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Although an estimated 80% of rare diseases have a genetic
origin [1], and rare disease accounts for 15.9% of hospital
admissions [2], a molecular diagnosis remains elusive in >50%
of individuals with a suspected genetic disorder [3]. Typically,
the first-line genomic investigation for rare disease remains
exome sequencing, due to its' relative cost-efficiency and
established practices for data analysis and interpretation of
coding variants. However, a proportion of elusive diagnoses
have molecular aetiologies that are not tractable by exome
sequencing [4], raising questions about how and when other
technologies such as short- and long-read genome sequencing,
transcriptome and proteomic analyses should be integrated
into diagnostic pathways.

We reflect on this in the context of being involved in the care
of two siblings with Schimke immuno-osseous dysplasia (SIOD),
for whom molecular diagnosis still took 3 years despite early
access to ultra-rapid exome sequencing (Fig. 1). The proband, a
3-year-old female, presented with poorly responsive steroid-
resistant nephrotic syndrome and focal segmental glomerulo-
sclerosis, rapidly progressing to end-stage renal disease. She
was enrolled in the Australian Genomics Acute Care Genomics
study and underwent ultra-rapid trio exome sequencing [5],
which identified a single likely pathogenic variant in SMARCALT,
which is associated with autosomal recessive SIOD with a time
to report of 3.8 days (Fig. 2). No second copy number variant
was identified on high-resolution chromosomal microarray. She
progressed to develop immunodeficiency and bone marrow
failure, increasing the clinical suspicion of SIOD. Meanwhile, her
younger sibling/brother presented at age 3 with short stature,
microcephaly (<1st centile) and mild proteinuria, without
immunodeficiency.

Genome sequencing was accessed through the research
study and was performed in the parents and both affected
siblings. Manual inspection of the WGS data identified a
paternally inherited chromosome 2 rearrangement including a
suspected inversion in the region of SMARCALI. This was
orthogonally confirmed by PCR analysis at the putative break-
points, finally establishing a firm molecular diagnosis of SIOD in
both siblings after 3 years (Fig. 3). The diagnosis came too late
for the older sibling, who sadly died at age 6 years due to
complications of SIOD. The younger sibling underwent pre-
symptomatic bone marrow transplant with a good outcome.

Importantly, unlocking the molecular diagnosis allowed the
parents to undergo pre-implantation genetic testing for both
SMARCALT1 variants to achieve an unaffected pregnancy.

Deciding between first-line exome sequencing or genome
sequencing remains a hot topic for discussion. Cases like this
highlight the potential utility of first-line genome sequencing,
with the ability to detect multiple variant types in a single test,
resulting in significant reductions in time to diagnosis and
affording potential healthcare cost savings together with the
opportunity to intervene early and improve clinical outcomes [6].
When exome sequencing has already been performed and no
diagnosis has been achieved, there is lack of guidance regarding
if, and when genome sequencing should be considered as a
second-tier test, and attendant lack of funded pathways. We
highlight the group of patients with suspected autosomal
recessive disorders, where one pathogenic variant has already
been identified, as particularly likely to benefit from second-tier
genome sequencing. ABCA4-associated Stargardt disease, a
relatively common inherited retinal disease, provides a clear
model for identification of missing heritability in autosomal
recessive disorders. In a cohort of 67 individuals with clinically
diagnosed Stargardt disease, with either one (n=64) or no
(n=3) variants identified, Bauwens et al used the systematic
application of testing technologies and bioinformatics analyses
to identify a diagnosis in 83%. The missing heritability was
accounted for by a range of variant types such as novel (deep-)
intronic splice, cis-regulatory, structural, and recurrent hypo-
morphic variants. An integrated approach combining genomics
with downstream tailored functional studies allows not only
molecular diagnosis but also the opportunity for personalised
therapies in the future.

These studies illustrate some of the other practical con-
siderations that need to be addressed in the quest to improve
diagnostic outcomes in routine practice. Copy number variants,
structural variants, and short tandem repeats require specia-
lised bioinformatic analyses for detection, and these may or
may not be part of clinically accredited analysis pipelines [7].
Even when detected, these variant types are more likely to
require custom-designed orthogonal validation. Clinical inter-
pretation remains challenging due to the lack of guidance for
determining whether these variants are pathogenic. As an
example, population databases such as gnomAD and DGV
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Fig. 2 Family pedigree and biallelic variants in SMARCAL1. Het — heterozygous.

currently have limited data for structural rearrangements.
Variant classification guidelines including ACMG/AMP and
classification of constitutional copy number variants [8, 9]
may not be applicable in these variant types. This may result in
classification as a variant of uncertain significance, requiring
ancillary studies (including RNA studies) to establish down-
stream effects and pathogenicity [10]. Establishing pathways to
effectively detect, validate and interpret a range of variant
types in the routine diagnostic setting will be required to
achieve diagnoses in a timely and cost-effective manner.

The added clinical utility of confirming a molecular diagnosis
can be significant. In this case, the diagnostic trajectory took 3
years and 4 months from first presentation to a confirmed
molecular diagnosis (Fig. 1). Employing a genome sequencing first
approach may have altered the clinical trajectory of the proband,
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facilitating early bone marrow and renal transplantation, which
may have resulted in a different clinical outcome.

Future advances in diagnostic genomics have the potential to
further transform the ability to achieve a molecular diagnosis. The
continuing evolution of long-read sequencing technologies such
as PacBio and Oxford Nanopore, together with future implemen-
tation of the Telomere-to-Telomere (T2T) genome, have the
potential to unlock vast swathes of the genome that have been
hitherto uninterpretable, including complex rearrangements,
repeat segments, and pericentromeric regions. In the future,
bridging technical and translational gaps will undoubtedly have a
major impact on the timeliness of rare disease diagnostics.
Together with the increasing availability of targeted therapeutics,
this brings us closer to realising the potential of the genomic
revolution.
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