),
with prioritized plasma proteins more frequently highly expressed
in spleen, lymph node, liver, granulocytes, kidney, pancreas, and
lung tissues (fig. S16). In addition to the cardiac outcomes these
proteins were prioritized for, the cis-MR phenome-wide scan
showed that these proteins were frequently associated with DBP,
SBP, electrocardiography (ECG) measurement during exercise,
lipid fractions [e.g. high-density lipoprotein cholesterol (HDL-C),
apolipoprotein-A1 (Apo-A1), triglycerides, low-density lipoprotein
cholesterol (LDL-C), and apolipoprotein-B (Apo-B)], estimated

glomerular filtration rate (eGFR), body mass index (BMI), glycosy-
lated hemoglobin (HbA1c), C-reactive protein, lung function
[forced expiratory volume during the first second (FEV1), forced
vital capacity (FVC), and peak expiratory flow (PEF)], and carotid
intima-media thickness (cIMT) (Figs. 6 and 7, fig. S15, and
table S16).

DISCUSSION
In the current study, we derived 16 LV and RV measurements of
structure or function from CMR and used GWAS to identify 91
genetic variants associated with one or more traits. We leveraged
drug target MR to identify 33 plasma proteins associated with RV
or LV measurements as well as with at least one of the following
cardiac outcomes: CHD, AF, HF, DCM, and non-ischemic CM.
To further inform drug development, we conducted a phenome-
wide scan assessing the on-target effects these 33 proteins may
have on 56 clinically relevant traits. We found that 15 (60%; 95%
CI, 39 to 79) of the 25 drugged or druggable proteins were targeted
by compounds with a cardiovascular indication or side
effect (Table 1).
The cis-MR analysis leveraged three distinct plasma pQTL re-

sources, distilling a prioritized set of 33 plasma proteins that
affect both CMR traits and cardiac outcomes (Table 1). While
these proteins were prioritized on their association with CMR

Fig. 5. A network of plasma proteins with a directionally concordant CMR effect (index, orange circles) and their nearest druggable protein (green square with
record CVD indication or side effect). Directly interacting proteins are presented as a thick blue arrow; the remaining druggable proteins were separated by a single
intermediate protein. In the presence of ties, all druggable proteins with the same distance are presented. Druggable proteins with a CVD indication or side effect (based
on BNF and ChEMBL) are presented as squares. In addition, nonindexing proteins with available plasma pQTL data are represented by an orange outline. Nomenclature:
Proteins are referred to by their UniProt entry name to differentiate them from the encoding genes.
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traits and cardiac outcomes, the association between a proteins’
CMR effect direction and cardiac outcome effect direction (catego-
rized as “beneficial,” “harmful,” or “mixed,” the latter for multiple
directionally discordant protein effects) did not reach significance
(P = 0.85). This likely reflects imperfect understanding of the rela-
tion between CMR traits and disease. Furthermore, given the strong
(observational and genetic) correlation among CMR traits, infer-
ence might be further improved by considering CMR traits jointly.
Our analyses have highlighted drug targets that affect multiple

cardiac outcomes (Fig. 6 and Table 1). Some of these proteins are
closely linked, for example, plasma ERAP1 affects CHD, AF, and
non-ischemic CM, and is closely related to ERAP2, which showed
a directionally opposing effect on CHD. This discordance in effects
might be explained by a correspondingly opposing effect on known
CHD risk factors/intermediates such as lipoprotein(a), DBP, and
carotid plaque. Both ERAP1 and ERAP2 play a major role in
peptide trimming for presentation on MHC class I molecules

(26), which is involved in cardiomyocyte pathogenesis (27). Similar-
ly, TNF12 decreases the risk of non-ischemic CM, DCM, and AF
and promotes IL8 concentration, which we linked to a lower risk
of AF and HF. IL8 concentration has previously been associated
with HF and AF outcomes, supporting these observations (28,
29). In agreement with previous loss-of-function studies, we
found that higher plasma concentrations of BAG3 affected multiple
CMR traits as well as HF, DCM, and non-ischemic CM risk (30).
BAG3 is indirectly druggable through a protein-protein interaction
with HSP7C (heat shock cognate 71 kDa protein), for which BAG3
acts as a co-chaperone (31). Now, the BAG3-HSP7C interaction is
being explored as a drug target in animal models (32, 33).
Compared to recent CMR GWASs (34–36), this study uniquely

determined LV and RV PER, PFR, and PAFRmeasurements (tables
S17 and S18), where PFR is especially relevant for HF with pre-
served EF. Through cis-MR of plasma pQTLs, we identified seven
proteins that affected PFR as well as HF or DCM risk: UD16,

Fig. 6. A phenome-wide scan of CMR prioritized proteins associatedwith one ormore cardiac outcomes. Proteins were curated on having amultiplicity-corrected P
< 1.29 × 10−5 with one or more of the following cardiac traits: HF, DCM, non-ischemic CM, AF, or CHD. P values passing the 0.05 threshold are indicated by an open
diamond, with stars indicating results passing a threshold of 1.29 × 10−5. Cells were colored by effect direction multiplied by the −log10(P value); where P values were
truncated at 8 for display purposes. The top column indicates whether the CMR-associated proteins were identified as drugged, druggable, directionally concordant, or
nearest druggable protein. DCM, dilated cardiomyopathy; cIMT, carotid artery intima media thickness; T2DM, type 2 diabetes; BMI, body mass index; DBP/SBP, diastolic/
systolic blood pressure; Estimated GFR, estimated glomerular filtration rate; BUN, blood urea nitrogen; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density
lipoprotein cholesterol; Apo-B, apolipoprotein-B; Apo-A1, apolipoprotein-A1; HbA1c, glycated hemoglobin; ECG, electrocardiography; FVC, forced vital capacity; FEV1,
forced expiratory volume during the first second; PEF, peak expiratory flow. Note that all 56 phenome-wide traits are presented in fig. S15. Nomenclature: Proteins are
referred to by their UniProt entry name to differentiate them from the encoding genes.
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MANBA, TNR5, TNF12, MFGM, CPC5, and BAG3, where the last
five proteins were (indirectly) drugged or druggable, providing
leads for drug development (Table 1).
Through BNF and ChEMBL linkage, we found that 13 (52%;

95% CI, 0.31 to 0.72) of the 25 drugged or druggable proteins
were targeted by a compound with an oncological indication
(Table 1). For example, CD33 and SLAF7, together with CD38
(which did not have plasma pQTL data), are targeted by mAbs
for multiple myeloma (37). The high degree of oncological targets
suggests that some of the reported cardiotoxicity (38) (e.g., by tyro-
sine kinase inhibitors such as TIE2) may likely be due to on-target
effects, which are therefore resistant to compound improvements.
Because inhibiting oncological compounds are used to prevent
cancer progression, compounds activating these proteins may not
necessarily cause novel neoplasms and might be considered for pre-
vention of cardiac events. Activator compounds may nevertheless
influence the growth of any existing undiagnosed neoplasms, and
hence, a change in action type should be carefully explored. Aside
from the oncological targets, we found many additional repurpos-
ing opportunities. For example, the PA2GA (phospholipase A2) in-
hibitor varespladib failed to show a beneficial CHD effect (39),
whereas we found an effect of PA2GA on CMR traits and HF.
In the current study, we combined GWAS onUKB-derived CMR

measurements of RV and LV structure and functions, with cross-
platform dataof the plasma proteome, and perform cis-MR of
protein effect on these CMR measurements, as well as 56 clinically
relevant traits. By leveraging orthogonal lines of evidence onmRNA
expression, protein interactions, and drug compound indications
and side effects, we were able to identify a robust set of proteins af-
fecting CMR and cardiac outcomes. Genetic analyses were conduct-
ed using methods such as BOLT-LMM and BOLT-REML, which

account for potential population admixture or relatedness (40).
Drug target MR analyses were guarded against horizontal pleiotro-
py by removing variants with either high leverage or heterogeneity
statistics (as potential outliers), and a model selection framework
was used to apply the MR-Egger correction, which is unbiased in
the presence of 100% pleiotropic variants (41). Furthermore,
results were corrected for multiplicity accounting for the correlation
between CMR traits through PC analysis. As described above, we
attempted to further limit the false-positive rate by integrating or-
thogonal nongenetic evidence, such as information on cardiovascu-
lar indications and/or side effects. The possibility of false positives
driving the presented results was further explored through Kolmo-
gorov-Smirnov tests, comparing the observed P value distributions
with the P value distribution expected when all results are false pos-
itive, finding considerable differences (fig. S6) suggesting that most
of the findings are true positive.
The following potential limitations deserve consideration. We

did not exclude individuals with non-European ancestry, and
instead, we accounted for potential population stratification bias
through linear mixed models (40). Nevertheless, most participants
were of European decent, and hence, generalizability of our results
should be explored. There are some caveats that suggest that drug
target MR results may be more useful as a reliable test of effect di-
rection. This is because drugs that inhibit a target usually do so by
modifying its function, not its concentration, whereas genetic var-
iants used in MR analysis usually affect protein expression and
therefore concentration. MR estimates are considered to reflect a
lifelong exposure, but in the absence of serial assessments, possible
changes across age are difficult to explore, as are disease induction
times. Similarly, possibly dose-specific effects, where an effect only
occurs at sufficiently high drug dosage, are impossible to detect

Fig. 7. The frequency of a prioritized plasma protein affected the depicted trait. The absolute frequencies (i.e., counts) of associations areprovided as a gray bars,
reflecting the number MR estimates that passed a multiplicity-corrected P value threshold of 7.81 × 10−6. The effect direction of these associations is depicted in orange
(counting the number of positive associations) or green (counting the number of negative associations), which sum to the absolute frequency. Plasma proteins were
prioritized (Fig. 4) for involvement with CMR traits and cardiac outcomes (AF, CHD, HF, DCM, and non-ischemic CM). Note that the individual protein-trait associations are
presented in fig. S15 and a subset in Fig. 6.

Schmidt et al., Sci. Adv. 9, eadd4984 (2023) 26 April 2023 10 of 17

SC I ENCE ADVANCES | R E S EARCH ART I C L E



through MR. For these reasons, we suggest that drug target MR
offers a robust indication of effect direction but may not directly
anticipate the effect magnitude of pharmacologically interfering
with a protein, and position our findings as a resource to inform
ongoing and future drug trials (42). We additionally wish to empha-
size that while we have identified proteins that affect (multiple)
CMR traits and cardiac outcomes, this study does not provide suf-
ficient evidence to rule out an effect, and future studies will likely
identify additional signals. To rule out any potential (harmful)
cardiac effect(s), confirmatory noninferiority or equivalence (43)
testing can be considered, which can formally prove that an effect
is sufficiently small to be considered clinically insignificant.
In conclusion, through large-scale analyses of the plasma prote-

ome, and linkage to mRNA expression, protein interactions, and
drug compound databases, we have identified a prioritized set of
33 proteins with a robust CMR and cardiac outcome fingerprint.
Our analyses provide a detailed overview of potential targets for re-
purposing or de novo drug development for cardiac therapies.

MATERIALS AND METHODS
Quantification of LV and RV CMR traits
The current study sourced information from up to 36,548 UKB sub-
jects who had data on both CMR images and genotyping. To min-
imize influence of preexisting conditions, we excluded subjects with
prevalent diseases (e.g., myocardial infarction, HF, and congenital
heart diseases) known to affect the LV or RV traits (see table S2).
The deep-learning methodology (AI-CMRQC) to extract LV and

RV CMR measurements has been previously described and exten-
sively validated (7). Briefly, the fully automated and quality-con-
trolled cardiac analysis tool calculates LV and RV traits from cine
short axis and two- and four-chamber acquisitions (figs. S1 and
S2 and table S1). Automatic quality control steps consisted of pre-
analysis checks on image quality (e.g., motion artefacts and errone-
ous image plane planning) and post-analysis checks on accuracy of
the image analysis (e.g., coverage of the segmentations, detected ab-
normalities in volume, and discrepancies between LV and RV pa-
rameters), with automatic detection and removal of outlying
observations. This was followed by further manual curation de-
scribed in Supplementary Methods and fig. S2.

GWAS of CMR traits
We used genotyped and imputed data as provided by UKB
(GRCh37 assembly) (44). In brief, samples were genotyped on the
Affymetrix BiLEVE and Axiom arrays, with untyped variants
imputed using the Haplotype Reference Consortium, 1000
Genomes, and UK10K as reference panels. We excluded samples
as recommended by UKB (44) and, in addition, used the following
sample exclusion criteria: discordant self-reported and genetically
inferred sex, and genotypical missingness rate above 0.01. Variant
quality control included removing variants with minor allele fre-
quency (MAF) below 0.1%, imputation quality below 0.3, and devi-
ation from the Hardy-Weinberg equilibrium (HWE P < 1 × 10−6).
Genetic associations with the 16 CMR traits were estimated

using BOLT-LMM (40), using a mixed-effects model to account
for possible cryptic relatedness and population stratification. The
BOLT-LMMmodels were run using default setting and conditional
on age at CMR, sex, BSA, SBP, genotype measurement batch, 40
PCs, and assessment center. Please see Supplementary Methods

and Results for a comparison with recent CMR GWAS (34–36)
and an evaluation on the influence of BSA and SBP adjustment
(fig. S7).

Genetic heritability of CMR variability
BOLT-REML (40) (with default settings, excluding variants with a
MAF below 0.1%, HWE P < 1 × 10−6, and over 1%missingness) was
used to estimate narrow-sense genetic heritability (i.e., the propor-
tion of phenotypic variance explained by common variants), as well
as the pairwise genetic correlation between the CMR traits.

Functional and phenotypic annotations and identification
of likely causal loci
Lead variants were identified through linkage disequilibrium (LD)
clumping within a 1-Mb flanking region, applying a pairwise r-
squared threshold of 0.001. Putative causal genes were identified
through manual curation of locus-view plots, where A.F.S., M.B.,
J.v.S., and C.F. independently determined the most likely causal
genes (Supplementary Locus-view plots). Locus-view plots com-
bined variant-specific CMR associations around each respective
lead variant [±250-kbp (kilo–base pair) flanking region] with infor-
mation on regional genes and their exon structure. These plots were
enhanced with an incidence (i.e., Boolean) matrix annotating genes
on 23 criteria, including whether the gene was coding, encoded a
target for drug compounds with known cardiometabolic (side)
effects, and had a cis-MR association between any of the considered
plasma proteins and a CMR trait, previous associations with cardi-
ometabolic traits sourced from GWAS Catalog (45), the presence of
mRNA expression or splice sites in cardiac or vascular tissues from
GTEx, trans protein associations with other CMR loci, and protein-
protein interactions between CMR-associated proteins (see Supple-
mentary Locus-view plots and Supplementary Excel file).

Format normalization of cross-platform pQTLs
Genetic associations with plasma protein concentration were avail-
able from the following sources: Somalogic measurements on 3301
participants of the INTERVAL cohort (9), Luminex assays on 6861
Framingham participants (21), and Olink assays on 30,931 individ-
uals from the SCALLOP consortium (20). Framingham provided
pQTLs from GWAS of common variants, as well as from exome
GWAS, which were concatenated here. For the less than 1%
variant overlap between the two Framingham arrays, we selected
results with the smallest standard error representing the highest
degree of precision. Given the difference in proteomics assays, the
subsequent MR analyses were conducted on each individual study.
Twenty-one proteins had MR results for more than one study, in
which case results from the largest pQTL GWAS were selected.
The GWAS files were normalized using a purpose-built normal-

ization pipeline gwas_norm (see the “Data and materials availabil-
ity” section of Acknowledgments), standardizing file structures,
mapping variants against the same genome assembly, assigning
UniProt identifiers, and providing annotations with Variant
Effect Predictor (VEP), Polymorphism Phenotyping v2 (PolyPhen),
and Combined Annotation Dependent Depletion (CADD).

MR of plasma protein effects on CMR traits
MR was subsequently used to ascertain the likely causal conse-
quences of protein concentration on the 16 CMR traits. To
prevent potential influence of study-specific factors, all drug
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target MRs were conducted per contributing study, performing sep-
arate analyses for SCALLOP, Framingham, and INTERVAL. Specif-
ically, drug target MR was conducted by selecting variants from a
100-kbp window around the cis gene known to encode the protein,
clumping variants to an LD R-squared of 0.40, where residual LD
was modeled using a generalized least square (GLS) model (46) and
a 5000 random sample of UKB participants. To reduce the risk of
“weak-instrument bias” (47), we selected genetic variants with an F-
statistic of 15 or higher. Furthermore, because of the absence of
sample overlap between protein concentration GWAS and CMR
GWAS, any potential weak-instrument bias would act toward a
null effect, reducing power rather than increasing type 1 errors.
MR analyses were conducted using the GLS implementation of

the inverse-variance weighted (IVW) estimator, as well as with an
Egger correction protecting against horizontal pleiotropy (48). To
minimize the potential influence of horizontal pleiotropy, we ex-
cluded variants with large leverage statistic (larger than three
times the mean leverage) or outlier statistics (chi-square larger
than 10.83) and used the Q-statistic to identify possible remaining
violations (49). Last, a model selection framework was applied to
select the most appropriate estimator (IVW or MR-Egger) for
each individual exposure-outcome analysis (41, 49). The model se-
lection framework [originally developed by G. Rücker (50)] uses the
difference in heterogeneity between the IVW Q-statistic and the
Egger Q-statistic to decide which methods provide the best model
to describe the available data.

Protein prioritization
After accounting for multiplicity (see below), we identified proteins
with a CMR association, prioritizing results on druggability and on
directional concordance. Druggability was determined through
linkage with ChEMBL and BNF. The BNF draws information
from drug medication inserts, scientific literature, regulatory au-
thorities, and professional bodies and is jointly authored by the
British Medical Association and the Royal Pharmaceutical
Society. ChEMBL (22) was extracted for information on clinically
used drug targets (from U.S. Food and Drug Association–approved
drugs) and information on drug targets that are in early phase con-
sideration [see Finan et al. (8)]. Proteins targeted by a marketed
compound were referred to as “drugged,” with developmental com-
pounds referred to as “druggable.” The drugged and druggable pro-
teins were additionally annotated by extracting cardiovascular-
related indications and side effects from the afformentioned data-
bases (see Supplementary Note 1).
Improvements in drug delivery and development will likely

change the current druggability classification. In anticipation of
this, we set out to identify proteins with a concordant increasing
or decreasing effect. Specifically, results were coded toward the
cardiac function or structure improving direction bymultiplying es-
timates for EDV, ESV, EDM, and MVR by −1. A concordant set of
prioritized proteins was identified by selecting proteins with at least
three CMR associations passing multiple testing correction, which
were either all in the beneficial positive direction or all in the detri-
mental negative direction (i.e., without directionally discordant
results). Next, we identified the distance between these concordant
proteins and the nearest drugged or druggable protein(s) based on
the IntAct (24) protein-protein interaction database as modeled in
Reactome (accessed April 2021) (51). Here, distance reflected the
number of protein-protein interactions between the “indexing”

concordant protein and the next druggable protein, where a dis-
tance of 1 represents a direct link.
The above classification of beneficial versus harmful CMR effect

direction is imperfect and simplifies the more complex relationship
observed in observational studies. For example, LV-EF has been
shown to have a u-shaped association with mortality (52). Hence,
these heuristic orientations were used as a first filtering step, fol-
lowed by more direct ascertainment of possible effects on clinical
cardiac outcomes through MR. The CMR prioritized set of
drugged, druggable, concordant, and nearest drugged/druggable
proteins were further pruned on an association with HF, non-ische-
mic CM, DCM, AF, and/or CHD, using the drug target MR pipeline
described before (See Fig. 4 for an overview of the prioritization
strategy).

Drug target phenome-wide scan to anticipate effects of
prioritized targets
Next, for CMR prioritized proteins with a cardiac trait association,
we evaluated their effects on 56 clinically relevant traits, combining
drug target MRwith a phenome-wide scan to further inform poten-
tial on-target protein effects in future drug development programs.

Assessing tissue specificity of prioritized targets
The set of prioritized CMR-associated plasma proteins with cardiac
effects was annotated by exploring their tissue-specific mRNA ex-
pression from the HPA (23), sourcing the consensus expression ob-
tained by normalizing TPM (transcripts per million) values from
three independent transcriptomics datasets: GTEx (53), Fantom5
(54), and HPA’s own RNA sequencing experiments (23). The nor-
malized human expression data were used to determine a protein
tissue specificity (55), ranging from 0 (ubiquitous expression
across all tissues) to 1 (tissue-specific expression). Differentially
overexpressed tissues were identified by comparing tissue-specific
expression with average expression, testing against a standard
normal quantile of 1.96.

Quality control and multiple testing
LD score regression (56) was used to evaluate the possibility of any
remaining bias due to population stratification or cryptic related-
ness—finding no cause for concern (table S4). Genetic loci were
identified using the traditional genome-wide threshold of 5.00 ×
10−8 and a conservative threshold of 7.14 × 10−9. The latter accounts
for multiplicity by performing a Bonferroni correction based on the
seven PCs necessary to explain over 90% of the CMR trait variance
(fig. S3).
On the basis of the described instrument selection criteria, we

had sufficient genetic variants to robustly assess 892 unique pro-
teins. Accounting for the same seven PCs described above and
the number of proteins, the MR effect estimates with the CMR
traits were evaluated using an α of 7.81 × 10−6. The phenome-
wide scan drug target analysis of CMR prioritized plasma proteins
was evaluated using a multiplicity-corrected α of 1.24 × 10−5. Under
the null hypothesis, the P values of a group of tests follow a uniform
distribution between zero and one (57). Hence, to additionally
explore the potential impact of multiple testing, we performed
CMR trait–specific “overall” null hypothesis tests comparing the
empirical P value distribution (using Kolmogorov-Smirnov tests)
with the uniform distribution expected under the null hypothe-
sis (57).
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Unless otherwise specified, any remaining hypothesis tests were
evaluated using an α of 0.05, and all point estimates (OR or mean
differences) refer to a unit change of the independent variable, typ-
ically one SD in plasma protein level (MR results) or an increase in
risk allele (GWAS results). To better illustrate concordance, and
only where specified, MR results were orientated toward the
cardiac beneficial effect direction by multiplying EDV, ESV,
EDM, and MVR MR estimates by −1.
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