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SUMMARY

We perceive the world based on visual information acquired via oculomotor control1, an activity 

intertwined with ongoing cognitive processes2–4. Cognitive influences have been primarily studied 

in the context of macroscopic movements, like saccades and smooth pursuits. However, our eyes 

are never still, even during periods of fixation. One of the fixational eye movements, ocular drifts, 

shifts the stimulus over hundreds of receptors on the retina, a motion that has been argued to 

enhance the processing of spatial detail by translating spatial into temporal information5. Despite 

their apparent randomness, ocular drifts are under neural control6–8. However little is known about 

the control of drift beyond the brainstem circuitry of the vestibulo-ocular reflex9,10. Here, we 

investigated the cognitive control of ocular drifts with a letter discrimination task. The experiment 

was designed to reveal open-loop effects, i.e., cognitive oculomotor control driven by specific 

prior knowledge of the task, independent of incoming sensory information. Open-loop influences 

were isolated by randomly presenting pure noise fields (no letters) while subjects engaged in 

discriminating different letter pairs. Our results show open-loop control of drift direction in human 

observers.
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RESULTS

To test the role of task knowledge in fixational eye movement (FEM) generation, we 

examined how ocular drifts differed in a discrimination task in which the objects to 

differentiate were known to the subjects in advance. In separate blocks of trials, subjects 

were asked to report whether a letter was an E vs. an F (EF trials) or an H vs. an N (HN 

trials). Letters were presented at the center of gaze (1.5 deg in size), superimposed on a 

1/f noise mask. These letter pairs were chosen so that different features of the letter were 

relevant to the discrimination. Importantly, 20% of the trials in each block contained no 

target letter but only the 1/f noise (”letter-absent trials”), allowing us to assay whether task 

knowledge could operate in the absence of a visual cue (Figure S1A–C) and thus determine 

whether, as we hypothesize, open-loop control is present.

Task knowledge influences ocular drift orientation

We hypothesize that the statistics of drift will depend on the details of the visual task, 

namely, the letter pair to be discriminated. The broad basis for this hypothesis is that drifts 

move the stimulus on the retina, and neurons in the primary visual cortex tend to respond 

optimally when contours move orthogonal to their preferred orientation. For the specific 

task studied here, this leads us to theorize that the ratio of vertical drifts to oblique drifts 

(lower-left to upper-right) will be greater for the E vs. F discrimination than for the H vs. N 

discrimination.

This idea is explained in Figure 1A. Each of the letter-pair discriminations depends on a 

single bar: for H vs. N, whether the central stroke is horizontal or oblique; for E vs. F, 

whether a horizontal stroke is present at the bottom of the letter. A simple cell will respond 

most strongly when its receptive field orientation aligns with one of these elements and 

moves orthogonally across it. Thus, vertical and oblique motions will support H vs. N 

discrimination equally well (top of Figure 1A): the vertical motion will allow for optimal 

detection of the horizontal stroke of the H, while the oblique (lower-left to upper-right) 

motion will allow for optimal detection of the oblique stroke of the N.

In contrast, in the E vs. F discrimination, the only critical element is horizontal, and 

horizontally-oriented neurons will respond more strongly when moving along the vertical 

orientation. In this case, vertical drifts should elicit stronger cortical responses, facilitating 

discrimination, as illustrated in Figure 1A. We, therefore, would expect cognitive control to 

alter the distribution of drift orientations, favoring vertical over oblique motion when the 

subject engages in E vs. F discrimination.

Interestingly, a standard model of retinal ganglion cells (RGCs) leads to the same prediction. 

The reason is that motions that cross a bar orthogonally yields a shorter transit time than 

motions that cross a bar obliquely. This difference, coupled with the temporal properties of 

RGCs, generates a larger predicted response for motions orthogonal to the critical stimulus 

features than for oblique motions (see Figure S1D).

To test this prediction, we compared the amount of drift motion on the two axes relevant 

for this task, vertical and oblique. We computed the ratio of mean-squared drift velocities 
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between the two axes, R = Vvertical/Voblique, and then compared REF to RHN. Figure 1B 

shows the average REF and RHN across all subjects (in black) and for each individual. 

Supporting our hypothesis, on average across all trials types (i.e. with stimulus either present 

or absent), REF was indeed larger than RHN (p < 0.05, one-tailed paired t-test), suggesting 

cognitive control of ocular drift.

Previous work has suggested that ocular drift can be influenced by the nature of the visual 

target6,11. These influences may include components due solely to task knowledge (open-

loop), and components that require a sensory response to the stimulus (closed-loop). By 

analyzing trials in which no stimulus was present – but in which the subject blueplanned an 

H vs. N or an E vs. F discrimination, we isolated components that are necessarily open-loop.

Figure 1C shows the results from this analysis. The variance ratio is estimated from 

just the letter-present (left) or just the letter-absent (right) trials. Both conditions show a 

trend towards more vertical drifts in the EF condition, but the difference is significantly 

more prominent in the letter-absent condition (p=0.0014 for letter-absent, p=0.06 for letter-

present, p=0.018 for comparison between conditions, one-tailed paired t-test in all cases 

because our hypothesis specifies the direction of the change). Thus, we confirm that task 

knowledge influences ocular drift orientation, and that this influence is primarily via open-

loop control.

Individual differences in drift modulation

Figure 1 shows that, on average, observers change their drift behavior according to 

the specific discrimination they engage in. Since drift characteristics are also known to 

vary considerably across individuals, the question emerges of how each subject tuned 

their idiosyncratic pattern of eye movements to the task. We therefore turned to a more 

comprehensive measure of drift statistics than the ratio of two directional velocities. In 

keeping with previous observations12, drift velocity distributions were well approximated by 

two-dimensional Gaussians (Figure S2A). We, therefore, summarized these distributions by 

their covariances, visualized as covariance ellipses (Figure 2A). This displays the dominant 

drift orientation as the major axis of the covariance ellipse (indicated by the arrow’s 

orientation) and the degree of anisotropy as its deviation from circularity (indicated by 

the arrow’s length).

This analysis showed that three observers (S1, S2, S3) exhibited a dominant orientation 

that was more nearly vertical in the EF trials, either in direction, magnitude, or both. 

S6 exhibited a similar trend in the letter-absent trials, although this change did not reach 

statistical significance. S4 showed very little change across trial types, whereas S5 exhibited 

a different behavior, namely a dominant oblique orientation in the HN trials and a horizontal 

orientation in the EF trials. We will show below that these seemingly disparate behaviors can 

all be explained by a common visuomotor strategy shared across subjects (see Figure 4).

To measure the overall influence of task on drift statistics in individual observers, we 

measured the dis-similarity between covariance matrices in the two conditions. This measure 

(standard for comparing 2 × 2 symmetric matrices, see Methods) considers differences 

in size, shape, and orientation, and weighs orientation more strongly with increasing 
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eccentricity. Figure 2B shows the probability that this dis-similarity between HN and EF 

trials would have arisen by chance, given the observed trial-to-trial variability of ocular drift. 

Statistically significant differences (p < 0.05) were present in 5 out of the 6 subjects in 

the letter-present trials. Strikingly, statistically significant differences also occurred in the 

letter-absent trials (Figure 2) in 4 subjects. Thus, our results indicate that most subjects 

change their drifts based on prior knowledge of the discrimination to be made, and in most 

subjects, this difference is present in the letter-absent trials (open-loop) as well.

Conversely, by comparing drifts during the periods in the H trials and the N trials when 

the letter is present, or by making the parallel comparison in the EF blocks, we isolated 

components that are necessarily closed-loop. No subject showed a difference between FEM 

statistics in these comparisons.

We also found that there was no difference in drift trajectory curvature for HN vs. EF trials 

(Figure S2B) (two-tailed Wilcoxon signed rank test, p > 0.05 within each subject; two-tailed 

paired t-test across subjects, p > 0.05). Given our hypothesis, this was not surprising: while 

curvature increases in a high-acuity task6, it does not measure drift direction.

Drift velocity distribution changes are independent of microsaccades and block-to-block 
difference

Microsaccades can be influenced by cognitive factors6,13,14, and indeed, we found that 

microsaccade landing points differed in HN vs. EF trials (see SI & Figure S3). However, 

this was not the basis of the differences in drift statistics: repeating our analysis, restricted to 

drifts that were at least 100 ms away from any other type of eye movement (Figure S4A–D), 

as well as excluding trials with any microsaccade, showed the same shift in drift statistics 

between HN and EF trials reported in Figure 2, for both letter-present and letter-absent trials. 

Thus, the cognitive influence on drift statistics is distinct from any cognitive influence on 

microsaccades.

Our findings were also not due to block-to-block differences in eye movements independent 

of the letter pair to be discriminated. To show this, we compared the difference between 

HN and EF consensus ellipses with that of surrogate data sets in which entire blocks were 

relabeled in a balanced randomized fashion. Statistical significance (p < 0.05) was present in 

4 subjects in one or both of the two trial types (letter-present, letter-absent) (Figure S4E & 

F).

Decoding single-trial trajectories

The above results identify specific task-driven influences on ocular drifts during letter 

discrimination. Given that these influences occurred in most subjects, we wondered whether 

the resulting difference in velocity distributions suffices to identify the task (HN vs. EF) 

from a single trial eye trajectory. To focus on the shape difference of covariance ellipses, 

we normalized their size and computed their dis-similarities (Figure 3A & B). Subtle 

but significant shape differences of the normalized covariances were seen in HN vs. EF 

conditions for letter-present (4 subjects) and letter-absent (2 subjects) trials.
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We built a decoder that compared the velocity covariance measured in an individual trial to 

the normalized covariances estimated across all HN or EF trials (omitting the decoded trial). 

As described above, covariances were estimated from 300 ms of drifts during each trial and 

normalized. The decoder then assigned the held-out trial to the EF or HN block according 

to whether its covariance ellipse was more similar to the subject’s HN average, vs. the EF 

average. Figure 3C shows that this ”similarity decoder” identified the task (HN vs EF) from 

the drift trajectory at above chance levels whenever a subject showed a difference in drift 

covariances between HN and EF blocks, both in the letter-present trials or the letter-absent 

trials (Figure 3B). Very similar results were obtained by decoding the trials by maximum 

likelihood, i.e., by comparing the likelihood of a given trial’s trajectory, given the consensus 

ellipse for each trial type. Thus, in the subjects that exhibit cognitive drift modulations, it 

is possible to predict with better-than-chance accuracy the task that the subject prepares to 

tackle just by looking at the drift covariances.

A shared transformation across subjects

The task-dependent changes in drift statistics seen in Figure 2 vary across subjects, 

both in quality and magnitude. We hypothesized that there might be a single underlying 

transformation that accounts for all subjects’ changes in drift velocity distributions: for the 

vertical dominance in EF trials in some subjects, and the oblique dominance in HN trials in 

others, and for the changes in anisotropy of the velocity signals (Figure 3A & B). That is, 

we sought a single coordinate transformation, which, when applied with a subject-specific 

strength, would account for the change from HN to EF normalized covariance ellipses in 

all subjects. Formally, this corresponds (see Methods) to seeking a common coordinate 

transformation L and subject-specific strengths sk, so that the coordinate transformations 

eskL account for the transformations between the HN and EF ellipses. This transformation 

L could produce a combination of rotation and stretching. The search for L was done by 

minimizing the dis-similarity between covariance ellipses after applying this transformation.

Figure 4A shows the inferred shared transformation of the velocity distribution by 

progresssively applying graded amounts of this transformation, using the HN ellipses 

of subjects S1 and S5 as a starting point. This shows that the shared transformation 

encompasses two behaviors: (1) If the covariances for the HN condition are close to 

isotropic (as for S1, top row of panel A), the full transformation leads to a covariance 

ellipse which has a dominant vertical orientation for the EF condition. (2) If the covariances 

are strongly anisotropic in the oblique orientation (as for S5, bottom row of panel A), the 

ellipse does not attain a vertical orientation and passes through a transitional stage with a 

nearly horizontal dominant orientation — accounting for this subject’s data in Figure 2A. 

Interestingly, irrespective of covariance patterns, application of this common transformation 

always increases the ratio of horizontal/oblique motion (Figure 4B). This holds even when 

graded amounts of the transformation yields an ellipse with a dominant horizontal direction, 

as in the transitional stages in the bottom row of Figure 4A.

Moreover, application of the shared transformation in varying degrees (Figure 4C) also 

accounts for the range of findings in all subjects who exhibited significantly different drift 
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behaviors between in HN and EF blocks, including S5, in which the dominant direction in 

the EF condition is horizontal.

To understand whether top-down cognitive influences on eye drifts results in similar 

changes, we applied the same transformations to the corresponding letter-absent trials. 

Figure 4D shows the dis-similarity changes after applying the transformation, and Figure 4E 

shows the transformation strength applied. Interestingly, this shared transformation (along 

with the same subject-dependent strengths sk) effectively decreased the dis-similarity in 

most subjects, as shown in Figure 4D. This implies that the task-dependent change is at least 

partially independent of visual stimulation. Thus, despite the large individual variability, 

there is a common open-loop strategy for controlling drift velocity distributions according to 

the letter pair to be discriminated.

DISCUSSION

FEMs are an essential part of the machinery that actively collects and process visual 

information during fixation. It is known that FEMs are modulated by the general 

characteristics of a visual task — for example, they slow in high-acuity tasks, and this 

maps higher spatial frequencies into the retina’s temporal sensitivity range6. Here we 

found a qualitatively different level of control: ocular drifts are influenced by the detailed 

characteristics of visual stimuli, and this influence can occur in an open-loop fashion based 

on specific task knowledge. When discriminating between two known-in-advance letters, 

subjects alter their drifts to emphasize orientations orthogonal to the distinguishing features 

of the letter pairs. Importantly, these effects were observed in most subjects even when 

no target was present, indicating the influence of task knowledge independent of visual 

information. In addition, this open-loop influence was comparable or even larger than the 

closed-loop effect (see Figure 2B & Figure 3B). Based on the modulation in individual 

trials, we showed that it is possible to identify the ongoing task, i.e., the letter pair being 

discriminated. Finally, we found that the drift velocity differences between the two kinds of 

letter-pair trials (HN, EF) could be accounted for by a shared transformation of drift velocity 

distributions, indicating a common strategy across subjects despite well-known idiosyncratic 

differences in drift characteristics.

The level of FEM cognitive control we discovered is highly specific and indicative of its 

possible purpose: increasing the luminance transients driven by the stimulus features that are 

task-relevant. Independently, the top-down control of microsaccades helps spatial selection 

within the foveal field, selecting the portion of the stimulus that is most relevant for the 

task. Together, both benefit visual perception by using cognitive strategies, knowledge, and 

experience to better acquire visual information.

It is worth noting that our findings indicate a commonality of drift control across subjects, 

despite the intersubject variability in FEMs during letter discrimination. Specifically, 

speed of drifts and speed change vary across subjects, and some subjects frequently 

make microsaccades, whereas others do so only rarely. These differences may in part 

reflect variation in subjects’ eye structure. For example, different densities of the cone 

mosaic15 could favor different magnitudes of drifts. Although it remains unclear what 
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exactly determines the characteristics of each drift period, our data show a within-subject 

dependence of drift statistics based on the specific task and that the individual differences 

can be understood in terms of a shared transformation of the coordinates in which drifts are 

controlled.

Our findings concerning the influence of cognitive factors on FEMs need to be integrated 

into current understanding of neural mechanisms of eye movement control. Since amplitudes 

of microsaccades and saccades form a continuum12,14,16,17, the obvious hypothesis is that 

cognitive influences over microsaccades and saccades travel along the same pathways. 

Several studies have probed the neural basis of how saccade and microsaccade generation 

depend on visual cues18–20, but little is known about how microsaccade generation and drift 

generation interact. Additionally, since alterations of fixational eye movements are present in 

a range of ophthalmological21 and neurological disorders22,23, characterization of FEMs and 

their control has the potential to be a clinical diagnostic tool.

Lastly, our findings raise the question of which brain structures are involved in open-

loop control of drifts. Drift control is likely to involve the same cortical18,19,24,25 and 

cerebellar10,26 regions that are involved in control of fixation. But one cannot rule out direct 

cognitive control of brainstem circuitry. Critically, to account for our findings, the control 

pathway must provide task-specific directional information.

STAR METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contacts, Yen-Chu Lin (yel2005@alumni.weill.cornell.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Anonymized data created for the study are available in a 

persistent repository upon publication (Data Type: human eye movement tracing; Repository 

Name: Zenodo; DOI: https://doi.org/10.5281/zenodo.7647536). Any additional information 

required to reanalyze the data reported in this paper is available from the lead contact upon 

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects—6 healthy subjects participated in the study (4 females and 2 males; average 

age: 27; age range: 22–31). Subjects were naive about the purpose of the study, were 

compensated for their participation, and provided informed consent. To qualify, subjects had 

to possess at least 20/20 acuity in the right eye (after correction if needed), as assessed by 

correct identification of at least 75% of the optotypes in the 20/20 line of a standard Snellen 

test. All procedures were approved by the Research Subjects Review Board at the University 

of Rochester and the Institutional Review Board of Weill Cornell Medical College.
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METHOD DETAILS

Apparatus—Stimuli were displayed on an LCD monitor (Acer Predator XB272) at a 

refresh rate of 240 Hz and spatial resolution of 1920×1080 pixels and a background mean 

luminance of 18 cd/m2. Subjects performed the task monocularly with their right eye; the 

left eye was patched. A dental-imprint bite bar and a headrest were used to minimize 

head movements. The movements of the right eye were measured by means of a custom 

digital Dual-Purkinje Image (dDPI) eye-tracker27, a system with subarcminute resolution 

and internal noise of 0.07 arcsec28,29. The eye position signals were sampled at 340 Hz.

Task & stimuli—Healthy human subjects performed two-alternative letter discrimination 

tasks, with stimuli presented on an LCD monitor in a dark room. Blocks of trials (each 

consisting of 50–100) were of two types, one in which they discriminated H vs. N and one in 

which they discriminated E vs. F. We refer to these as HN and EF trials, respectively. Blocks 

were presented in interleaved order and subjects were informed of the letter pair to be 

discriminated at the start of each block. In all blocks, each letter was presented in 40% of the 

trials, and 20% of trials contained only noise. Letters were in Helvetica font and subtended 

approximately 1.5°. They were presented in positive contrast and superimposed on a 2° 

square patch of 1/f noise (f from 1 to 16 cycles per degree), with a root-mean-squared 

contrast of 0.195 (see Figure S1C for examples).

To keep task diffculty comparable across subjects and over time, we manipulated the 

contrast of the letter so that performance was 75% in preliminary trials on each day. The 

same contrast was used for the HN and EF trials.

Subjects initiated the trial with a button-press, which triggered the appearance of fixation 

point, a small white square. Once the subject maintained fixation of the center within 0.5 

deg for 600 ms, the trial began with the presentation of stimulus at the center of the display. 

Contrast (letter and noise) was ramped up linearly for 1 sec, held at a plateau for 500 ms, 

and then off (see Figure S1B). Subjects had to respond within 5 seconds after the stimulus 

reached plateau by a button-press.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis—Data analysis began with a pre-processing stage in which trials were 

parsed into periods of microsaccades and drifts, along with rejection of trials with 

poor tracking, artifacts, blinks, or large saccades. Following this, we carried out several 

quantitative analyses of drifts and microsaccades and their relationship to the task, visual 

stimuli, and performance.

The preprocessing stage uses standard techniques reported in previous publications6,13, and 

is summarized here. The raw position signal on each channel (horizontal and vertical) was 

first filtered and differentiated by means of a Savitzky-Golay filter with cutoff frequency 

at approximately 30 Hz, and an effective smoothing window of 20 ms. The eye trajectory 

was then parsed into periods of large saccades, microsaccades, and fixational drifts. As in 

previous publications using the DPI eye-tracking method, movements with maximum speed 

higher than 3°/sec and amplitude larger than 0.5°were classified as saccades. The amplitude 
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was defined as the distance between the locations at which eye velocity became greater 

(onset) and lesser (offset) than 2°per sec. Microsaccades were defined as saccades with 

amplitudes smaller than 30 arcmin. The segments between saccades or microsaccades were 

labeled as periods of fixational drifts. Trials with large saccades and with eye movements 

that moved fixation beyond the bounds of the stimulus were discarded. See Table S1 for the 

summary of the numbers of trials given conditions in all six subjects.

To select trials for FEM analysis, we excluded trials containing blinks or artifacts from 

head movements or the eye tracker. All occurrences of microsaccades during the entire 

stimulus presentation (including the contrast ramp) were analyzed. For analysis of drift, we 

further excluded trials with drift velocities over 5 deg/s, so that the analysis would not be 

contaminated by small undetected microsaccades. For each valid trial, we then extracted 

the first available 300 ms period that did not include times within 50 ms of a saccade 

or microsaccade, beginning with the time at which stimulus contrast was maximal. The 

exclusion of times near saccades or microsaccades was to control for possible artifacts in 

the estimation of the instantaneous in velocity of ocular drift resulting from these rapid 

movements. All such 300 ms periods of drifts from valid trials were then pooled together for 

further drift analysis.

Ocular drift analysis.—To compare two drift velocity distributions, we first estimated 

drift velocity covariance ellipses from all trials, and then quantified the dis-similarity 

between conditions as described below. The best-estimate ellipses illustrated (e.g., in 

Figure2A & Figure 3A) were 95% probability contours.

Statistical significance of the difference in covariances was determined by comparing 

the observed difference in covariances to an empirical null distribution. The empirical 

null distribution was created from 1000 surrogate datasets, each generated by randomly 

relabeling trials as HN or EF, regardless of the actual stimulus. We then computed the dis-

similarity between the covariance ellipses derived these surrogate datasets, and determined 

the fraction of the surrogate dis-similarity values that exceeded the dis-similarity value 

computed from the actual data.

To include the effects of block-to-block variations in eye movements (Figure S4E & F), 

surrogate datasets were computed by balanced block relabeling of half of the blocks (6–11 

blocks in each condition, 1000 draws).

Comparison of shapes of 2-D distributions.—To quantify the difference in the 

shape of two-dimensional distributions between conditions, e.g., between drift velocity 

distributions in HN and EF trials (Figures2B & 3B), we proceeded as follows. We first 

parameterized the shape of each distribution by fitting it with a two-dimensional Gaussian. 

Since the shape of a two-dimensional Gaussian is determined by its covariance matrix, we 

quantified the difference in shape by a standard distance on the set of two-dimensional 

symmetric positive definite real matrices30. For covariance matrices C1 and C2, this distance 

is defined by

Lin et al. Page 9

Curr Biol. Author manuscript; available in PMC 2023 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



d0 C1, C2 = log2 λ1 + log2 λ2 (1)

where λi are the two eigenvalues of C1
−1C2. Note that the distance is zero only if the λi are 

both 1, i.e., if C1 = C2.

The distance is appropriate for comparing shape since it takes into the account size 

differences, eccentricity differences, and orientation differences, and considers orientation 

more strongly when the shape becomes more eccentric. In addition, the distance remains 

unchanged if both covariance matrices are multiplied by the same scale factor or rotated by 

the same amount.

To compare 2-D distributions after normalization by size (Figure3B), the covariance 

matrices of the two distributions were each divided by the square root of their determinants 

(i.e., the areas of the corresponding ellipses) before computing the above distance.

Curvature (k) of drift trajectories on individual trials was determined from the first and 

second derivatives of the eye position (x, y) at each time, using code kindly provided by J. 

Intoy and used in Intoy et al.6.

k = x′y′′ − y′x′′
x′2 + y′2 3/2 (2)

Microsaccade analysis.—To study the properties of microsaccades, we compared the 

scatter of landing position distributions between HN and EF trials. All the microsaccades 

made during stimulus display were analyzed. To characterize landing position distributions 

(FigureS3), we found the minimumarea ellipse covering 95% of the landing points31,32. To 

compare landing point locations, we computed the Euclidean distance between the centers of 

these ellipses. Statistical significance of these measures was determined by comparison to an 

empirical null distribution computed by trial shuffing (100 draws).

Decoding—We tested two decoding strategies to identify single-trial trajectories based on 

the task-driven influences, a similarity decoder and a maximum likelihood decoder. For 

both decoders, the HN and EF consensus covariance ellipses were estimated by pooled drift 

segments but omitting the trials to be decoded.

For the similarity decoder, the single-trial covariance was estimated based on 300 ms of drift 

segment. The decoder then assigned the trials based on the least distance (eq.1) between the 

normalized single-trial covariance and the normalized consensus HN or EF covariances.

The maximum likelihood decoder identified single-trial trajectories based on the estimated 

log-likelihood of the single-trial drift velocities ( v ) emerging from the distribution of either 

the HN or EF velocity distribution. This in turn was determined by considering each of the 

measured velocities in the trial to be decoded as independent draws from a Gaussian with 
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the consensus covariance matrix (CHN or CEF ). For example, the probability that a velocity 

v j is drawn from the HN distribution is given by

PHN v j = 1
2π det CHN

e
− v j

TCHN
−1 v j

2 , (3)

so the log likelihood for a velocity sequence v = v 1, …, v N  is given by

1
N log p v ∣ CHN = − log (2π) − 1

2log det CHN − 1
2N ∑

j
v j

TCHN
−1 v j . (4)

Identifying a shared coordinate transformation underlying changes in 
covariance ellipses—As described above, the strategy for comparing the drift velocity 

distributions in HN vs. EF conditions is to compare their normalized covariances CHN and 

CEF, which was done by computing CHN
−1 CEF and then determining the distance between this 

matrix and the identity matrix. To test the possibility that the different covariance changes 

observed in each subject resulted from the same basic coordinate transformation, but with 

each subject applying it in different amounts, we proceeded as follows. First, we note that a 

coordinate transformation Z, where Z is a potential combination of rotation, stretching, and 

scaling, results in a transformation of the covariance CHN to ZT CHNZ. To formalize the idea 

of varying amounts of the same coordinate transformation, we define the infinitesimal of the 

transformation Z as a transformation L for which Z = eL. In this way, the set of coordinate 

transformations esL can be viewed as the transformations that result from applying Z with 

variable strength: the original Z = esL for s = 1, and Z2 = esL for s = 2, the result of applying 

the transformation Z twice. More generally, esL is the result of applying the transformation Z 
s times, and esL is meaningful even when s is not an integer.

With this in mind, we sought a coordinate transformation L common to all subjects, along 

with values of the strengths sk specific to each subject k, that minimized the total of 

the squares of the distance between the subject’s observed covariances CHN,k and the 

subject’s observed covariances CEF,k, after transformation of CHN,k by eskL. To treat the 

two conditions equally, we implemented this by applying half of the transformation to 

the HN ellipse e
sk
2 L

T
CHN, k e

sk
2 L  and half of the inverse transformation to the EF ellipse 

e
−sk
2 L

T
CEF, k e

−sk
2 L , and then carried out a nonlinear optimization that minimized the sum 

of squares of the distances defined in eq.1 between them (the “residual dis-similarity”). The 

results of this calculation are shown in Figure 4C & D. Since the overall size of s and L trade 

off, we added the requirement that tr(LT L) = 1.

A challenge in evaluating the statistical evidence for a shared transformation is the lack 

of an a priori model for the repertoire of drift patterns that a subject can make. We 

therefore resorted to an exceedingly conservative hypothesis: that each subject’s repertoire 

of covariances for each condition is limited to the anisotropy we observed, and that the 
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ability of a subject to shift their covariance was limited to the observed changes between 

tasks. Based on this hypothesis, we generated surrogate data in which covariance patterns 

were randomly associated with each task. We then used these surrogate datasets to assess 

the likelihood that a shared transformation would reduce the dis-similarity by the amount 

we observed in the actual data (Figure 4D). Specifically, surrogate datasets were generated 

by random application of three manipulations within each subject: swapping the covariance 

ellipses between the two conditions, rotation of the two ellipses by the same amount, and 

mirroring the ellipses across the y-axis. For each surrogate dataset, we determined the 

shared transformation and then computed the reduction in dissimilarity that it accounted for. 

Remarkably, even with this exceedingly conservative approach, the observed consistency 

across subjects (i.e., the reduction in dis-similarity due to the shared transformation 

determined from the actual data) was found in only 14% of the surrogate data – strongly 

suggesting the presence of a shared transformation, given the overly stringent nature of the 

test.

A standard model of RGCs—In Figure S1D, we simulate the neuronal activity elicited 

in the early visual pathway by the retinal stimuli using previous published spatiotemporal 

receptive field models of RGCs33–37. These models specify both spatial and temporal 

filtering properties at the LGN level that transform the retinal input into a firing rate. The 

receptive field model (K) contains the center and surround, each with its own separable 

spatial and temporal components36.

K(x, y, τ) = F c(x, y)Gc(τ) − Fs(x, y)Gs(τ) (5)

The center and surround spatial profiles Fc or Fs are described by a 2-D circular Gaussian 

distribution:

F(x, y) = Ce
− x2 + y2

2πσ2
(6)

The parameters (C & σ) were taken from experimental recordings in macaque monkeys and 

typically differ for center and surround35. Following the work of Victor in 198737 , we use 

a series of low-pass and high-pass stages with transfer function to describe the temporal 

filtering properties.

G(ω) = Ae−iωD 1 − Hs

1 + iωτs

1
1 + iωτL

NL
(7)

The parameters (A, D, Hs, τs, τL, NL) were taken from experimental recordings in macaque 

monkeys and typically differ for center and surround33,34.See Lin (2022) for more details of 

the model38.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic simple cell responses as a function of drift direction and human drift 
statistics.
(A) Time course of the response of a model V1 simple cell during drifts. Eye motion was 

simulated as vertical (bottom to the top) or oblique (lower left to upper right). Schematics 

of the firing profiles are illustrated. Note that the two directions of drift yield signals that 

discriminate equally well between H and N (left). But to discriminate between E and F, 

vertical drift yields a stronger signal than oblique drift (right). (B) Comparison of measured 

vertical and oblique drift velocities. The ordinate is the ratio of the mean-squared velocity 

in the vertical direction to the mean-squared velocity orthogonal to the oblique stroke of the 

N estimated across all trials. p=0.03. (C) Same analysis as B, but separating the trials with 

letter-present and letter-absent. p=0.06 for letter-present, p=0.0014 for letter-absent, p=0.018 

for comparison between letter-present and letter-absent conditions. One-tailed paired t-tests 

in (B) and (C). See also Figure S1.
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Figure 2: Individual drift velocity pattern depends on stimulus set.
(A)Drift velocity covariance ellipses from HN trials(blue) and EF trials (red). Top: letter-

present trials. bottom: letter-absent trials. Covariance ellipses cover 95% of the probability 

distribution of drift velocities; the arrow’s orientation is the major axis of the ellipse and 

its length is the anisotropy, measured as the square of the eccentricity. (B) Dis-similarity 

between HN and EF covariance ellipses in each subject. Green: letter-present trials. Orange: 

letter-absent trials (Error bars: 1 standard deviation. * p<0.05, ** p<0.01). See also Figure 

S2, S3, and S4.
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Figure 3: Decoding single trials via their drifts.
(A & B) Analysis of Figure 2 applied to covariance ellipses after normalizing to the 

same total area. In Panel A, the direction of the arrows indicate the dominant orientation 

of drift velocities, and their lengths indicate the degree of anisotropy. (C) Drifts from 

300-ms periods of individual trials were decoded into task (HN vs. EF blocks) based on the 

similarity of the single trial covariance to the covariance estimated form all trials of each 

condition. The panel shows the performance of the similarity decoder across subjects; * 

indicates fraction correct higher than chance (p < 0.05) by binomial statistics.
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Figure 4: A common control strategy despite individual differences in drift characteristics.
(A) Visualization of the shared transformation by applying graded amounts of the 

transformation to the HN ellipses from subject 1 (top row) and subject 5 (bottom row). 

Arrows indicate the dominant direction of the drift velocities, and their lengths indicate the 

degree of anisotropy. (B) The ratio of the mean-squared velocity in the vertical direction 

to the mean-squared velocity orthogonal to the oblique stroke of the N in each graded 

transformation in panel A. (C) HN (blue) and EF (red) covariance ellipses for each subject 

before and after applying varying amounts of the shared transformation. See Methods for 

details. (D) Dis-similarities of HN and EF covariance ellipses before and after applying the 
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shared transformation. Left: target present trials. Right: target absent trials. (E) The amount 

of transformation applied in each subject.
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