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ABSTRACT: The manufacturing sector accounts for a large
percentage of global energy use and greenhouse gas emissions, and
there is growing interest in the potential of additive manufacturing
(AM) to reduce the sector’s environmental impacts. Across
multiple industries, AM has been used to reduce material use in
final parts by 35−80%, and recent publications have predicted that
AM will enable the fabrication of customized products locally and
on-demand, reducing shipping and material waste. In many
contexts, however, AM is not a viable alternative to traditional
manufacturing methods due to its high production costs. And in high-volume mass production, AM can lead to increased energy use
and material waste, worsening environmental impacts compared to traditional production methods. Whether AM is an
environmentally and economically preferred alternative to traditional manufacturing depends on several hidden aspects of AM that
are not readily apparent when comparing final products, including energy-intensive and expensive material feedstocks, excessive
material waste during production, high machine costs, and slow rates of production. We systematically review comparative studies of
the environmental impacts and costs of AM in contrast with traditional manufacturing methods and identify the conditions under
which AM is the environmentally and economically preferred alternative. We find that AM has lower production costs and
environmental impacts when production volumes are relatively low (below ∼1,000 per year for environmental impacts and below
42−87,000 per year for costs, depending on the AM process and part geometry) or the parts are small and would have high material
waste if traditionally manufactured. In cases when the geometric freedom of AM enables performance improvements that reduce
environmental impacts and costs during a product’s use phase, these can counteract the higher production impacts of AM, making it
the preferred alternative at larger production volumes. AM’s ability to be environmentally and economically beneficial for mass
manufacturing in a wider variety of contexts is dependent on reducing the cost and energy intensity of material feedstock production,
eliminating the need for support structures, raising production speeds, and reducing per unit machine costs. These challenges are not
primarily caused by economies of scale, and therefore, they are not likely to be addressed by the increasing expansion of the AM
sector. Instead, they will require fundamental advances in material science, AM production technologies, and computer-aided design
software.
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■ INTRODUCTION
Almost one-quarter of global greenhouse gas emissions and
over one-third of global energy consumption is caused by
industry, with the vast majority due directly or indirectly to the
manufacturing sector.1−3 Additive manufacturing (AM) has
been recognized as a potentially disruptive technology that
could dramatically reduce the environmental impacts of
manufacturing.4−6 Across multiple industries, AM has been
used to reduce material use in final parts by 35−80%,4,7 and
recent publications have predicted that AM will enable the
fabrication of customized products locally and on-demand,
reducing shipping and material waste.5,6

Is AM, however, a viable environmentally preferable
alternative to traditional manufacturing methods? And will it
become so in the future? The answers depend on several
hidden aspects of AM that are not readily apparent when

comparing the final form of objects produced with either AM
or traditional manufacturing processes. These include the
energy intensity of material inputs, material waste during
production, and build rates. Additionally, AM faces challenges
that may make it economically prohibitive for certain
applications even as the technology increases in scale, and
so, assessment of the sustainability of AM should consider both
economic and environmental considerations.
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This Critical Review assesses the economic and environ-
mental impacts of AM in comparison with traditional
manufacturing methods, such as machining, pressing, and
injection molding, and identifies the conditions under which
AM is preferred. We find that the prospect for AM to create
distributed manufacturing that would supply locally sourced
customized products is limited by the high costs of AM
machines and slow production rates. Because the highest cost
machine components are already produced at large scale to
supply other industries, this barrier will not be reduced by
increasing the scale of AM; rather, it will require technological
changes in AM processes. Our review finds that, across a wide
variety of materials and part geometries, AM has lower
environmental impacts than traditional manufacturing pro-
cesses when production volumes are very low (approximately
1,000 parts per year or less) and the part geometry has a solid-
to-envelope ratio of less than 1:7.7,8 We find similar results for
the production costs of AM relative to traditional manufactur-
ing although the break-even production volume differs
(ranging from 42 to 87,000 parts per year or less depending
on the AM modality and part geometry9−14). In cases where
AM can shorten supply chains or enable part geometries that
provide sufficient performance improvements during the
product’s use, such as when lighter weight parts reduce fuel
consumption in automotive and aerospace applications, these
can counteract the higher production costs and environmental
impacts, making AM preferable at larger production volumes.
We review emerging advances in material science, AM

production technologies, and design optimization that could
change the equation for AM and make it the lower cost and
lower environmental-impact alternative for mass manufactur-
ing in a wider variety of areas. We find that environmental and
economic sustainability are synergistic for AM: advances that
improve the environmental impacts of AM also improve
production costs. Developing AM technologies and optimiza-
tion techniques that eliminate support structures that
contribute to material waste, new approaches to reduce AM
machine and postprocessing costs, and material production
methods that are cheaper and less energy intensive could make
AM the economically and environmentally preferred choice for
many mass manufacturing applications in the future.

■ COMMON AM PROCESSES
When a part is produced using AM, material feedstock, often in
the form of a powder, wire, or liquid, is deposited and solidified
to create a solid part. There are many different AM processes,
defined by the type of material feedstock and the form, energy,
and sequence of deposition and solidification. As of 2020, over
2.1 million units of AM machines were globally shipped with
material extrusion and vat photopolymerization constituting
the largest shares, and powder bed fusion (PBF) and directed
energy deposition (DED) are anticipated to grow in the
future.15,16

Material extrusion feeds melted plastic such as ABS and PLA
through one or more nozzles and uses a layer-by-layer
deposition and cooling process that is relatively simple and
less expensive than other AM processes.17 Vat photo-
polymerization solidifies liquid photopolymer using UV lasers,
which can produce thin and fine shapes of parts.18 DED and
PBF, on the other hand, deposit metallic feedstock (e.g.,
powder or wire) that is heated together to form an object. PBF
lays down a volume of powder metal in an enclosed chamber
and selectively heats the powder into a 3D part, most

commonly with electron beam melting (EBM) or laser-based
systems such as Direct Metal Laser Sintering (DMLS). DED
directly deposits feed material (either powder or wire) and
melts the material together using a laser, electron beam, or
plasma arc. Wire-fed or powder-fed DED can produce parts
with much larger size than other AM modalities, but PBF offers
higher resolution when making metal parts compared to
DED.19

■ ECONOMIC AND ENVIRONMENTAL
ADVANTAGES OF AM
Environmental Advantages of AM. An advantage of AM

processes is that they do not require tooling to form parts into
their desired shape, unlike many traditional manufacturing
methods such as injection molding, die casting, forging, and
stamping. The elimination of tooling reduces environmental
impacts by eliminating environmental emissions and waste
embodied in the tooling supply chain. For example, injection
molding requires high energy consumption to manufacture
molds. Using AM eliminates this energy consumption,
significantly reducing the greenhouse-gas emissions for the
lifecycle of products.7,20

A second advantage of AM is that its geometric freedom has
the potential to reduce environmental impacts when supply
chains can be shortened to produce customized products or
when significantly less material is wasted compared to
traditional manufacturing. For example, Vallourec has collabo-
rated with RAMLAB in the port of Rotterdam to produce
replacement parts of a waterbushing on site for maintenance
rather than shipping in the products.21 The weight of the final
part is half that of the traditionally manufactured part, and they
have reduced emissions by 45% compared to conventional
machining and forging processes.
Production Cost Advantages of AM. The ability to

eliminate tooling and have increased geometric freedom with
AM is a benefit not only for environmental impacts but also for
production costs. In traditional manufacturing processes, the
tooling itself has to be machined, and it often comprises a large
percentage of production costs. For example, for injection
molding or die casting, tooling costs can be over 80% of total
production costs.10,11 AM eliminates these costs.
The elimination of tooling and the geometric freedom of

AM allows it to produce a variety of parts without substantially
increasing unit costs. This contrasts strongly with molding,
pressing, and stamping in which a fixed geometry must be
produced at high production volume in order to overcome the
tooling costs, and the geometry must be fixed early in the
product design process to begin manufacturing the tooling.11

The geometric freedom of AM enables customization of
product size and shape to suit heterogeneous customer
preferences and allows manufacturers to much more rapidly
pivot product designs to reflect changes in market demand.22 It
also enables production of complex parts that would require
high-cost finishing operations using traditional manufacturing
methods. AM has economic advantages over machining
processes when a part has high structural complexity.23 For
example, geometries such as lattice structures, which create
lightweight yet strong parts, are very difficult to produce with
traditional manufacturing methods and generally require
assembly of many separate components24 or require their
shapes to be optimized for traditional manufacturing methods
(such as CNC) that introduce additional manufacturability
constraints, making the final parts bulkier compared to their
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AM counterparts.25−27 With AM, they can be produced
relatively easily as one solid structure within the same process.

■ HIDDEN ECONOMIC AND ENVIRONMENTAL
COSTS OF AM

While AM has the potential to reduce environmental impacts
and production costs, it can also increase them due to energy-
intensive and costly material inputs, material waste during
production, high machine costs, and slow rates of production.
We discuss the factors that can cause AM materials, machines,
and processes to increase production costs and environmental
impacts of AM relative to traditional manufacturing methods.
Environmental Disadvantages of AM. AM material

feedstock such as metal and polymer powders is more energy
intensive than those in traditional manufacturing processes
because the material production processes require additional
process steps to fabricate the material, and, particularly for
metal powder production, the processes can consume large
amounts of energy.7,13 For example, AM metal powder is
produced by atomization processes where metal ingot, billet, or
wire is fed into a furnace or chamber and broken down into
small drops of liquid metal using water, gas, or plasma, which
cool into powder.28 Material production for powder-fed AM
has the highest energy consumption and environmental
impacts compared to other product lifecycle stages from
cradle to gate.29−34 The higher energy consumption increases
damages to human health, ecosystems, and resource
availability.35 Relatively high reject rates in AM production
compared to traditional manufacturing4 further increase the
overall environmental impacts associated with material
production because of the lost material.
The slow production rate of AM is another disadvantage

that increases environmental impacts because of the energy
consumption necessary to run the AM machines for this
amount of time. Producing an aeronautical turbine using EBM-
PBF requires 15.6 h per part as opposed to only 5.9 h using
milling. As a result, EBM-PBF consumes 25% more energy
than milling (from 27.5 to 34.4 kWh).36 Many AM processes
also require relatively longer postprocessing operations to
remove support structures and smooth the surface finish and
perform additional postprocessing steps such as heat treat-
ment, wire electrical discharge machining (EDM), hot isostatic
pressing (HIP), and shot peening.4 An increase in post-
processing leads to additional environmental impacts. Faludi et
al. showed that adding a wire EDM process for postprocessing
increases energy consumption in metal PBF production by
36−49%.37

Finally, powder-bed AM can cause human health and
toxicity concerns when operators are exposed to risks of
inhaling ultrafine particles. Microplastics or metal powders that
are released during production may cause adverse health
effects when inhaled into human respiratory systems.38

Different types of polymer materials emit ultrafine particles
under 100 nm, and the particle emission rate between 106 and
1012 per minute is observed in material extrusion processes.39

Graff et al., Ljunggren et al., and Noskov et al. found that AM
production workers are exposed to metal nanoparticles as small
as 1−2 μm.40−42 Pre- and postprocessing steps that cannot be
automatically performed within a sealed chamber are a major
source of inhalation exposure.38

Production Cost Disadvantages of AM. Producing the
feed material needed for AM is more costly than the feedstock
for certain traditional manufacturing methods, particularly in

the case of metal powders.43 Metal powders for powder bed
fusion (PBF) are about 5 to 10 times more expensive than the
raw materials required in traditional manufacturing pro-
cesses.4,10 This is caused by two factors. First, AM feedstock
is smaller than that used for traditional manufacturing, which
requires additional processing steps. For example, AM metal
powder is produced from a feedstock of metal ingot, billet, or
wire,28 whereas certain traditional manufacturing methods can
use an ingot, billet, or wire directly as feedstock. Second, AM
processes specify that the powder size should be consistent,
and only 30−50% of the powder formed from atomization
meets the given conditions on size and shape.44

A cost-premium also exists for polymer powders used for
AM. While polymer powder AM feedstock is much less
expensive than metal, it can be over 30 times more costly than
the feedstock for traditional polymer manufacturing methods
such as injection molding.10 This occurs because the powder
size for polymer AM is much smaller and requires tighter
tolerances on size and shape compared to the granulate
formation for injection molding.
In addition to higher material costs, support structures that

are needed to prevent distortion of an AM part before it
solidifies raises production costs. For most AM processes, 3D
geometries with overhangs, bridges, or holes require support
structures to be built below these features simultaneously with
building the part. As shown in Figure 1, these support

structures increase the amount of material use, often
significantly above the material in the final part. They then
must be removed from the object through milling, filing,
cutting, or other operations that can be time-consuming,
substantially increasing production costs. In many cases,
support structures typically result in wasted feedstock material
as they are not reusable and have to be discarded after removal
if not recyclable.45 In Kantareddy et al., the support structures
increased production costs by 172%.46

Another driver of AM production costs relative to traditional
manufacturing methods are postprocessing steps. The removal
of support structures and the layer-by-layer build process
causes AM parts to have rougher surfaces than many
traditional manufactured processes.48,49 The poor surface
finish can negatively affect mechanical properties such as
fatigue and prevent a part from meeting tolerance specifica-
tions. Postprocessing steps, such as machining or polishing, are
required to improve the surface finish, which further increase
production costs.45

Finally, at low and medium production volumes (e.g., less
than 100,000 units per year), the cost required for the AM
machines are larger than CNC Mills, Crank Presses, and other

Figure 1. Wing bracket for Airbus A350 XWB jets: (a) original
geometry for traditional manufacturing, (b) novel geometry for AM,
and (c) AM part with support structures.47 Left images reprinted with
permission from AirBus. Copyright 2017 AirBus Operations. Right
image reprinted with permission from ref 47. Copyright 2022
Springer.
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Table 1. Comparison of Environmental Impacts between Additive Manufacturing and Traditional Manufacturinga

aMorrow et al.8 Figures: Reprinted with permission from Elsevier. Copyright 2007 Elsevier. Telenko and Seepersad13 Figure: Reprinted with
permission from Emerald Publishing Limited. Copyright 2012 Emerald Publishing Limited. Wilson et al.58 Figure: Reprinted with permission from
Elsevier. Copyright 2014 Elsevier. Faludi et al.35 Figure: Reprinted with permission from Emerald Publishing Limited. Copyright 2015 Emerald
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traditional manufacturing machines.9,10 This is in large part
because AM requires significantly more machine time than
traditional manufacturing methods, and therefore, the per-unit
machine cost is much higher. As seen in Atzeni et al., even
when the production volume exceeds 100,000 parts per year,
the amortized machine cost comprises about 59% of the unit
cost for polymer AM parts.10 This contrasts with injection
molded parts, in which machine cost comprises 2.1% of unit
costs.10 Because of the high machine costs, the extent to which
parts are packed in the machine volume is an important
decision in AM and must be balanced with the risks of build
failure such as postbuild part rejection, material failure, or
outright build failure due to parts being packed too closely
together.50

The highest cost machine components are those that heat
and fuse the material, for example, the lasers and scanner
systems.51,52 These components are already produced at large
volumes for other industries, such as semiconductors and

microprocessing,51,53 and so are not likely to benefit from cost
reductions from economies of scale as AM production
increases.
AM’s high machine costs and slow production rates call into

question whether the technology can cost-effectively create
local production of customized products as was previously
envisioned.52 A recent analysis found that, while AM could
theoretically be used to create distributed production,
centralized manufacturing is still economically preferable
because the AM machine costs are too costly and the AM
process is too slow using current AM processes.52

■ DOES AM REDUCE THE ENVIRONMENTAL
IMPACTS AND COSTS OF MASS
MANUFACTURING?

To assess the environmental and economic impact of AM, we
conducted a systematic review of comparative studies of AM

Table 1. continued

Publishing Limited. Tang et al.59 Figure: Reprinted with permission from Elsevier. Copyright 2016 Elsevier. Paris et al.36 Figure: Reprinted with
permission from Elsevier. Copyright 2016 Elsevier. Minetola and Eyers60 Figure: Reprinted with permission from Thingiverse. Copyright 2012
Thingiverse. Raoufi et al.64 Figure: Reprinted with permission from Elsevier. Copyright 2020 Elsevier. Muñoz et al.65 Figure: Reprinted with
permission from Springer. Copyright 2021 Springer. Zhang et al.66 Figure: Reprinted with permission from Elsevier. Copyright 2021 Elsevier.
Lyons et al.67 Figure: Reprinted with permission from Springer. Copyright 2021 Springer. *The maximum length of the bar is set to the largest
value in each comparison group. †The values in italic mean approximate values read from the graphs in the references.

Table 2. Comparison of Economic Impacts between Additive Manufacturing and Traditional Manufacturinga

aAtzeni et al.10 Figures: Reprinted with permission from Emerald Publishing Limited. Copyright 2010 Emerald Publishing Limited. Atzeni and
Salmi11 Figure: Reprinted with permission from Springer Nature. Copyright 2012 Springer Nature. Achillas et al.12 Figures: Reprinted with
permission from Taylor & Francis. Copyright 2017 Taylor & Francis. Laureijs et al.4 Figure: Reprinted with permission from GrabCAD. Copyright
2017 GrabCAD. Cunningham et al.70 Figures: Reprinted with permission from Elsevier. Copyright 2017 Elsevier. Liu23 Figure: Reprinted with
permission from John Wiley and Sons. Copyright 2017 John Wiley and Sons. Lichtenthal̈er et al.71 Figure: Reprinted with permission from Springer
Nature. Copyright 2020 Springer Nature. Kain et al.72 Figure: Reprinted with permission from Elsevier. Copyright 2020 Elsevier. Raoufi et al.64

Figure: Reprinted with permission from Elsevier. Copyright 2020 Elsevier.

Environmental Science & Technology pubs.acs.org/est Critical Review

https://doi.org/10.1021/acs.est.2c04927
Environ. Sci. Technol. 2023, 57, 6373−6386

6377

https://pubs.acs.org/doi/10.1021/acs.est.2c04927?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c04927?fig=tbl2&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c04927?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and traditional manufacturing processes with respect to
environmental and economic impacts. The objectives of the
review were to assess literature that (1) directly compared AM
and traditional manufacturing on the same part, (2) included
quantitative assessment of the environmental and/or economic
impacts, (3) was peer-reviewed, and (4) was published
(relatively) recently so that the findings are relevant to
contemporary AM capabilities. Based on these goals, the
procedure for article collection and selection was first codified
and then performed as follows. First, articles were collected
from Scopus and Web of Science that were published since
1990 with titles or abstracts that include “additive manufactur-
ing” or “3D printing” as well as one of the following keywords
or phrases: “environmental”, “life cycle assessment”, “LCA”,
“sustainability”, “sustainable”, “economic”, “cost”, or “busi-
ness”. We then narrowed this set based on the criteria that the
article must include a quantitative comparison of the economic
costs or the environmental inventories or impacts between AM
and traditional manufacturing. This eliminated papers like
Conner et al., who provided a qualitative assessment of AM.54

From the first step of the collection procedure, we found over
2000 journal and conference papers. In the second step, this
set was narrowed to 28 articles that met the criteria.
Tables 1 and 2 review comparisons of environmental

impacts and production costs of AM and traditional
manufacturing from the literature review. Injection molding
and CNC machining are the most common manufacturing
processes compared to AM in the literature because the market
size of injection molding and CNC machining is larger than
other manufacturing methods of plastic and metal prod-
ucts.55,56 The specific AM process chosen in each study was
selected based on requirements for material, size, geometry,
and functionality of printed parts and include powder-fed
DED, wire-fed DED, PBF-DMLS, PBF-SLM, PBF-EBM,
Binder Jetting (BJ), material extrusion, PolyJet, SLS, and vat
photopolymerization. The parts studied range from small parts
that are 1 in. (25.7 mm) in length to large industrial parts that
are 3.2 feet (980 mm) long. The parts are produced from a
variety of polymers and metals.
A total of 16 studies analyzed the environmental inventories

or impacts of a part when it is produced using AM in
comparison to when it is produced using traditional
manufacturing methods.8,13,14,35,36,57−67 Several of these
studies (6 in total) excluded material extraction and/or end-
of-life recycling or disposal in the study scope. Most of these
studies compared production of the same part made with the
same material for both the AM and traditional manufacturing
case and accounted for differences in material scrap by using
either total material used or the embodied energy and/or CO2
emissions in total material inputs as an indicator. As a result,
we would expect the exclusion of material extraction and end-
of-life to minimally affect the conclusions of these comparative
studies. Ten of the studies excluded material production and/
or postprocessing steps from the study scope. Unlike material
extraction and end-of-life, these stages differ substantially
across AM and traditional manufacturing processes. AM often
requires additional postprocessing steps, such as hot isostatic
pressing to relieve residual stress.4 In addition, the material
feedstock for AM is generally more energy intensive to
produce than that of traditional processes such as injection
molding or milling.7,13 As a result, analyses that omit material
production and/or postprocessing steps from the study scope
are likely to underestimate the comparative lifecycle environ-

mental impacts of AM. In addition to reviewing the findings
across all studies, we investigate whether excluding the studies
that omit material production or postprocessing steps affects
the review but do not find that it changes the findings
presented below (see the Supporting Information for further
details).
The majority of the studies take a lifecycle inventory

approach focusing on energy consumption and/or CO2-eq
emissions. Bekker and Verlinden and Faludi et al. assess end-
point environmental indicators, weighing across 10 impact
categories following ReCiPe.35,62 Paris et al. and Raoufi et al.
use midpoint indicators following ReCiPe.36,64 Of the 6 studies
that assessed multiple environmental indicators, 5 found
consistent results in terms of which manufacturing process
had lower environmental inventories or impacts across all
indicator categories. The one exception is Tang et al., which
found that although BJ had lower energy consumption and
CO2-eq emissions compared to milling, it had a higher effect
on human toxicity (in terms of kg DCB-eq) because BJ uses
large amounts of bronze, which has higher toxicity impacts
during extraction.59 While other studies found that AM had
lower human health or toxicity impacts compared to traditional
manufacturing methods, it is important to note that they did
not account for exposure of production workers to inhalation
of ultrafine particles, which may significantly affect health
effects, particularly when measures are not taken in the
manufacturing facility to mitigate these risks.38 (See the
Supporting Information for a more in-depth discussion.)
A total of 12 studies analyzed the production costs of a part

when it is produced using AM in comparison to when it is
produced using tradit ional manufacturing meth-
ods.4,9−12,23,64,68−72 All include part material, labor, setup,
and machine costs in their production cost models. Laureijs et
al. and Liu are the most comprehensive in terms of additionally
accounting for support material, postprocessing steps, rejected
parts, material waste, labor, maintenance, and overhead
costs.4,23 Out of the 12 studies, 7 do not include maintenance
or overhead costs, which may modestly underestimate the
relative costs of AM compared to traditional manufacturing
due to the longer machine time required for AM. Four of the
studies exclude support material and/or post processing steps,
which may significantly underestimate the costs of AM. In
identifying the range of break-even production volumes where
AM is the lower cost alternative, the upper bound was
determined from a study that did not include support
structures, and therefore, the upper bound should be
interpreted as an estimate most appropriate for part geometries
and manufacturing practices that require little to no support
structures. Further details about the methods, scope, and
findings of the individual studies are discussed in the
Supporting Information.

■ CASES WHERE AM IS ECONOMICALLY AND
ENVIRONMENTALLY PREFERABLE
When Production Volumes Are Low. Because injection

molding requires tooling that is unnecessary in AM, AM has
lower environmental impacts when production volumes are
very low. Telenko and Seepersad found that using SLS to
produce a paintball gun handle had lower energy consumption
at a volume of 50 units per year.13 However, when production
volume is raised to 150 units per year, injection molding results
in lower embodied energy of the part. This is because the SLS
process consumes more energy than injection molding, and the
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energy intensity of the tooling is spread over a larger number
of parts. The specific “break even” production volume at which
injection molding will have lower lifecycle energy consumption
or GHG emissions than AM depends on the part geometry
and the specific AM process. For example, London et al. found
that the multi jet fusion (MJF) process is less energy intensive
than SLS, resulting in a break-even production volume with
respect to GHG emissions of 700 for producing a LCD screen
using MJF compared to injection molding.73

The elimination of tooling also leads to lower production
costs using AM rather than injection molding when running
smaller volume or customized production.9,12,68 As illustrated
in Table 2, the break-even point is between 40 and 87,000
depending on the AM process, the part geometry and material,
and the presence of support structures. For higher production
volumes, AM is less cost-effective than injection molding.
Hopkinson and Dicknes found that producing a cover made of
ABS using stereolithography (SLA) or fused deposition
modeling (FDM) was cheaper than injection molding if the
production volume was lower than 630−640 units.68 At the
other end of the scale, Atzeni et al. found that producing a
lamp holder made of PA 2210 FR using SLS (with no support
structures) was cheaper than injection molding up to 73,000−
87,000 units.10 An economic comparison of PBF and CNC
milling for bearing block production shows that PBF is less
costly than CNC milling when the production volume is less
than 5,000, but the break-even point shifts depending on part
geometry.23

When Traditional Parts Have High Material Waste.
Tables 1 and 2 show that the geometries of parts affect the
environmental impacts and production costs of AM and
traditional manufacturing. In certain cases, AM can offer lower
environmental impacts and lower costs at high production
volumes when the part would have high material waste if
traditionally manufactured. Nopparat and Kianian found that
AM results in parts with lower embodied energy than injection
molding if the rate of material waste in injection molding is
higher than AM due to the large and complex runner system
for injection molding.14 In their case, a scale model of a T-1A
Jayhawk produced at 500,000 units per year by injection
molding consumed 1,230 MWh of energy over the material
processing and manufacturing lifecycle stages whereas
producing the parts from SLA consumed 1,030 MWh. The
lower energy consumption for AM in this case is because the
part is small and so a smaller volume of support structures is
required during AM, whereas many runners are required for
injection molding that leads to relatively large material waste
and high runner material cost.74

When AM is compared to manufacturing methods that
produce a part from stock material, such as machining or
forging, the “solid to envelope” ratio can be used to judge
material waste.75 The solid-to-envelope ratio, also referred to
as the solid-to-cavity volume, is the ratio of final part volume to
the empty volume within the bounding box of a part. Thus, the
ratio is an estimate of how much material is wasted in the
manufacturing process. In aerospace, the inverse of the solid-
to-envelope ratio is used as a common metric, called the buy-
to-fly ratio (BTF).8 In aerospace applications, the average BTF
ratio is typically lower than 1:10, meaning less than 10% of raw
materials remain in the final parts.7,8

Paris et al. used the ratio of the volume of material required
in the milling process to part volume (i.e., the inverse of the
solid-to-envelope ratio) to characterize parts.36 As seen in

Table 1, when the ratio is over 7, PBF has lower environmental
impacts than CNC milling for each of the following ten impact
categories: abiotic depletion, acidification, global warming,
fresh water aquatic ecotoxicity, marine aquatic ecotoxicity,
terrestrial ecotoxicity, nonrenewable fossil consumption, non-
renewable nuclear consumption, renewable potential, and
renewable water. For example, they found that the environ-
mental impacts of using EBM-PBF to produce aeronautical
turbines are reduced by 5−51% compared to milling when the
stock to part ratio is over 7. Morrow et al. find comparable
results: a solid-to-cavity volume ratio of 1:7 leads to higher
energy consumption using DED than CNC milling, whereas
when the ratio is 1:3, DED has lower energy consumption than
milling.8

Similar results are found with respect to the cost-
effectiveness of AM. As shown in Table 2, Allen found that
using current capabilities of PBF and DED had lower
production costs than milling components with a solid-to-
envelope ratio of about 1:12.69 Allen projected that this ratio
could be lowered to about 1:3 for future additive
manufacturing systems with improved laser power conversion
efficiency, faster deposition rate (e.g., 2 kg/h), powder usage
efficiency, and lower powder cost (e.g., 10−20% of current
powder cost).69

When AM Enables Use-Phase Performance Advan-
tages. When AM can enable novel geometry that reduces
lifecycle environmental impacts and costs through the
product’s use, these may offset higher production impacts
and costs. A number of applications of AM for light-weighting
aircraft and automotive components have found that they
reduce lifecycle environmental impacts and costs because of
reduced fuel consumption during the product’s use.4,7,76,77

Huang et al. showed that using AM to produce a range of
aircraft components across the U.S. commercial aircraft fleet
could lead to a reduction of 70−173 million GJ/year of energy
use by 2050, 95−98% of which is due to use-phase fuel savings
by producing AM components that are between 5% and 95%
lighter weight than their traditionally manufactured counter-
parts.7 Laureijs et al. estimated that producing aircraft engine
brackets with EBM and DMLS as opposed to forging leads to
reductions in aircraft fuel cost that outweigh the higher
production costs because it enables the parts to be 80%
lighter.4

In addition to producing lightweight parts, AM can also
enable use-phase energy savings by enabling higher perform-
ance components that are used in energy generation. Recently,
GE optimized the combustion system of the air-cooled H-class
gas turbine by using metal AM, and the efficiency of the gas
turbine increased from 63.7% to 64.0% (which is a meaningful
increase for gas turbines). GE announced that the gas turbines
can be used by over 70 cycle power plants and the increased
efficiency of the turbine will lead to millions in fuel savings for
customers globally.78

When Supply Chains Can Be Shortened. AM can
potentially shorten the length of supply chains by eliminating
intermediate production steps.20,52,79,80 In cases where this
supply chain simplification causes sufficient reduction of the
environmental impacts and costs associated with trans-
portation and supplier operations, it can tip the scales to
make AM the environmentally and economically preferred
alternative. For example, Airbus transports raw aluminum from
Pittsburgh to Taiwan to produce the composite panels of the
A320 aircraft. The composite panels are then transported to
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Toulouse, France and assembled into the final product. When
AM is employed, on the other hand, the raw materials are
transported directly to Toulouse to produce the final products.
If the parts of the A320 are produced through AM in 2050, it is
expected to reduce transport energy to 1.22 PJ/year.20

■ FUTURE DEVELOPMENTS THAT COULD CHANGE
THE EQUATION FOR AM

Under the aforementioned cases, AM is currently environ-
mentally and economically preferred to traditional manufactur-
ing. In other cases, AM has higher environmental impacts and
costs because of expensive and energy intensive material
inputs, additional support structures and postprocessing steps
to remove the supports, and slow production rates, particularly
for high production volumes. For AM to be a sustainable
alternative for mass manufacturing, technological advances are
needed in computer-aided design, materials production, and
use of materials in AM processes. We review recent research in
these areas and identify advances that could make it the lower
cost and environmental impact alternative at higher production
volumes.
Topology Optimization. Topology optimization can

significantly reduce the solid-to-envelope ratios for AM parts
and support structures.81−84 Commonly used topology
optimization methods can minimize the volume of material
used while maintaining stiffness and compliance con-
straints85,86 or minimizing the compliance while maintaining
constraints on volume fraction.82 Recent advances have
allowed optimization of porous infills, such as honeycomb,87

grid-patterns,88 variable-density periodic lattice,89 or rhombic
cells90 to further reduce material use.
Huang et al. reviewed topology optimized AM components

in aerospace and found that the AM parts reduce material use
by 35−65% compared to their traditionally manufactured
counterparts.7 This reduces material costs and has a direct
benefit on machine costs as well: less material means less build
time, which lowers machine costs. The energy consumption of
the optimized AM part was also reduced by 59−91%. For
example, the weight of an A320 nacelle hinge bracket for AM
production was reduced from 918 to 326 g.91 These material
reductions lead to reductions in embodied energy of the part as
well as manufacturing time, postprocessing steps, and trans-
portation throughout the supply chain.
As shown in Figure 2, if we assume that the weight is

reduced by up to 65% through topology optimization of the
product,7 it increases the break-even production volume
between AM and traditionally manufacturing methods. For
example, for the cost model defined by Ruffo et al., the break-
even point shifts from 10,500 to 18,000 parts.9

Similarly, topology optimization of products for AM would
shift the break-even production volume for which AM has
lower environmental impacts than traditional manufacturing
processes. Assuming the same 65% weight savings from
topology optimization, we calculate that the lifecycle energy
consumption of a nylon paintball gun handle from Telenko
and Seepersad’s LCI study reduces such that SLS has lower
lifecycle energy consumption than injection molding at a
production volume of 150 per year (Figure 3).13 In contrast,
the break-even point using the original part weight was only
approximately 50 per year.
Dissolvable Support Structures. Further development

and adoption of multimaterial AM has the potential to
significantly reduce the environmental impacts and production

costs of AM.45,48 Hopkins et al., Ni et al., Hildreth et al., and
Lefky et al. showed that the production costs in AM can be
reduced by selecting support materials that are dissolvable or
easily removed.48,92−94 For polymer AM, the dissolvable
support structures such as PVA (poly(vinyl alcohol)) and
HIPS (high-impact polystyrene) can be utilized; for instance,
PVA is quickly dissolved in water, so using water-soluble
materials can contribute to significantly reducing postprocess-
ing costs to remove support structures.45,93 For metal AM,
Hildreth et al. suggested using dissolvable carbon steel
supports for the powder-fed DED process, which would
reduce the use of the more energy-intensive powder feed-
stock.94 Lefky et al. showed that the use of dissoluble support
structures could also save labor and machining costs required
to remove support structures (e.g., $900-$4,000 for inter-
locking stainless steel rings, depending on part complexity).48

Alternatives for Support Structures. AM processes that
allow for reusable alternatives for support structures can cut
down both the environmental impacts and costs of these
materials. For example, Xu et al. developed a programmable
build platform with dynamically controlled metal pins that can
support plastic parts printed using material extrusion.95 They
found that the reusable pins reduce supporting materials by
64.7% on average (ranging from 22.6% to 100%) and reduce
production time by 63% on average compared to conventional
material extrusion processes.95

Recent research using support baths for polymer or metal
AM has been conducted by Hinton et al. and Yu et al.96,97

Figure 2. Impact of topology optimization on production costs.

Figure 3. Impact of topology optimization on lifecycle energy use.
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Support baths are reusable and can act as support structures by
stabilizing printing parts. Hinton et al. utilized a hydrophilic
Carbopol support bath to print polydimethylsiloxane (PDMS)
polymers, and Yu et al. suggested a supporting method using
the self-healing hydrogel to print liquid metals into macro-
scopic 3D structures.96,97

AM Processes That Do Not Require Support
Structures. Some AM processes such as BJ do not require
support structures, but BJ needs “setters” that are used to
prevent the deformation under the part’s weight during
sintering.98 The setters should be carefully designed to be
compatible with part geometry because of part shrinkage issues
during high-temperature sintering processes, but the setters
can be made of materials such as ceramics that are less energy
intensive and costly than metal AM feedstock, thus giving BJ
an environmental and economic advantage compared to metal
AM processes that require significant support structures.98

Self-supporting Structures. Methods have been devel-
oped to produce part geometries that are self-supporting, thus
eliminating the environmental impacts and costs associated
with support structures. Leary et al. suggested an automated
method to modify topologically optimal geometries for
enabling support-free additive manufacturing in the case of
FDM, and they showed that the total material consumption
and build time of self-supporting structures are less than those
of topologically optimal geometries without self-supporting in
cantilever beam examples.99 The build time and material
consumption were reduced by 54.4% (from 5.7 to 2.6 h) and
38.8% (from 89.7 to 54.9 cm3), respectively. Hu et al.
developed a method of modifying a given part topology by
adjusting the angles and shapes of features to meet minimum
overhang constraints to be self-supporting.100 Figure 4 shows
the optimized geometry and build orientation of the printed
part.

Recent studies have extended self-supporting algorithms to
incorporate overhang constraints directly into topology
optimization.101−103 These methods create density filters that
enforce the overhang constraint at every iteration of the
topology optimization. They accomplish this by defining the
density of any element as a function of the densities of other
elements that can support it based on finite element meshes,101

spatial density gradients,103 or searching for elements in a
defined support region.102 An advantage of these methods is
they find the self-supporting geometry that minimizes
production cost, time, and/or structural compliance or
maximize eigenfrequency, rather than relying on posthoc
modifications to the geometry.101−104

Advances in Material Production. Reducing the energy
consumption and costs to produce AM materials would
significantly improve AM’s environmental and economic

competitiveness with traditional manufacturing processes.
This is particularly an issue with powder feedstock from
high-cost metals such as titanium, where materials can account
for 33−58% of lifecycle energy consumption and 20−77% of
costs.7,23,67,71,105 For polymer AM, although materials make up
a smaller percentage of lifecycle energy consumption and
production costs, AM feedstock can still be 1.4−2.1 times the
energy intensity and 3.6−15.4 times the cost of injection
molding feedstock.10,13,60,106

The minerals from which titanium is processed contain large
amounts of oxygen, which is reduced for smelting before
processing the titanium as a powder or wire stock for AM.
Excess oxygen retained in the titanium feedstock compromises
ductility and fracture toughness and is more common in
powder than the larger stock required for machining, casting,
or forging.107,108 This contributes to the high cost of AM feed
stock as the yield for titanium powder is low. Potential
developments of smelting processes may lower these costs by
reducing the oxygen content in titanium powder and
producing highly spherical powders. The Armstrong process
allows titanium tetrachloride to be reduced to titanium at low
temperatures and results in relatively low amounts of oxygen in
powders.109,110 Because of the lower temperatures and higher
powder yield, the process reduces the energy intensity and cost
of titanium feed stock for AM. Peter et al. found that energy
consumption was cut by 53.4% from 355 to 165 MBtu/ton.109

The Hydride-Dehydride (HDH) process utilizes the chemi-
cally reversible reaction between titanium and hydrogen.111,112

This process hydrogenates titanium feedstock in atmospheric
hydrogen pressure, and the titanium hydride is milled into
powder. As shown in Figure 5, compared to other methods

using gas or plasma atomization, the HDH process can
produce low-cost titanium powders even though the process
still has some issues with irregular particle shapes.111

Fueling gas and plasma atomization processes with less
carbon intensive sources of energy would reduce the lifecycle
CO2 emissions of AM relative to traditional manufacturing
methods such as machining. As decarbonization of industrial
processes evolves, switching to alternative sources of energy,
such as hydrogen, biomass, or fossil fuels with carbon capture
and sequestration may be possible.
Advances in polymer AM feedstock would also help to

improve the competitiveness of AM compared to traditional
manufacturing methods such as injection molding. Common
feedstock for polymer AM includes liquid-type materials (e.g.,
for vat photopolymerization), powder types (e.g., for SLS), and
filament types for material extrusion. In the case of SLS powder
feedstock, the cost is over 15 times that of injection molding
feedstock.10 Current requirements for SLS polymer powders
are that they are spherical and have distributed particle size,
flowability, infrared absorption, low zero viscosity, and low

Figure 4. Example of self-supporting structures from Hu et al.100

Reprinted with permission from ref 100. Copyright 2015 Elsevier.

Figure 5. Micrographs of Ti-6Al-4 V powders using the (a) Kroll
process, (b) Armstrong process, and (c) HDH process.113 Reprinted
with permission from ref 113. Copyright 2018 Maney Publishing.

Environmental Science & Technology pubs.acs.org/est Critical Review

https://doi.org/10.1021/acs.est.2c04927
Environ. Sci. Technol. 2023, 57, 6373−6386

6381

https://pubs.acs.org/doi/10.1021/acs.est.2c04927?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c04927?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c04927?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c04927?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c04927?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c04927?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c04927?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c04927?fig=fig5&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c04927?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


surface tension, which increase the cost of powder
production.114,115 Due to the plastic or viscoelastic material
behavior of polymers, grinding to produce polymer powders is
costly and energy intensive.114 Developing advanced powder
production methods such as wet grinding, rounding, and dry
coating to improve powder flowability will lead to cost
reduction and energy savings of SLS feedstock.114

Increasing the recycled material in AM feedstock could
lower the production costs and environmental impacts of AM
if future advances are made to limit the effects of recycled
content on material properties. Whether the quality and flow
characteristics of AM feedstock and the resulting mechanical
properties of the AM part are degraded depends on many
factors, including the specific material, the AM modality, and
processing parameters. In certain contexts, the tensile strength
and ultimate strength of AM parts have been found to degrade
more quickly with the number of recycling cycles faster than
for injection molded parts.116 Recent research has investigated
how altering the blend of materials and additives can mitigate
this degradation of mechanical properties.117 Another poten-
tially promising route is to include recycled content in the gas
atomization process during powder production, which in the
case of AISI 316L powder was found to slightly improve tensile
strength and maintain the same processability as compared
with primary powder.118

Reducing AM Machine Build Time and Energy Use.
Because of their slower build times, AM machines tend to
result in higher energy consumption and CO2 emissions than
conventional manufacturing machines to produce their parts,
and more machines are needed to produce parts at the same
rate, increasing overall machine costs. Laureijs et al. showed
that the metal AM machine cost accounts for 20−44% of
amortized production costs for DMLS and EBM parts.4

Powering AM facilities with lower-carbon sources of
electricity would help to reduce the CO2 emissions of AM. If
AM facilities are sited in locations where the marginal CO2
emissions of electricity are lower than facilities producing
tooling for traditional manufacturing methods such as casting
and injection molding, this could increase the production
volume for which AM has lower lifecycle CO2 emissions
relative to the traditional manufacturing method.
Increasing build speed would serve to reduce CO2

emissions, energy use, and machine costs associated with
AM. One potential route to reducing AM build time is to use
multilaser AM machines, which can build multiple parts at
once and thus reduce total build times and energy use of
producing the parts. Recently, SLM solution launched a 12-
laser metal PBF machine, which is around 20 times faster than
a single-laser machine and results in significantly less energy
consumption and capital costs than 12 single-laser ma-
chines.119 Whether multilaser machines reduce overall energy
consumption and costs depends on the number of lasers, laser
power, part size, and process parameters.120 Additionally, using
multiple moving lasers during build creates unknown effects on
microstructural properties and defect rates that could under-
mine the advantages.121 Further development is needed to
address these effects and demonstrate that total production
time and energy use accounting for rejected parts is improved
in practice.

■ CONCLUSIONS
While AM parts tend to have lower weight and material use in
their final form, they have higher environmental impacts and

costs associated with more hidden aspects of production that
are not apparent in the final part, such as support structures,
postprocessing, and expensive and energy-intensive feedstocks.
These impacts are not caused by economies of scale and
therefore are not likely to be addressed by increasing use of
AM. We review comparative studies of the environmental
impacts and production costs of AM relative to traditional
manufacturing processes across a wide variety of product
applications, materials, and part geometries. We find that AM
has lower environmental impacts when production volumes are
very low (approximately 1,000 parts per year or less) unless the
part geometry has a solid-to-envelope ratio of 1:7 or above.
The higher relative environmental impacts and production
costs of AM at large production volumes can be offset by one
or more of the following factors: (1) the parts are small and
have geometries with high material waste in traditional
manufacturing; (2) AM offers performance advantages that
reduce lifecycle environmental impacts and costs; (3) portions
of the supply chain are able to be eliminated, reducing the
environmental impacts and costs associated with trans-
portation and facility operations. Future advances in material
production, topology optimization, reusable support structures,
self-supporting structures, and AM process improvements that
speed up printing time while mitigating defects could
potentially tip the scales so that AM has lower environmental
and economic impacts than traditional manufacturing in a
wider set of contexts. Concentrating AM research and
development on these goals would serve to improve both the
economic and environmental advantages of AM in a wider set
of contexts.
The Critical Review also highlights three important

considerations for studies comparing the environmental or
economic impacts of AM in comparison to traditional
manufacturing methods. First, when assessing whether a part
should be produced using AM, the study should use the
redesigned part with the geometry optimized for AM as the
comparison part. Second, material production, support
structures, and postprocessing steps such as removal of support
structures, heat treatment, and any necessary machining or
surface treatment steps should be included in the analysis to
avoid significantly underestimating the environmental impacts
and/or production costs of AM. Third, when the application
involves significant energy use during the use phase that could
be affected by the part geometry or manufacturing process,
LCA and lifecycle costing approaches should be used that
include the use phase as well as upstream lifecycle stages.
Finally, the review shows that the type of manufacturing
process that has lower lifecycle energy consumption and CO2
emissions tends to also have lower impacts with respect to
other ecosystem and resource availability indicators, such as
water use, acidification, and aquatic and terrestrial ecotoxicity.
However, AM may have higher human toxicity impacts even
when it has lower impacts across all other categories. Based on
the review, we recommend that comparative studies of AM and
traditional manufacturing methods include at least lifecycle
energy consumption and/or CO2 emissions, human toxicity,
and lifecycle cost as comparison metrics.
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