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Both a leaky gut (a barrier defect of the intestinal surface) and gut dysbiosis (a change in the
intestinal microbial population) are intrinsic to sepsis. While sepsis itself can cause dysbio-
sis, dysbiosis can worsen sepsis. The leaky gut syndrome refers to a status with which there
is an increased intestinal permeability allowing the translocation of microbial molecules from
the gut into the blood circulation. It is not just a symptom of gastrointestinal involvement,
but also an underlying cause that develops independently, and its presence could be rec-
ognized by the detection, in blood, of lipopolysaccharides and (1→3)-β-D-glucan (major
components of gut microbiota). Gut-dysbiosis is the consequence of a reduction in some
bacterial species in the gut microbiome, as a consequence of intestinal mucosal immunity
defect, caused by intestinal hypoperfusion, immune cell apoptosis, and a variety of en-
teric neuro-humoral-immunity responses. A reduction in bacteria that produce short-chain
fatty acids could change the intestinal barriers, leading to the translocation of pathogen
molecules, into the circulation where it causes systemic inflammation. Even gut fungi might
be increased in human patients with sepsis, even though this has not been consistently ob-
served in murine models of sepsis, probably because of the longer duration of sepsis and
also antibiotic use in patients. The gut virobiome that partly consists of bacteriophages is
also detectable in gut contents that might be different between sepsis and normal hosts.
These alterations of gut dysbiosis altogether could be an interesting target for sepsis adju-
vant therapies, e.g., by faecal transplantation or probiotic therapy. Here, current information
on leaky gut and gut dysbiosis along with the potential biomarkers, new treatment strate-
gies, and future research topics are mentioned.

Introduction
Sepsis is a common syndrome with high mortality and morbidity [1]. Despite recent reductions in sepsis
mortality rates, sepsis continues to account for approximately 20% of global deaths, with a staggering
60% mortality rate in patients with septic shock [2,3]. Bacterial infection is the most common cause of
sepsis, but most of the clinical manifestations of severe infection caused by bacteria, fungi, viruses and
parasitic infection, such as leptospirosis, aspergillosis, dengue shock syndrome and severe malaria, are
surprisingly similar, and include cardiovascular dysfunction, resulting in low blood pressure and poor
tissue perfusion, renal injury, resulting in anuria, and pulmonary dysfunction, resulting in hypoxemia
[4–7]. These similarities imply the possible operation of a predominant innate immune response, i.e., the
rapid immune response, rather than adaptive immunity, i.e., the late specific response [8]. The role of
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Table 1 Common PAMPs and DAMPs in sepsis

Pathogen-associated molecular patterns (PAMPs)
Name Possible sources* Main PRR**/***

Lipopolysaccharide Gram-negative bacteria TLR4#

Lipoteichoic acid Gram-positive bacteria in gut TLR2

Flagellin Filamentous bacteria TLR5

Lipoarabinomannan Non-tuberculous mycobacteria TLR2

Triacyl lipoproteins Several bacteria TLR1, TLR2

CpG motifs Bacteria and viruses TLR9

β-Glucan Fungi Dectin-1, TLR2, TLR4

Zymosan (beta glucan with mannans) Fungi TLR2, Several Dectins

Double-stranded RNA (dsRNA) Viruses RIG-I, MDA5, PKR (cytosolic receptors) ##

Single-stranded RNA ssRNA Viruses TLR7, TLR8

Host damage-associated molecular patterns (DAMPs)
Name Possible sources Main PRR*

RNA Ruptured host cells TLR3, TLR7, TLR8, RIG-I

MDA5

DNA (host and mitochondria) Ruptured host cells TLR9, TLR4

Histones Ruptured host cells TLR2, TLR4

High mobility group box-1 (HMGB1) and S100 proteins Secreted from immune cells or cell rupture TLR2, TLR4, RAGE ###

Heat shock proteins (HSPs) Host cells with stress TLR2, TLR4, CD91

*, mostly in gut or respiratory tract; **, PRR, pattern recognition receptors; ***, mostly on myeloid cells; #, TLR, Toll-like receptor; ##, RIG-I, retinoic
acid-inducible gene I, MDA5, RIG-I-like receptor dsRNA helicase enzyme, PKR, Protein Kinase R (an interferon-induced kinase); ###, RAGE, receptor
for advanced glycation end products.

microbial molecules not produced by the host (pathogen-associated molecular patterns [PAMPs]) and molecules
from the host’s cells (damage-associated molecular patterns [DAMPs]) are distinguished from regular immune home-
ostasis by innate immunity during sepsis [9]. An adaptive immunity, orchestrated by T and B lymphocytes, along with
antibodies, is equally important [10]. Some of PAMPs and DAMPs with the sources and main pattern recognition
receptors are listed in Table 1 [11–13].

The importance of PAMPs in sepsis implicates the gastrointestinal tract as an endogenous reservoir of several
groups of organisms, including prokaryotes, i.e., bacteria and archaea, eukaryotes, i.e., fungi, and viruses, mostly
bacteriophages, which are jointly referred to as ‘gut microbiota’. These organisms are separated from the host by
only a single layer of enterocytes containing tight junction molecules [14,15]. During sepsis, enterocytes experi-
ence hyperpermeability caused by several factors, including intestinal hypoperfusion, enterocyte apoptosis, a sys-
temic cytokine storm, and gut dysbiosis, which could promote the translocation of microbial molecules from the
gut into systemic circulation. This is often referred to as the ‘leaky gut’ [16,17], which is a factor that might be as-
sociated with enhanced systemic inflammation in several conditions, either with regular activities (vigorous exer-
cise, high amount of chili, some drugs and stress) [18–20] or pathogenic conditions (autoimmune diseases, infec-
tions, obesity and uremia) [21–24]. There are differences in the pathophysiology of leaky gut in these diseases. For
example, gut permeability damage in systemic lupus erythematosus (a common autoimmune disease) is possibly
due to immune-complex deposition in the gut and the adverse effects of some medications, including nonsteroidal
anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying antirheumatic drugs (DMARDs) [14].
Meanwhile, the stress-induced leaky gut is a result of stress hormone-induced immune alteration with autonomic
nervous system (gut–brain axis) [25] and both impacts of lupus and stress finally cause gut dysbiosis and leaky gut.
The enhanced gut permeability that is sufficiently severe to allow the translocation of viable bacteria, and especially
some invasive bacteria, from the gut to the systemic circulation, could be a cause of sepsis, frequently referred to
as ‘gut-derived sepsis’ [26,27]. The microbiota, local immunity and integrity in the gut are important factors for the
maintenance of the gut microenvironment; therefore, manipulations of these factors might be beneficial in sepsis
treatment. Despite increasing knowledge on leaky gut and gut dysbiosis in sepsis, the clinical translation of this infor-
mation to patients is still very less. Although the alteration of gut bacteria during sepsis is well-known, the exploration
of sepsis-induced alteration in fungi and viruses in the gut is recently increasing which might uncover new interest-
ing aspects. Then, the collection of current data on this topic might facilitate interest in the use of some parameters
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and treatments in real clinical practice. Hence, this review summarizes the potential impact of the gut microbiome,
in terms of bacteria, fungi and viruses, on the course of sepsis, and explores currently proposed adjuvant therapies,
including faecal transplantation or probiotic therapy.

A leaky gut leads to the presence of microbial molecules in
the systemic circulation
A single layer of epithelial cells with a surface area of about 32 m2 lines the gastrointestinal (GI) surface and is held
together by epithelial tight junctions (TJs). This layer functions as the first stage of the intrinsic mucosal defence
system and serves as a selective physical barrier between the host and microbial molecules [28,29]. The TJ complex
does not allow the passage of molecules larger than 3.6 Å or 0.6 kDa through the normal paracellular passage (the
space between the proximity of enterocytes). The larger molecules are transported through the gut epithelial cells by
several transcytosis mechanisms, including clathrin-mediated endocytosis, micropinocytosis and caveolin-mediated
endocytosis [30,31]. Some microbial-derived molecules, such as p-cresol (a gut-derived uremic toxin derived from
protein fermentation by gut bacteria), are small enough to pass through the normal gut barrier [32], whereas other
molecules, such as lipopolysaccharide (LPS) from Gram-negative bacteria and (1→3)-β-D-glucan (BG) from fungi
(the most abundant and second most abundant organisms in the gut) or microbial DNA, are too large to cross the
barrier [33]. However, although large intact bacterial DNAs (i.e., the genome) with molecular sizes of 100 to 15,000
kilobase pairs (kbp) (6.5 × 104–9.8 × 106 kDa) are too large to pass through the gut barrier, DNA molecules are
rapidly broken down into bacteria-free DNA through several processes (depurination and deamination) into pieces
approximately 100 bp (65 kDa) in size (i.e. similar in size to LPS and BG) [34]. Hence, the detection of these PAMPs
(LPS, BG and bacteria-free DNA) could be useful indirect markers of leaky gut. Alternatively, the oral administra-
tion of a non-absorbable carbohydrate and its subsequent detection in blood or urine is a well-known direct test for
leaky gut [35,36]. However, the necessity of oral administration and intact intestinal peristalsis limits the use of this
procedure only to patients in non-moribund conditions.

Local intestinal injury with a large surface area does not surprisingly induce leaky gut, as demonstrated in mice
treated with a low concentration of dextran sulphate solution (DSS), a substance that directly causes TJ injury. The
intestinal symptoms of leaky gut progress from asymptomatic to overt diarrhoea [37] or acute pancreatitis with en-
dotoxemia [38]. In parallel, high-abundance PAMPs detected in serum, including in DSS-administered mice, are
indicators of leaky gut [39]. Interestingly, leaky gut in DSS-administered mice is demonstrable with a fluorescein
isothiocyanate (FITC)-dextran assay. In humans, the detection of some non-absorbable carbohydrates in urine after
an oral administration is demonstrated, even without abdominal symptoms (diarrhoea or abnormal stool consis-
tency) [40], implies a possible asymptomatic leaky gut. As such, the current hypothesis is that ‘a physiologic leaky
gut (leaky gut without a significant adverse effect)’ may exist, as is observed in blood microbiome analyses with the
presence of DNA from anaerobic gut bacteria that are usually not present in the blood circulation [34]. Although
the abundance of DNA in the blood of healthy control mice is very low or non-detectable, the DNA amplification
processes used in bacteriome analysis can detect low amounts of DNA. Notably, the regular repairing process of the
‘physiologic leaky gut’ should not produce intestinal fibrosis due to the prominent self-renewal property of the ente-
rocytes [41]. However, intestinal fibrosis can be developed in case of severe overt chronic inflammation as reported
in inflammatory bowel disease (ulcerative colitis) [42].

Further possible evidence for a physiologic leaky gut is the detection of serum BG in some healthy people, espe-
cially with the Fungitell assay (Associates of Cape Cod, Inc.), as BG is a major component of fungi that is foreign
molecule to the host, with a normal range (less than 60 pg/ml) that possibly reflects a leaky gut in healthy individuals
(detectable serum BG without detrimental condition) [17,35,36]. As such, BG is the natural polysaccharide consist-
ing of sequential D-glucose moieties linked by β-(1→3)-glycosidic bonds with other structural varieties depending
on the sources, such as BG from fungi is composed of β-(1→6)-linked branches from the β-(1→3) backbone [43].
Proinflammatory impacts of BG, especially in synergy with LPS, are frequently mentioned [44–48].

By contrast, endotoxaemia should not be detectable in a healthy host, despite a possible low level of leaky gut,
perhaps due to several LPS neutralization actions, such as deacylation and dephosphorylation by acyl-oxy-acyl hy-
drolase and alkaline phosphatase, respectively [49–51]. Notably, no enzymatic reaction exists for BG neutralization
[52]. Hence, LPS and BG in serum, in the absence of other obvious sources, are interesting leaky gut biomarkers
that are more practical for clinical use compared with the standard oral carbohydrate administration. However,
the level of LPS and BG in serum not only depends on the severity of a leaky gut, but also correlates with in-
creased numbers of Gram-negative bacteria and fungi in the gut. In animal models, several conditions lead to an

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

647



Clinical Science (2023) 137 645–662
https://doi.org/10.1042/CS20220777

increase in Gram-negative bacteria (Bacteroides and Proteobacteria) and possibly LPS in gut contents, including sep-
sis, DSS-induced mucositis, uraemia, obesity and fungal administration [39,48,53–55], while an enhanced content of
faecal fungi (and BG) in the gut is possible after antibiotic use, intestinal inflammation (inflammatory bowel disease;
IBD), and alcohol consumption [44,45,56–58]. Thus, using the actual quantity levels of LPS and BG to determine the
severity of leaky gut is difficult; however, they might be useful for qualitatively indicating gut barrier damage.

Observing leaky gut is not surprising after acute or chronic diarrhoea from any causes (infection,
immune-mediated diseases, and DSS) [53,59–61] due to direct damage to the TJ. However, the pathophysiology of
systemic inflammation-induced leaky gut might involve inflammation-induced paracellular enterocyte permeability
(as demonstrated by LPS injection models) [62] and/ or stress-induced gut dysbiosis [63,64]. Indeed, LPS injection
triggers the production of serum cytokines, which can affect every cell in the body, including enterocytes, and cy-
tokine activation worsens enterocyte integrity, as demonstrated by the reduced transepithelial electrical resistance
in enterocytes after incubation with pro-inflammatory cytokines [65]. In addition, neuro-hormonal disturbances in
response to stress (and depression), especially the enhancement of catecholamine, can alter the bacterial composition
in the gut, in part, due to catecholamine iron chelation that facilitates the growth of iron-metabolizing bacteria [66].
The activation of enteric neurons by corticotropin-releasing factors in immune cells (macrophages and mast cells)
can also alter the microbial control mechanism in the gut [67]. It is also interesting to note that there is a balance of the
immune responses, referred to as the ‘counter anti-inflammatory response’, during the hyper-inflammatory activity in
severe systemic inflammation, especially in sepsis, the imbalance homeostasis of immune regulation seems to induce
either hyper-inflammatory septic shock or immune exhaustion (an increased susceptibility to secondary infection)
[68–70] that might be able to cause enterocyte injury and leaky gut, perhaps, with different processes. More studies
on this topic would be interesting.

Leaky gut and gut dysbiosis
The balance between the host immune activities and micro-organisms in the gut leads to the specific characteristic of
gut microbiota in different hosts as genetic-based immune responses and gut microenvironmental aspects (diets and
regular activities) might be different among individuals. As such, an alteration of immune activities in the host, due
to aging, antibiotics, foods, or the new onset of some systemic diseases possibly results in a change in gut microbiota
[71–73]. For example, the depletion of macrophages or splenectomy in the host reduces the microbicidal activity
against some gut organisms leading to gut dysbiosis [64,74] and the selective microbicidal activities of different an-
tibiotics induce some different dysbiosis in the host [75,76]. In contrast, gut dysbiosis might induce some changes
in immune responses that possibly affect intestinal integrity. As such, gut dysbiosis induced by oral administration
of pathogenic bacteria or fungi facilitates a direct invasion of enterocytes and activates the more prominent immune
responses leading to a more severe leaky gut than the presence in the host with lesser harmful microbes [37,45,77].
Notably, the presence of gut fungi alters the composition of gut bacteria through several mechanisms, such as a selec-
tion of bacteria that can digest some molecules on fungal cell walls or bacteria with fungal toxin resistance [39,74].
Hence, immune activities, both local intestinal immunity and systemic immune responses, affect gut dysbiosis and
vice versa that can cause defects in the intestinal barrier (leaky gut) through the damage by immune responses (en-
terocytes are the bystanders from microbicidal immunity) and/ or from the invasiveness of the pathogenic microbes.

During sepsis, there was an alteration in immune responses and gut dysbiosis with several sepsis factors that en-
hances intestinal barrier defect. For sepsis-induced immune responses, hyper-inflammatory cytokines, death of im-
mune cells from the overwhelming immune activities and stress hormone-activated intestinal immunity [8,78,79]
that might affect the normal balance between the host immunity and microbes. In sepsis-induced gut dysbiosis, an
abundance of the high virulence organisms in the gut during sepsis might be increased because these bacteria usu-
ally have several factors against the harsh microenvironment, while normal microbiota mostly demonstrated a lack
of these factors [80]. Moreover, several defects during sepsis, for example, gut hypoperfusion from systemic vasodi-
latation and/or sepsis-induced cardiomyopathy, intestinal hypomotility and gut mucosal disruption [81] also directly
induce gut barrier defect and leaky gut. Hence, enterocyte hyperpermeability in sepsis is caused by several factors, in-
cluding intestinal hypoperfusion, enterocyte apoptosis, systemic cytokine storm and gut dysbiosis that could promote
the translocation of microbial molecules from the gut into the blood circulation (leaky gut or gut leakage) [16,17].

Although the endotoxemia and circulating cell-free DNAs (cf-DNAs) observed in bacterial sepsis might be derived
from dead bacteria in the blood, some LPS molecules might be correlated with translocation from the gut into the
blood circulation (gut translocation). Better evidence of leaky gut during sepsis comes from the presence of endo-
toxemia and glucanemia (serum BG) without bacteraemia during viral sepsis, such as is observed with dengue and
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coronavirus disease 2019 (COVID-19) with high disease severity [35,82–84]. Although a mixed bacterial–viral in-
fection is possible, antibiotics (and anti-fungal) are not necessary for most of these patients with severe viral sepsis.
Additionally, the administration of bacterial lysate also containing bacterial DNA during leaky gut induction by DSS
in mice increases the level of cf-DNAs in the blood [34], implying a possible gut translocation during sepsis. One
interesting finding is that leaky gut could be a cause and/or consequence of bacterial sepsis because (i) the severe
gut barrier defect induces viable bacterial translocation and bacteraemia, as indicated by DSS-induced sepsis [64,77],
and (ii) the damage to the enterocyte TJ during sepsis facilitates leaky gut [45]. In both situations, the leaky gut en-
hances systemic inflammation through innate immunity responses, especially through macrophages and neutrophils
[40,46,85]. Similarly, gut dysbiosis (the imbalance of gut microbiota associated with an unhealthy outcome) can be
a cause and/ or a consequence of bacterial sepsis due to the importance of gut microbiota in the maintenance of
intestinal integrity [86].

Currently, several methods (multi-sugar probe, LPS, BG and other molecules) [87] are available for leaky gut mea-
surements, but performing these measurements during sepsis is challenging because of the limitations in oral carbo-
hydrate administration to critically ill patients, the possible differences in the abundance of LPS and BG in the gut
contents, Gram-negative bacteraemia (which limits the use of LPS as a leaky gut marker) and the unclear clinical use-
fulness of several molecules (zonulin, fatty acid binding protein and others). Due to high susceptibility to the leaky gut
during sepsis, a quantitative test of leaky gut might not be necessary, and qualitative tests for leaky gut (such as BG)
with dysbiosis indicators (such as the abundance of Firmicutes, Bacteroides and Proteobacteria by microbiome anal-
ysis or polymerase chain reaction [PCR]) might be adequate for clinical use. Although species differences detected by
microbiome analysis are more informative, the differences in phylum levels using PCR with selected primers might
be less expensive and more suitable for real clinical use. More studies on this topic are warranted.

The intestinal bacterial microbiome
Because bacteria are the most predominant organisms in the gut, most of the ‘gut dysbiosis’ mentioned in the stud-
ies predominantly refers to bacterial dysbiosis. The normal gut microbiota includes a predominance of Firmicutes
(Bacillota) (mostly Gram-positive bacteria with obligate aerobes or facultative anaerobes) and Bacteroides (mostly
Gram-negative anaerobes that are pathogens in some situations) [88]. Firmicutes are the most prominent bacteria
in the healthy gut, in part due to the conversion of complex carbohydrates into short-chain fatty acids (SCFAs, par-
ticularly butyrate), which are important growth factors for the gut epithelium. Bacteroides are the most dominant
Gram-negative bacteria in the gut and possibly represent a major source of LPS in the intestine [89]. The ratio of Fir-
micutes/ Bacteroides could serve as a biomarker for the health of the gut barrier, as this is lower in several conditions,
including infection, DSS colitis, post-splenectomy, macrophage depletion, obesity, uraemia, iron overload and sepsis
[24,48,55,77,90,91], and an increased Firmicutes/Bacteroides ratio is reported in IBD [92,93]. Despite the benefits
of SCFA production by most Firmicutes bacteria (such as the probiotic strains of lactobacilli and enterococci), some
groups (such as a subset of clostridial species) are pathogens that might induce gut barrier damage [94,95]. Likewise,
several species of Bacteroides bacteria supply nutrients to other microbial residents and reduce pathogens in the gut,
despite the possible pathogenicity of other Bacteroides [88]. Proteobacteria (Pseudomonadota), a major phylum of
Gram-negative bacteria (including a wide variety of pathogens), is another bacterial phylum that frequently shows
increases during gut dysbiosis [96–98]. Thus, both increases and decreases in the Firmicutes/Bacteroides ratio with
increased Proteobacteria indicate gut dysbiosis; however, more studies are warranted before adopting this ratio for
clinical use.

The normal gut microbiota is vulnerable to the microenvironment, as the oral administration of bacteria or fungi
causes leaky gut from an increase in pathobionts [37,45], while leaky gut due to DSS induces dysbiosis through gut
mucosal inflammation [53]. Intestinal inflammation might therefore be another factor that induces gut dysbiosis, as
the oral administration of Candida albicans in control mice does not alter faecal microbiota patterns, while C. albi-
cans gavage in septic mice after cecal ligation and puncture (CLP) surgery or DSS-colitis increased the proportion of
Gammaproteobacteria (a group of pathogenic bacteria, including Pseudomonas aeruginosa) [39,53]. Indeed, intesti-
nal inflammation from several causes, including some diets (high-fat diets), drugs (non-steroidal anti-inflammatory
drugs; NSAIDs) and stresses (heavy exercise), can reduce mucin production (mucin barrier) and increase the number
of pro-inflammatory cells (and mediators), resulting in a selection of some groups of bacteria that are more resistant
to host immunity (mostly the highly virulent pathogenic bacteria) [18,19,99–101]. Conversely, the reduction in im-
mune responses, such as macrophage depletion, also possibly increases some bacteria that are naturally controlled by
intestinal macrophages and causes gut dysbiosis [74].
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Due to the vulnerability of gut microbiota, some host characteristics might be theoretically classified as
sepsis-vulnerable features. This could occur in individuals with a lower abundance of SCFA-producing bacteria,
a genetic deficiency in the normal gut barrier (production of mucin and anti-microbial peptides; AMPs), or in
those with malnutrition or immunodeficiency, as the faecal microbiome is a sensitive biomarker for these condi-
tions [102,103]. For example, Mucin 2 deficient (Muc2-/-) mice develop colitis at 6 months of age, with increases
in Firmicutes/Bacteroidetes and some Proteobacteria (Desulfovibrio and Escherichia) [104]. A defect in AMPs is
mentioned in IBD-induced dysbiosis [105], and children with severe acute malnourishment demonstrate increased
Proteobacteria and decreased Bacteroides in faeces [106,107]. Therefore, a reduction in Firmicutes or a low Firmi-
cutes/Bacteroides ratio might be an indicator of low numbers of SCFA-producing bacteria and might represent a
characteristic of susceptibility to gut-derived sepsis because of the easier gut invasion of pathogenic bacteria [93,108].
However, detection of the possible adverse bacterial groups in healthy individuals might not be clinically significant
because of the other intact protective factors (such as mucin and intestinal immunity). Moreover, the organismal
molecules from a transient leaky gut, even a severe one, might be quickly neutralized by several processes similar to
those occurring in the physiological leaky gut. Therefore, measurements of the leaky gut at several time points might
be necessary to identify a representative and clinically significant leaky gut in real patients, as this might differ from
animal models that have less fluctuation in conditions.

Our experiments have indicated that spontaneous bacteraemia in some acute uremic mice after 48 h bilateral
nephrectomy is possibly caused by intestinal apoptosis, which leads to severe leaky gut [90], again implying the im-
portance of the gut barrier. Although the prediction of sepsis susceptibility by gut dysbiosis alone, or perhaps by the
reduction in Firmicutes (or increases in Bacteroides and Proteobacteria) without leaky gut measurement, might pro-
vide limited information, several reports support some predictive properties of dysbiosis. For example, the depletion
of Rosburia (phylum Firmicutes) and increases in Prevotella (Phylum Bacteroides) in the gut are identified risk
factors for stroke-associated pneumonia and chronic obstructive pulmonary disease (COPD), respectively [109,110],
while increases in Klebsiella variicola and Enterobacteriaceae (phylum Proteobacteria) are associated with sepsis
cardiomyopathy [111]. Notably, some bacterial metabolites, mostly derived from the digestion of nutrients (such as
polyamines), are small enough to pass through the normal gut barrier; however, the impact of these molecules in
sepsis is not as clear as that of the larger microbial molecules (LPS, BG and cf-DNA) [112,113].

In contrast to the intact gut barrier in dysbiosis before sepsis, sepsis leads directly to gut dysbiosis together with
the leaky gut and allows the translocation of microbial molecules or viable microorganisms. The viable microbial
translocation from the gut are mostly bacteria rather than fungi (Candida spp.), due to the larger size of fungi
than bacteria. Reduced intestinal perfusion can be recognized in the early phase of sepsis with normal blood pres-
sure (pre-shock stage), despite systemic vasodilatation (distributive shock) and myocardial depression (partly from
hyper-cytokinaemia) [114,115], by a decrease in gut microcirculation as presented by sepsis-induced ileus [116]. Be-
cause ileus can be an early sign of systemic inflammation, either from infection (sepsis) or non-infection (multiple
injury or multi-organ failure; MOF), but presents with normal blood pressure, the reduced gut perfusion in sep-
sis and MOF might occur very early in the natural course of diseases [117]. Among several factors associated with
sepsis-induced intestinal disorders [81], gut hypoperfusion is an important factor that possibly results in (i) entero-
cyte damage (necrosis and apoptosis) with leaky gut and (ii) intestinal immunity defects (the death of immune cells)
with decreased microbial control function and increased gut dysbiosis (the selection of only highly virulent bacteria).
Sepsis is accompanied by apoptosis of all immune cells (neutrophils, macrophages, dendritic cells and lymphocytes),
in part, due to the overwhelming immune activation by both PAMPs from the organisms and damage-associated
molecular patterns (DAMPs) arising from the death of the host’s cells [118]. This immune cell apoptosis is one of
the mechanisms that induce immune exhaustion (a reduced ability to prevent other infections, leading to secondary
infections) [119]. Sepsis also causes dysfunctions in multiple organs (kidney, liver, lung, spleen and nervous sys-
tem) and the damage to each organ can further affect gut dysbiosis. For example, kidney and liver damage during
sepsis might lead to the excretion of accumulated metabolites (toxins) into the gut, and these could directly affect
enterocytes and stimulate the growth of some bacteria (such as bacteria that can metabolize these toxins), result-
ing in dysbiosis with leaky gut [90,120]. Likewise, sepsis can possibly alter immune responses, such as elicitation
of lung-produced type I interferons, that can directly alter the gut microbiome [121], thereby possibly reducing the
numbers of obligate anaerobic bacteria and increasing the proportion of Proteobacteria [122]. Similarly, alteration
of the neuro-immuno-endocrine axis during sepsis might also affect gut dysbiosis [113]. Hence, sepsis induces gut
dysbiosis through effects on gut hypoperfusion, immune dysregulation and organ failure.

Interestingly, some similarities are evident between sepsis that arises from several different sources of infection.
This is due, in part, to common factors among the critically ill and in systemic inflammatory response conditions,
including the loss of possible beneficial bacteria and microbial diversity and an increase in pathogens [123,124]. For
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Figure 1. The alteration of all organisms (bacteria, fungi and phages) involved in sepsis and gut immunity

Sepsis induces intestinal immunity defects, through intestinal hypoperfusion (vasodilatation and cardiomyopathy), immune cell

apoptosis, the stress hormone (corticotropin)/enteric neuron-induced immune responses, and systemic inflammation, inducing

gut dysbiosis (left side). In parallel, sepsis-induced gut dysbiosis, caused by intestinal immunity defect, antibiotics and alteration in

fungi and phages, facilitates gut translocation of microbial molecules or viable organisms (leaky gut) causing systemic inflammation

(right side) that worsen gut integrity and induce gut dysbiosis as a vicious cycle. Picture is created by BioRender.com.

example, faecal microbiota in children with sepsis contain higher proportions of pathogens (Acinetobacter and En-
terococcus) with fewer beneficial bacteria (Roseburia, Bacteroides, Clostridia, Faecalibacterium and Blautia), and
these changes closely correlate with the clinical characteristics but show negative associations with the duration of
antibiotics [125]. Similarly, depletion of Lachnospiraceae, Ruminococcaceae and Ruminococcus and an enhance-
ment of Enterococcus are demonstrated in a systemic review of sepsis [126]. Severe viral infections (COVID-19,
influenza and dengue) can also increase pathogen numbers, especially Gram-negative bacteria, during sepsis and fa-
cilitate gut translocation of LPS (endotoxaemia) or viable bacteria (bacteraemia), depending on the leaky gut severity,
that worsen the severity of infection [127–129] (Figure 1).

The intestinal mycobiome
Despite the larger size of fungi (10–12 μm; Candida yeast) than bacteria (0.5–2 μm), fungi are the second most
abundant organisms in the gut. As such, the abundance (by gene copies) is 1000-fold greater for bacteria (16S rRNA)
than fungi (18S rRNA), with more than 3,500 bacterial species compared with 267 fungal species in the gut [29].
The bacterial community varies in quantity and composition from the stomach to the colon (102 vs 1011 cells/ gram
content in the stomach and colon, respectively), whereas fungi seem to be localized mostly in the colon, with an
average of 106 fungal cells per gram of colon content [130]. The predominant intestinal fungal mycobiota in healthy
individuals are from the phyla Ascomycota (63%) (especially Candida albicans) and Basidiomycota (32%) [131],
and the overgrowth of C. albicans commonly found in patients with bacterial sepsis arises in part due to antibiotic
selective pressure [132]. Candida colonization in the gut is also an important risk factor for systemic candidiasis
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after bacterial sepsis [133]. Indeed, Candida colonization in the gut is very common in patients in intensive care
units (ICUs+) [134,135], and Candida translocation from the gut into blood circulation is possible during bacterial
sepsis [136,137]. Due to the lower abundance of fungi in mouse faeces than in human stool (positive culture is easier
found from humans), the administration of C. albicans to mice is used to explore the importance of Candida in
sepsis. Despite its lower abundance, the presence of Candida in the gut enhances some bacterial species (such as
Pseudomonas spp.) [44,53], partly due to glucan digestion, as mixing glucan into the culture medium enhances the
growth of isolated bacteria [39]. Interestingly, the fungal–bacterial interaction is complex and might depend on the
time frame of the exposure, as the incubation of a clinical strain of Pseudomonas aeruginosa with C. albicans has
no synergy on biofilm production, whereas the addition of the fungi onto Pseudomonas biofilms or onto cell lines
facilitates more biofilm production [138,139]. Nevertheless, increases in Candida in the gut during sepsis possibly
worsens the severity of bacterial sepsis through several pathways, including a higher translocation of BG (Candida
increases the BG gut content), increases in invasive bacteria in the gut and direct injury to enterocytes (perhaps from
the Candida germ tube or mucosal immune responses against fungi) [44,77]. Notably, the co-presentation of LPS and
BG synergistically activates macrophage immune responses, in part through the simultaneous activation of TLR-4 and
dectin-1 by LPS and BG, respectively [45,46,85].

Despite the lack of information regarding the gut mycobiota in patients with sepsis, septic mice demonstrate subtle
changes in gut fungi (the abundance of fungal 18sRNA by PCR in sepsis is different from the control group), including
a reduction of only Myrothecium spp. fungi that can produce some molecules against several harmful factors (some
organisms and toxic substances) [15]. The differences in sepsis conditions between humans and mice [140,141] raise
the possibility that gut fungi in patients with sepsis might be enhanced by several factors that differ from those in
mice, such as the duration of sepsis (human patients survive longer than mice), antibiotic use (more potent in human
conditions), intensive care unit (ICU) environment (nosocomial infections are likelier in patients in ICUs than in
mice in controlled animal facilities) and naturally higher Candida levels in human faeces and underlying diseases
(such as altered gut fungi in Type 2 diabetes) [142–144]. Based on the well-established increase in gut fungi in patients
with IBD and alcohol ingestion [56–58], intestinal inflammation and reduced mucosal immunity might be important
exacerbating factors for the enhancement of gut fungi associated with sepsis (systemic cytokine-induced intestinal
barrier defects and apoptosis of immune cells) [65,118]. More exploration of gut fungi in patients with bacterial
sepsis will be interesting. Of note, the identification of mycobiota at the phylum level might provide only limited
information because Ascomycota predominate; therefore, faecal microbiome analysis might be necessary to explore
fungal population in faeces.

The intestinal virobiome
Currently, viruses in the gut are not included as ‘gut microbiota’, as viruses are intracellular organisms and the pres-
ence of viruses in enterocytes will be categorized as a viral infection. However, bacteriophages, which are viruses (or
genomes) of the gut bacteria, might be considered a group of viruses that can be found in the gut content and catego-
rized as ‘gut microbiota’ because alteration in gut bacteria will automatically change the abundance of bacteriophages
(or phages). Phages are specific to the species level of bacteria, partly because of different routes of entry, and phages
of the same bacteria might have different responses to different bacterial isolates [145]. For example, the effective
phages against P. aeruginosa from Person A might have no effect against P. aeruginosa from Person B. This will
necessitate a tremendous accumulation of phage information (phage library) for any real clinical use [146].

The bacteriophage cycle is categorized into lysogenic and lytic patterns. The lysogenic cycle involves the insertion
of viral genetic materials into the bacterial genome for replication together with the bacteria. These phages are referred
to as ‘temperate phages or prophages’ and can be transferred to several bacterial generations without any viral gene ex-
pression. By contrast, the lytic cycle is a switch from the lysogenic phase to the release of new viral particles [147,148].
Because phages are one of the natural controls against bacteria [149] and because prophages can pass through sev-
eral generations of bacteria before being induced (e.g. by stress) into lytic phages and killing the bacteria [150], any
alteration in the bacterial microbiome during sepsis might automatically induce changes in virota (virome). Indeed,
the faecal virota from septic mice demonstrates an alteration in the abundance of several groups of bacteriophages,
including Myoviridae (in sham mice) and Podoviridae (in septic mice), which are components of several phage cock-
tails used in other studies [15]. The observation that viral particles isolated from faeces of a septic mouse can attenuate
sepsis in another mouse [15] raises the possibility that bacterial stress during sepsis activates lytic phages that might
be able to control some sepsis-induced pathogenic bacteria. Phages accumulating within the mucosal layer can be
a barrier to bacterial invasion; however, bacteria that express phage-encoded proteins can show increased virulence
(epithelial invasion, adhesion, antibiotic resistance, phagocytosis blockage and biofilm formation) and the transport
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Figure 2. The adjunctive therapy of prebiotics, probiotics and FMT in terms of intestinal permeability effects

All of these strategies improve the balance of gut microbiota with increased organismal diversity that is beneficial to the host

through reduced pathogenic microbes, strengthens the gut barrier and induces gut epithelial reconstruction.Picture is created by

BioRender.com

of phages by transcytosis of phage particles and/or apical-basal transport may deliver phages into the circulation and
enhance inflammatory responses [151,152]. Unfortunately, studies on gut virota (or phageomes), especially in sepsis,
are scarce.

Adjunctive therapies
Due to the possible correlation between gut dysbiosis and sepsis severity, the manipulation of the gut microbiome (and
gut barriers) might prevent gut-origin sepsis or attenuate sepsis severity by strengthening the gut barrier, reducing
gut pathogens, reducing the PAMP content (LPS and BG) in the gut and eliciting direct anti-inflammatory responses.
The normalization of gut microbiota by several methods, including faecal transplantation (administration of healthy
microbiota), probiotics (beneficial bacteria) (Figure 2), prebiotics (probiotic-enhancing substances) and synbiotics
(probiotics with prebiotics), has been tested in sepsis.

Faecal microbiota transplantation
Several animal studies and case series have reported the ability of faecal microbiota transplantation (FMT) to atten-
uate sepsis severity, in part through the restoration of butyrate-producing bacteria, gut barrier strengthening, innate
immunity enhancement, immune repertoire alteration and pathogen clearance; however, some studies have reported
lethal bacteraemia [153]. Notably, the immune repertoire is a variety of receptors on T cells and B cells that has a large
sequence diversity to recognize different organismal molecules as a part of the adaptive immune system [154] and
innate immunity, for example, macrophages, is an important host response against pathogenic gut organisms [74].
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Meanwhile, butyrate is an important short-chain fatty acid that is categorized as an enterocyte energy source and a
factor of anti-inflammation and anti-malignancy [155]. Then, FMT administration seems to enhance the effective-
ness of organismal control in the host through improved innate and adaptive immunity together with strengthened
enterocyte integrity that will be beneficial in sepsis [156]. Clostridium difficile seems to be the first pathogen with
FMT clinical implications. C. difficile is classified as a Gram-positive bacterial pathogenic cause of infectious colitis
that frequently arises following excessive antibiotic use [157]. C. difficile contributes to complications of antibiotic
therapy owing to its recurrent infections. Interestingly, the use of FMT by either oral pills or FMT colonoscopy in pa-
tients with recurrent C. difficile showed promising outcomes (96.2% and 96.1% of patients were cured after 12-week
treatments by oral FMT and colonoscopy FMT, respectively) [158]. The more updated implications of FMT now in-
volve its applications as cancer therapeutic. This potential as a therapy was first observed in mice with cancer but
no microbiome, as these animals demonstrated a different response when treated with anticancer drugs, including
cisplatin, cyclophosphamide, and anti-programmed cell death 1 protein (PD-1) immunotherapy [159,160]. These
findings are also supported by evidence that Enterococcus faecalis is able to directly metabolize levodopa [161]. As
such, using gut microbiota in conjunction with drugs could benefit the balance of gut microbes, thereby simulta-
neously suppressing gut pathogens during certain disease treatments. Nevertheless, in mid-2019, the U.S. Food and
Drug Administration (FDA) announced that FMT therapy should be used with serious caution, based on a mortality
case report of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli infection [162]. As a result, the
FDA has posted a warning statement that in-depth screening for all resistant pathogens must be performed before
FMT.

Probiotics
In contrast to the possibly severe side effects of FMT in sepsis treatment, the adverse effects of probiotics are usually
minimal, as most probiotics are anaerobes and anaerobic bacteraemia is not normally severe and is easier to treat
compared with aerobic bacteriaemia [163]. Probiotics consist of PAMPs; thus, gut translocation of probiotics or their
components can activate innate immune responses. Therefore, the administration of probiotics to immunocompro-
mised individuals or those of extreme age, critically ill or with severe leaky gut could cause bacteraemia [164,165].
In some conditions, with appropriate probiotics, the leaky gut might be advantageous because some relatively large
beneficial molecules from probiotics might possibly be transported through the damaged gut barrier [54,55]. Probi-
otics potentiate colonization resistance through thier functions of reduced luminal pH, antimicrobial properties, and
competing for nutrients and adhesion surface [36,37]. Indeed, some strains of Lactobacillus and Bifidobacterium
produce some exopolysaccharides with immunomodulatory effects [166,167], while also reducing pathogens by nu-
trient competition, quorum sensing antagonists and production of substances that directly inhibit bacteria [168].
Several bacterial strains are choices for probiotics, but some bacteria might be more harmful than others. For exam-
ple, enterococci can cause endocarditis in some conditions, while lactobacilli and Bifidobacterium are easily treatable
[169]. Probiotics also enhance gut barrier function through mucin production and tight junction proteins. Now, pro-
biotics are extended to other uses, including skin protection from various host pathogens, such as Staphylococcus,
Corynebacterium and Propionibacterium, but this use can lead to the development of skin immune disorientation
conditions, such as rosacea [170]. Interestingly, local application of probiotics improved skin colonization by Cutibac-
terium acnes [171]. In addition, oral forms of probiotics, such as Lactobacillus reuteri, demonstrated an ability to
attenuate perifollicular inflammation by promoting a gut–brain–skin (GBS) axis [172].

Prebiotics
The rationale for the use of prebiotics in leaky gut syndrome is certain dietary components might promote the growth
of certain gut bacteria strains that are closely associated with health benefits for the host [173]. Prebiotics are not only
the food components non-digestible by the host that promote the fermenting bacteria in the colon [174] but also
are nutrients degraded by the gastrointestinal microbiota that alter the microbiome’s activity and composition [175].
Many kinds of dietary nutrients are termed prebiotics under these categorizations, especially the commercially avail-
able carbohydrate-based dietary fibers (polymers of monosaccharides), which are fermented by intestinal microor-
ganisms. These nutrients are digested to produce several molecules, such as SCFAs and peptidoglycan, which affect
the innate immune system [176]. Prebiotics may enhance insulin resistance and glucose tolerance [177] and reduce
intestinal inflammation, endotoxemia, and cytokines which might be beneficial in sepsis. As such, desaminotyro-
sine (DAT) maintains mucosal immunological homeostasis and barrier integrity, and reduces mucosal inflammation
in DSS-induced endotoxemia and septic shock in rodents [178]. Some prebiotics from the Chinese herbs, Xuanbai
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Chengqi decoction (XBCQ), also attenuates pulmonary infection in rodents through the improved gut barrier func-
tion and promoted survival [179,180]. In addition, Finger Millet arabinoxylan (FM-AX), a non-starch polysaccharide
produced from cereals, demonstrates attenuates endotoxemia in mice via reduction of high-fat diet-induced leaky gut
[181]. In human studies, prebiotics reduces the incidence of sepsis, mortality, and length of hospital stay in premature
infants [182]. While the preparation cost for FMT and probiotics is usually high with sophisticated technology due to
the management of the viable organisms, prebiotics preparation seems to be less expensive with, perhaps longer shelf
life. However, prebiotics cannot promote the growth of bacteria that do not present in the gut, and most commercially
available products are a combination of prebiotics with probiotics. Due to the less expensive process of preparation,
the prebiotics, a single or in combination, selectively promotes the growth of beneficial bacteria that commonly found
in the host in sepsis is interesting. More studies are warranted.

Conclusions
Gut leakage and changes in the intestinal microbiome in sepsis are the consequence of intestinal immunity defects
caused by intestinal hypoperfusion, immune cell apoptosis, and enteric neuro-humoral-immunity responses. The
increased abundance of pathogens in the bacterial microbiome associated with a leaky gut may result in the translo-
cation of microbial molecules and even viable microorganisms, eventually worsening the course of sepsis. Despite
several previous reviews on gut microbiota in sepsis [183–186], the collection of data on gut mycobiome (fungiome)
and virobiome is usually limited to the non-sepsis condition [187–190] and the review of gut microbiome together
with leaky gut in sepsis is still less. Here, the close correlation between gut microbiota (bacteria, fungi and viruses)
and sepsis severity also suggests that attenuation of leaky gut and gut dysbiosis might be a target of future adjunctive
therapies. Moreover, the role of virome, mycobiome, as well as novel metagenomics of microbial identification must
be in the pipeline of the future research areas and are urgently needed fields.
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86 Gieryńska, M., Szulc-Da̧browska, L., Struzik, J., Mielcarska, M.B. and Gregorczyk-Zboroch, K.P. (2022) Integrity of the intestinal barrier: the
involvement of epithelial cells and microbiota-a mutual relationship. Animals (Basel) 12, 145, https://doi.org/10.3390/ani12020145
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93 Stojanov, S., Berlec, A. and Štrukelj, B. (2020) The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and
inflammatory bowel disease. Microorganisms 8, 1715, https://doi.org/10.3390/microorganisms8111715

94 Fischer, N. and Relman, D.A. (2018) Clostridium difficile, aging, and the gut: can microbiome rejuvenation keep us young and healthy? J. Infect. Dis.
217, 174–176, https://doi.org/10.1093/infdis/jix417

95 Shin, J.H., Gao, Y., Moore, 2nd, J.H., Bolick, D.T., Kolling, G.L., Wu, M. et al. (2018) Innate immune response and outcome of clostridium difficile
infection are dependent on fecal bacterial composition in the aged host. J. Infect. Dis. 217, 188–197, https://doi.org/10.1093/infdis/jix414

96 Shin, N.R., Whon, T.W. and Bae, J.W. (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503,
https://doi.org/10.1016/j.tibtech.2015.06.011
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