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ABSTRACT: This review discusses topics relevant to the
development of antimicrobial nanocoatings and nanoscale
surface modifications for medical and dental applications.
Nanomaterials have unique properties compared to their
micro- and macro-scale counterparts and can be used to reduce
or inhibit bacterial growth, surface colonization and biofilm
development. Generally, nanocoatings exert their antimicrobial
effects through biochemical reactions, production of reactive
oxygen species or ionic release, while modified nanotopog-
raphies create a physically hostile surface for bacteria, killing
cells via biomechanical damage. Nanocoatings may consist of
metal nanoparticles including silver, copper, gold, zinc, titanium, and aluminum, while nonmetallic compounds used in
nanocoatings may be carbon-based in the form of graphene or carbon nanotubes, or composed of silica or chitosan. Surface
nanotopography can be modified by the inclusion of nanoprotrusions or black silicon. Two or more nanomaterials can be
combined to form nanocomposites with distinct chemical or physical characteristics, allowing combination of different
properties such as antimicrobial activity, biocompatibility, strength, and durability. Despite their wide range of applications in
medical engineering, questions have been raised regarding potential toxicity and hazards. Current legal frameworks do not
effectively regulate antimicrobial nanocoatings in matters of safety, with open questions remaining about risk analysis and
occupational exposure limits not considering coating-based approaches. Bacterial resistance to nanomaterials is also a concern,
especially where it may affect wider antimicrobial resistance. Nanocoatings have excellent potential for future use, but safe
development of antimicrobials requires careful consideration of the “One Health” agenda, appropriate legislation, and risk
assessment.
KEYWORDS: antimicrobial, resistance, antibacterial, antibiofilm, antibiotics, nanoparticle, nanomaterial, nanocoating, surface, safety

Engineered nanomaterials (ENMs) are clusters of atoms
forming structures that have at least one dimension in the
size range of 1−100 nm and can be found in different

shapes and forms including nanoparticles, nanocrystals, nano-
rods and nanofibers.1 The behavior of ENMs can differ
significantly from that of their bulk counterparts because their
properties are not determined by their mass or chemical
composition exclusively, as with most macro-materials. Certain
factors affect the biological interactions of ENMs including their
particle size,2,3 shape and surface area to volume ratio,4,5

crystallinity6 and surface charge.7 The unique properties and
behaviors of nanomaterials in comparison to their micro- and
macro-scale counterparts are the driving force behind the
growing body of research in nanotechnology, which allows

materials to be developed with specific desired properties. A
range of ENMs have been found to have potent antimicrobial
properties and as such have enormous potential in medical
engineering applications where inhibition of bacterial growth
and colonization is important. In recent years, the mechanisms
of action of ENMs have become better understood and the exact
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effects that ENMs can have on bacterial or eukaryotic cells are
finally being described, allowing optimization of their anti-
microbial performance while maintaining biocompatibility and
reducing ecological impact.
This review addresses the state of up-to-date research on the

development, application and testing of ENMs with intrinsic
antimicrobial properties as surface coatings for medical and
dental applications. There are plentiful publications examining
nanomaterials as antimicrobial agents8−11 or as carriers for
antimicrobial drug delivery.12,13 However, this review discusses
the use of ENMs in the form of antimicrobial surface
nanocoatings and modification of the surface nanotopography
to achieve infection prevention and control (IPC) in medicine
and dentistry. The electronic search was conducted by applying
a combination of subject terms and keywords on databases
including PubMed, Scopus, Google Scholar, and Web of
Science. The keywords applied to the searches were: (nanoma-
terial OR nanoparticle OR nanocoating OR nanotechnology)
AND (antimicrobial OR antibacterial OR antifungal OR
antibiofilm OR infection). Quality criteria included an assess-
ment of experimental design and appropriate controls,
comparisons, and conclusions in the published and peer-
reviewed English-language literature. Publications with insuffi-
cient detail or relevance, poor descriptions of methodology, lack
of replication, or inadequate material characterization were
excluded. Examples were also chosen to show a representative
selection of materials and applications; these selected examples
from the published literature are presented in Tables 1−4.
Representative example images of nanocoatings are also shown
in Figures 2 and 4. The aims of this review are: (a) to present and
discuss the types of antimicrobial nanocoatings available where
the nanomaterial itself is intrinsically antimicrobial and assess

their reported efficacy, (b) to evaluate the importance and
relevance of nanocoatings and surface nanotopography as
alternative antimicrobial strategies in the wider context of
antimicrobial resistance and infection prevention and control,
and (c) to discuss the general pitfalls and safety considerations
associated with clinical applications.

ANTIMICROBIAL MECHANISMS OF NANOPARTICLES
The antimicrobial mechanisms of nanoparticles (NPs) are
increasingly being understood in detail and are summarized in
Figure 1. Generally, these mechanisms can be classified as direct
contact-mediated killing and ion-mediated killing. Direct
contact-mediated killing involves NP anchorage to and
infiltration of the bacterial cell wall; this leads to membrane
damage, leakage of cellular contents and ultimately may alone
result in bacterial death.14−17 In this way, large NPs that cannot
translocate the bacterial cell wall can still exert bactericidal
effects by adsorption and thereby causing mechanical
deformation leading to cell rupture and death.18 Upon
penetration of the cell wall, NPs gain access to the cell interior
and interfere with the function of intracellular biomolecules or
structures such as proteins, organelles, and DNA either by direct
interactions or by generation of ions. It is possible that NPs may
also gain access to the cell without causingmembrane damage by
way of the protein corona effect, in which NPs in biological
environments become modified by adsorption of biomolecules
to their surface.19,20 Protein-occluded NPs become akin to a
“trojan horse” and gain easier entry into the cell; however, while
this has been shown to occur in eukaryotic cells,21,22 it is not
known whether the mechanism can be generalized to include
bacteria.

Figure 1. Antimicrobial mechanisms of nanoparticles. Nanoparticles gain entry by damaging the cell wall. Damage to the cell wall by
nanoparticle entry may itself lead to leakage of ions and metabolites, conferring an antimicrobial effect. Nanoparticles act as a reservoir of ions
which go on to interact intracellularly with ribosomes, nucleic acids, and enzymes, disrupting normal function. Interruption of the respiratory
chain leads to generation of reactive oxygen species which create oxidative stress and damage cell components. Figure was created using
BioRender.com.
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The generation of ions (e.g., Ag+ or Cu2+) is broadly correlated
with NP surface area, with greater surface area leading to greater
ion production and thus greater antimicrobial activity.23 NPs
may function as a “bank” of ions once inside the cell,
continuously releasing them and prolonging or strengthening
the antibacterial effect. Liberated metal cations can interact with
thiol (sulfhydryl) groups in bacterial enzymes, forming stable
bonds and disrupting function in essential molecules involved in
transmembrane energy generation and electrolyte transport.24

Metal cations such as Ag+ can uncouple the respiratory electron
transport chain from oxidative phosphorylation and interfere
with penetration of H+ and phosphate into membranes.25−27

Within the bacterial cell, metal cations can form complexes with
nuclear material by intercalation between base pairs, disrupting
hydrogen bonds and ultimately preventing effective cell
division.28,29 The production of reactive oxygen species
(ROS), either by disruption of the thioredoxin system30 or by
interaction with the respiratory chain and interruption of
intracellular O2 reduction,31 is a major ion-mediated killing
mechanism.
Generally, the mechanisms mentioned above overlap and

cumulatively contribute to an antimicrobial effect. In some cases,
however, certain mechanisms are considered to be more
prominent for specific nanomaterials than for others. For
example, nanosilver binds to the thiol groups of cysteine
residues, which are frequently crucial for many proteins to
maintain their integrity and function.32 Meanwhile, for nano-
materials consisting of oxides, such as TiO2, ZnO, CuO and
Al2O3, toxicity to bacteria is predominantly the result of ROS
generation.33−35 However, it is also clear that nonoxide NPs
such as Se NPs36 and NPs composed of Ag, Cu, Fe, Mn, Co, Au,
or Pt also generate ROS.37

BIOFILM DEVELOPMENT AND ANTIMICROBIAL
RESISTANCE
Biofilms are communities of bacteria organized into localized,
heterogeneous and sessile aggregations that form when bacteria
accumulate and adhere to surfaces, forming a thin but robust
layer. The bacteria in biofilms are embedded within and secrete a
mixture of biomolecules making up a dynamic matrix
collectively termed extracellular polymeric substances (EPS).
The EPS is composed of a complex assembly of protein,
polysaccharide, and extracellular DNA, resulting in a three-
dimensional architecture.38,39 The EPS has several roles
including physical protection from shear forces, antimicrobials,
and immune responses, enabling the diffusion of nutrients
through the biofilm, and facilitating horizontal transfer of
genes.40,41 The EPS layer confers a level of hydrophobicity
which prevents permeation by most extraneous molecules and
makes the biofilm very resilient, with some authors even
referring to it as “omniphobic” − i.e., repelling all substances.42
Experiments conducted in vitro have demonstrated that bacteria
residing in mature biofilms can be between 10−1,000 fold more
resistant to antibiotics than their equivalent planktonic cells,
demonstrating the extremely robust nature of biofilms once
formed.43,44 In this way, biofilm formation represents a major
strategy allowing bacteria to defend against antimicrobial attack,
facilitating resistance. Biofilms are ubiquitous in the environ-
ment, increasingly being considered the predominant means by
which microbes thrive in their niche,45 including in the human
body, but can present particular health concerns due to their
ability to harbor pathogens and resist disinfectants46,47 and
antibiotics.48−51

Antimicrobial resistance (AMR) is the outcome of micro-
organisms changing over time to be able to survive exposure to
antimicrobial medicines such as antibiotics which are designed
to kill them or inhibit their growth. The recent repeated
warnings regarding the rise of AMR in bacteria, the major
clinical challenges that this imposes,52 and the various national
and international efforts to develop novel antimicrobials in order
to maintain our ability to fight bacterial infections underscore
the importance of antimicrobial nanomaterials to biomedical
research, engineering, and clinical practice. One study found
that the burden of antibiotic-resistant infections is comparable
to the cumulative burden of influenza, tuberculosis, and HIV,
most seriously affecting children aged <1 year and the elderly
aged >65 years.53 Furthermore, it was reported that about 75%
of the total antibiotic-resistant infection burden was associated
with healthcare and 39% of all antibiotic-resistant infections are
caused by bacteria with resistance to last-line or last-resort
antibiotics, indicating that they are very difficult or even
potentially impossible to treat. The UK government-commis-
sioned O’Neill review54 on drug-resistant infections reported
that at current rates, by 2050, AMRwill lead to 10million deaths
a year, a 2.0−3.5% reduction in gross domestic product and will
cost the world up to US$100 trillion. A study of the global AMR
burden in 2019 estimated that 4.95 million deaths were
associated with bacterial AMR, with 1.27 million deaths directly
attributable to AMR.55 Unfortunately, the discovery and
development of new antibiotics is not straightforward; no
majorly impactful classes of antibiotics were introduced between
1962 and 2000,56 although the approval of daptomycin57 by the
US Food and Drug Administration (FDA) in 2003 is often cited
as one example of success. The global antibiotics market is
dominated by classes introduced half a century ago56 and the
majority of the pharmaceutical industry has dismantled or
scaled back its antibiotic research laboratories, leaving an
inadequate antibiotic pipeline and lack of industry infrastructure
and expertise.58,59 The divestment in antibiotic R&D by the
pharmaceutical industry is largely driven by poor returns on
investment and it is now widely acknowledged that reimburse-
ment for antibiotic development needs to be delinked from sales
volumes.60 There are several international initiatives now in
place that aim to “fix” the antibiotic R&D funding model: a UK
scheme is being trialed where the Government will pay
manufacturers a fixed fee for access to new antibiotics; similar
approaches are being adopted in Germany and Sweden with a
premium being paid for selected antibacterial agents; and in the
US the PASTEUR Act will ensure annual revenues for new
antibiotics meet a minimum level that is acceptable to
industry.61

To address the recommendations of the O’Neill report, and
ultimately reduce the global burden of AMR, both new
antibiotics and new alternative antimicrobial strategies are
urgently needed. As biofilms−once formed−provide such an
effective barrier against antimicrobial attack, novel strategies
which inhibit biofilm formation must be sought.

USE OF NANOCOATINGS AS A STRATEGY FOR
INFECTION PREVENTION AND CONTROL
As the effectiveness of currently available antibiotics is being
undermined by rising AMR, nanotechnology seems to be a
promising alternative strategy for treatment or IPC. Certain
types of free NPs suspended in solutions have been found to be
highly effective antimicrobials under in vitro conditions.62−64

However, their application in an immobilized form, such as
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Figure 2. Representative scanning electron micrographs of antimicrobial nanocoatings. (A) Poly(methyl methacrylate) and silver nanoparticles
desposited on silicon wafers. Reprinted with permission from ref 76. Copyright 2017 Elsevier. (B) Dentine coated with silver nanoparticles.
Reprinted with permission from ref 77. Copyright 2014 Taylor & Francis Ltd. (C) Multiwalled carbon nanotubes decorated with silver
nanoparticles. Reprinted with permission under a Creative Commons CC BY 3.0 License from ref 78. Copyright 2014 Hindawi Publishing
Corporation. (D) Silver nanoparticles and zinc oxide nanoparticles embedded on graphene oxide. Reprinted with permission under a Creative
Commons CC BY 4.0 License from ref 79. Copyright 2019 MDPI. (E) Fabric coated with poly(styrenesulfonate), chitosan and silver
nanoparticles. Reprinted with permission from ref 80. Copyright 2020 Elsevier. (F) Silica nanoparticles applied to a titanium substrate by a
microarc oxidation technique. Reprinted with permission from ref 81. Copyright 2017 Elsevier. (G) High aspect ratio (30 μm) vertically aligned
carbon nanotubes. Reprinted with permission from ref 82. Copyright 2018 American Chemical Society. (H) Upper surface of black silicon with
the green arrow indicating the relative height of the nanoprotrusion on the surface. Reprinted with permission from ref 83. Copyright 2013
Springer Nature.

Figure 3. Advantages of implanted materials incorporating antimicrobial nanocoatings over those without. Implanted materials without
antimicrobial nanocoatings become colonized by bacteria encountering the surface and forming biofilms. Prophylactic antibiotics are often
given systemically, bringing side effects to the patient and exposing all bacteria to antibiotics, raising the risk of antimicrobial resistance. High
doses of antibiotics are also required to eradicate mature biofilms. When antimicrobial nanocoatings are incorporated on the surfaces of
implanted materials, the surface remains uncolonized and antibiotic use may not be required, leading to fewer patient side effects and less
exposure of bacteria to antibiotics. While the antimicrobial effects of nanocoatings are local compared to systemic antibiotics, nanocoatings
exert an antimicrobial effect beyond the immediate surface and cause bacteria nearby to move away or become damaged. Figure was created
using BioRender.com.
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nanocoatings, is a way to maximize their antibacterial efficacy
while minimizing material loss (see representative examples in
Figure 2). Regarding surface application of antimicrobials, the
ideal scenario for IPC would be inhibition of initial biofilm
formation, which requires interruption of bacterial adherence to
substrates or early toxicity to bacteria. A “race for the surface”
effect has been suggested, in which the first cells colonizing a
surface tend to be the ones to successfully develop a community
on that surface.65,66 An experimental setup investigating the
“race for the surface” between eukaryotic U2OS osteosarcoma
cells and Staphylococcus epidermidis demonstrated realistic
competition between cells, which can be affected by conditions
such as medium flow rate and initial bacterial inoculum.67 This
antagonistic effect between eukaryotic cells and bacteria could
be the key to a successful strategy relying on the use of
antimicrobial nanocoatings; preventing bacteria from initially
establishing dominance on surfaces while allowing cells (e.g.,
host cells in the case of implanted biomaterials) to adhere.
The use of implanted biomaterials and medical devices

continues to increase year upon year mainly because of the aging
population and advancement of medical engineering. Implants
may include joint replacements, internal fixation orthopedic
implants (e.g., screws, pins, plates), bone cements, dental and
maxillofacial implants, tissue engineering scaffolds, artificial
heart valves, pacemakers, stents, catheters, and wound dressings.
Despite their high success rate, implants can still fail because of
lack of biocompatibility and immunological rejection. However,
development of peri-implantitis, which is caused by infection,
remains the most common reason for implant failure.68

Infections caused by colonization of medical or dental implants
can result in patient morbidity and mortality, as well as the need
for repeated surgeries with associated financial cost, patient
distress and wasted resources. Application of suitable nano-
coatings to the surface of implants could offer IPC through
inhibition of bacterial colonization and biofilm formation.69

Around half of all nosocomial infections are associated with
indwelling medical devices,70 and in addition to the medical
devices that come in direct contact with human tissues, there are
a wealth of other surfaces in a clinical environment which can
serve as reservoirs of pathogenic microbes. Examples include
high-touch surfaces such as preparation surfaces in hospital
kitchens and operating theaters, door handles, bedrails, taps,
bedding, patient gowns, and scrubs. Detergents and disinfec-
tants are currently used to improve hospital cleanliness but
clearly have failed to eliminate the problem,71−73 and resistance
is emerging.74,75 Applying durable antimicrobial nanocoatings to
those surfaces could reduce the spread of infection since they
could offer a long-lasting effect.
In the context of implanted biomaterials, antimicrobial

nanocoatings offer advantages over antibiotics (Figure 3). One
advantage is the exertion of effects locally rather than
systemically, as the immediate surface is protected by the
nanocoating while other tissues distant from the implant site are
not exposed to the antimicrobial. Related to this, nanocoatings
may improve the patient experience by avoiding the side
effects84 and complications85 of antibiotics. Furthermore,
antimicrobial nanocoatings would facilitate a reduction in
antibiotic usage, allowing them to be reserved for other essential
therapeutic applications, and may thereby reduce the oppor-
tunity for selection of antibiotic resistant bacteria.

FACTORS AFFECTING ANTIMICROBIAL ACTIVITY OF
ENMS
The activity of nanoparticulate metals differs from that of their
bulk counterparts with factors such as NP size, shape, surface
charge and elemental composition, playing a pivotal role in not
only their physical and chemical characteristics but also their
antimicrobial behavior. Due to the differing dimensions among
published research and frequent lack of a systematic or easily
comparable approach, it can be difficult to determine which
properties confer the most potent antimicrobial effects. In some
cases, it is difficult to conclude which properties are optimal
given that different authors tend not to compare the same
conditions, and thus there is generally a lack of direct replication
of studies. It is clear though that there are complex interactions
between size, shape, method of production and exposure
conditions which affect overall antimicrobial activities. A greater
understanding and appreciation of these properties and their
combined effects on ENM antimicrobial activity will allow better
fine-tuning of effects and improve suitability of ENMs to their
applications.86

Size. Baker et al.87 investigated the effect of size on
antibacterial activity in silver NPs and found that NPs with a
mean size of 15 nm exhibited higher antibacterial activity against
Escherichia coli compared to those of 75 nm. Bactericidal
properties against other Gram-negative bacteria including
Pseudomonas aeruginosa, Vibrio cholerae, and Salmonella Typhi
have also been found to be optimal for particles having a
diameter of approximately 1−10 nm.88 The trend of
antimicrobial activity increasing with decreasing NP size has
been confirmed by multiple other studies.89−91

Shape (Particle Morphology). In general, spherical NPs
are the most common, but other shapes including rods, cubes,
flakes, and tubes are available. Some authors suggest that
triangular nanoplates have the strongest biocidal activity,92 while
others suggest cubic NPs are the most effective due to the
exposed planes.93 The differences in activity related to particle
shape or morphology appear to be due to variations in ionic
release as an expression of the total surface area.94 Thus, particle
morphology could be a valuable variable used to tune
nanoparticle effects for intended applications, facilitating a
controlled design.86

Surface Charge. Zinc oxide NPs with a positive surface
charge have been shown to exhibit antimicrobial activity against
both Gram positive and Gram-negative bacteria, while NPs of
the same size but with negative surface charge did not exhibit any
inhibition of bacterial growth. This is hypothesized to be due to
the positive surface charge of the NPs enhancing ROS
production and applying mechanical stress on the negatively
charged bacterial membrane.95 Zwitterion-modified silver NPs
have been shown to be designed to shift their surface charge in
response to differing pH conditions, allowing more targeted
antimicrobial activity. This is achieved by NPs responding to
physiological pH in healthy tissues while adhering to negatively
charged bacteria at infectious sites with lower pH values.96

TYPES OF NANOCOATINGS
Nanomaterials can vary significantly in shape, size, elemental
composition, synthesis, presentation, and surface modifications,
which means that there is a wide range of different types of
nanocoatings available or currently under development. In this
review, nanocoatings have been classified according to the family
of materials they consist of: metal and metal oxide NPs (Table
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1), ceramic, and nonmetallic NPs, including carbon-based
nanomaterials (Table 2). Representative example images from
studies describing antimicrobial nanocoatings can be seen in
Figure 4.
Metal and Metal Oxide Nanocoatings. Metal com-

pounds have been used as antimicrobial agents since antiquity
with silver, zinc, titanium, copper and gold having received the
most interest, each showing different properties and antimicro-
bial efficacy.97

Silver Nanocoatings. Bulk metallic silver (Ag) has been
known for its inherent antimicrobial properties since 4000
BCE,98,99 well before the introduction of the first antibiotics.
More recently, Ag has been used in medical devices such as
wound dressings and catheters to restrict or impede bacterial
growth and biofilm formation.100−102

Silver nanoparticles (Ag NPs) applied as nanocoatings have
been investigated in the context of medical implants and
prostheses. In the oral cavity, bacteria must adhere to surfaces
and form biofilms to survive and proliferate; nutrients in
aqueous environments tend to accumulate on surfaces, and
adhesion allows bacteria to resist the shear forces of salivary fluid
movement and passage to the gastrointestinal tract beyond.103

As such, prevention of initial bacterial adherence and biofilm
formation or reducing the rate of biofilm development and
maturation appear to be the major goals of antimicrobial surface
coatings in dentistry. Ag NPs have been applied in the form of
nanocoatings directly to the surface of dentine.77 The Ag
nanocoatings were found to be stable in biological fluids, prevent
biofilm formation, and inhibit bacterial growth in the
surrounding media. Ag NPs in this form were also found to be
more bactericidal toward the oral pathogen Streptococcus mutans

when compared to the oral disinfectant chlorhexidine. Despite
Ag NPs being equally as bactericidal as silver nitrate (AgNO3),
they did not cause dentine discoloration. Similar nanocoatings
were later studied following application to titanium alloy
orthopedic medical implants; silver-plated discs exhibited the
highest antibacterial activity and strongest antibiofilm activity
while experiencing very little material loss as a result of silver
dissolution from the nanocoatings.69 Ag nanocoatings applied to
the surface of silicone maxillofacial prostheses were found to
prevent fungal infection caused by Candida albicans in vitro,
while being highly biocompatible with dermal fibroblasts.104

These studies have demonstrated that application of silver
nanocoatings to medical implants and tissues is a promising
alternative antimicrobial strategy that also addresses potential
biocompatibility issues. However, it should be noted that these
studies were exclusively performed in vitro.
Meran et al.104 suggested good compatibility between Ag NPs

and eukaryotic cells, a critical issue in nanomaterial development
for clinical applications. A major advantage of Ag NPs is their
low toxicity to mammalian cells relative to their bactericidal
concentration. This means that although it is possible for them
to be toxic to mammalian cells, this can only be possible at
concentrations higher than those required to demonstrate
bactericidal activity. The minimum inhibitory concentration
(MIC) or minimum bactericidal concentration (MBC) of Ag
NPs can be difficult to reliably determine using visual methods
alone and turbidity corrections must be made because turbidity
caused by NP dispersions can mask absorbance caused by
bacterial growth at NP concentrations above 12.5 μg mL−1.62

Corrections are particle-specific as NP properties such as size,
shape and crystallinity affect measurements of absorbance.

Figure 4. Representative examples of nanocoated surfaces showing antimicrobial activity compared to uncoated controls. (A) Streptococcus
sanguinis biofilm on the surface of uncoated control titanium alloy implants compared to (B) absence of biofilm formation on those implants
following application of a dual layer silver-hydroxyapatite nanocoating. Reprinted with permission from ref 69. Copyright 2017 Taylor &
Francis Ltd. (C) Confocal laser scanning microscopy live/dead image of Streptococcus mutans biofilm on uncoated Invisalign aligners compared
to (D) reduced biofilm formation on gold nanocluster-coated aligners. Reprinted with permission from ref 129. Copyright 2020 American
Chemical Society. (E) Confocal laser scanning microscopy live/dead image of Staphylococcus aureus biofilm on control surfaces compared to
(F) surfaces coated with stearic acid nanostructures where fewer live bacteria and far more dead bacteria were present. Reprinted with
permission from ref 130. Copyright 2017 Elsevier. (G) Atomic force microscopy image of Staphylococcus aureus biofilm on a control surface
compared to (H) limited biofilm formation on surfaces coated with graphene oxide. Reprinted with permission from ref 131. Copyright 2017
American Chemical Society.
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ReportedMIC values for Ag NPs include 67 μg mL−1 against a 6
× 105 CFU mL−1 inoculum of Streptococcus mutans105 or 4.9 ±
2.7 μgmL−1 against a 1.5× 105 CFUmL−1 inoculum of the same
bacterium and an MBC of 6.25 μg mL−1.106 These findings
highlight the extent to which seemingly similar studies can
provide quite varying results, with proteins present in different
growth media and the resulting protein corona effect being
responsible for those differences.107,108 An MBC of 6.25 μg
mL−1 has also been reported for the pathogens Listeria
monocytogenes, Escherichia coli O157:H7, Salmonella Typhimu-
rium, and Vibrio parahemolyticus.109 The minimum concen-
tration having damaging effects on eukaryotic cells has
consistently been found to be above 5 μg mL−1 in different
cell lines.110−112 Other studies on Ag NPs have reported much
higher values as minimum cytotoxic concentrations: 30 μg
mL−1113 or even 61 μg mL−1.114 These data suggest that there is
likely to be a sufficient window of concentration within which to
design nanocoatings with appropriate nanoparticle release
profiles. A balance must be achieved, generating a high enough
concentration of Ag NPs in the local environment to have
sufficient effect on bacteria without causing such a high material
release as to lead to host cell toxicity or local tissue damage.
The balance of robust antibacterial efficacy with minimal

toxicity to eukaryotic cells has been investigated using a porous
poly(methyl methacrylate) (PMMA) substrate, a biomaterial
highly susceptible to bacterial colonization, combined with a
coating of immobilized Ag NPs.76 The Ag NP thin film was
applied using pulsed laser deposition, a process optimized by
varying the total laser pulses to alter the thickness of the film.
The study showed that it was feasible to develop a
manufacturing process to apply the optimal amount of Ag
NPs to a PMMA medical implant, minimizing the risk of
bacterial colonization while simultaneously reducing the risk of a
patient adverse reaction.
Agnihotri et al.115 investigated Ag NPs immobilized on a

functionalized silica surface. Their findings underscored contact
killing as the predominant bactericidal mechanism in this
context, and showed that immobilized (i.e., surface-coated) NPs
demonstrated greater efficacy than colloidal NPs of the same size
and morphology. The tested Ag NP-glass surface was shown to
be bactericidal for all three bacterial strains (two of Escherichia
coli and one of Bacillus subtilis) investigated at both initial
bacterial densities (103 and 105 CFU mL−1), and complete
disinfection (quantified by viable counts of zero in duplicate)
was achieved within 2 h for all test conditions. As would be
expected, a higher initial bacterial load resulted in a longer time
to disinfection, highlighting the importance of standardizing and
reporting this value in future work. It was also found that coated
surfaces could be reusedmany times without loss of antibacterial
activity; complete disinfection of an initial bacterial load of 103
CFU mL−1 of Escherichia coli was achieved within 50 min, even
when the surface was used for the 11th time. Disinfection was still
achieved even when ionic silver release from the surface was very
low (0.0109 μg mL−1).115 It would be valuable to investigate
how more relevant physiological media containing proteins and
other solutes can affect the efficacy of this type of coating; it is
well-known that exposure of Ag NPs to physiological media
containing proteins and other biomolecules compared to
deionized water tends to cause greater agglomeration and
more pronounced loss of antimicrobial activity,116 though this
effect may potentially be circumvented by surface coating
treatments aiming to prevent NP agglomeration. The relevance
of this effect also depends upon the intended application of the

nanocoating; it would be less relevant in a setting where
nanocoatings are applied to clinical environmental surfaces (e.g.,
bed rails, hospital fabrics, and door handles) compared to
implanted medical devices that are exposed to high concen-
trations of biomolecules.

Copper Nanocoatings. Similar to Ag, copper (Cu) has been
known to have biocidal effects since antiquity, with some more
recent applications testing its use for high-touch surfaces (e.g.,
door handles, bathroom fixtures, and hospital bed rails)117 and
fabrics.118 Despite the encouraging evidence on antimicrobial
activity, concerns about the toxicity and ecological impact of Cu
NPs are likely to be the reason preventing further investigation
of their use as antimicrobial nanocoatings. There is evidence that
Cu NPs are toxic to mammalian somatosensory neurons, with
greatest toxicity resulting from smaller NP size and higher
concentrations.119 This is a significant finding as nanomaterials
can be transported in a retrogrademanner from nerve endings in
skin to neurons in the dorsal root ganglion.120 Additionally, Cu
NPs have been reported to be acutely toxic to zebrafish (Danio
rerio), with the gill being the primary target,121 and cause
retardation of zebrafish embryonic development and morpho-
logical malformation of larvae.122 The fate of Cu NPs in the
environment is also different to that of other nanomaterials. For
instance, sulfidation of CuO NPs to form Cu2S or CuS in
environments with augmented sulfide levels, such as in
wastewater treatment plants, increases solubility rather than
decreasing it (as is the case with Ag and ZnO NPs) and leads to
greater Cu2+ release,123 therefore resulting in increased toxicity
to aquatic organisms.124

Despite the ecotoxicity concerns around Cu nanomaterials,
there have been reports on their use as part of antimicrobial
strategies. In order to combine and maximize the effects of the
high surface area to volume ratio of NPs and the high aspect ratio
of MWCNTs, CuO NPs have been investigated as an
application to MWCNTs in contact with eukaryotic cells.
Additionally, decoration of CuO NPs onto MWCNTs was
anticipated to limit absorption of NPs by the human body as well
as reduce the loss of NPs to the environment, addressing the
ecological concerns to some extent. Mean average sizes of both
cupric (CuO) and cuprous (Cu2O) NPs were <10 nm, which is
generally at the smaller end of the spectrum for NPs.
Cytotoxicity to human dermal fibroblasts only occurred at a
relatively high concentration of 150 μg mL−1, while at 100 μg
mL−1, some changes to cell morphology were observed but the
proportions of live and dead cells remained unaffected.
Comparatively, marked antibacterial activity was observed at
60 and 50 μg mL−1. Biofilm development by Methylobacterium
spp. was inhibited at biocompatible concentrations, and
furthermore the CuO/MWCNTs effectively managed to
remove preformed biofilms. This study invokes optimism for
the synergistic bactericidal and antibiofilm properties of CuO
NPs decorated on MWCNTs.
Other studies have confirmed the potent antibacterial activity

of CuONPs when applied as coatings against Escherichia coli,125

Staphylococcus aureus,126 and Pseudomonas aeruginosa127 as well
as antibiotic resistant bacteria such as methicillin-resistant
Staphylococcus aureus.128 LewisOscar et al.127 demonstrated that
CuO NPs had a strong antibiofilm effect, with a maximum of
94% biofilm inhibition against clinical strains of Pseudomonas
aeruginosa, at a concentration of only 0.1 μg mL−1. This
relatively low concentration demonstrating such potent
antibiofilm effects makes CuO NPs an attractive option for
antimicrobial nanocoating development. In addition, CuO NPs
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at that concentration inhibited the production of EPS by up to
93%, complementing the principal antibiofilm properties by
preventing the formation of a protective EPS layer by the
proportion of bacteria able to form a biofilm. These findings
highlight the potent antibiofilm properties that CuO NPs have
and which would be highly relevant to antimicrobial nano-
coatings.
Gold Nanocoatings. Gold (Au) has been used as an anti-

inflammatory agent for the chronic inflammatory disease
rheumatoid arthritis, specifically as a disease-modifying
antirheumatic drug. However, use of Au salts was replaced by
alternative drugs in the 1990s due to adverse effects, limited
efficacy and slow relief of symptoms.132 While this was a setback
for the use of Au inmodernmedicine, more recently Au has been
reconsidered for use in nanomedicine.133 Research suggests Au
NPs have potentially reduced relative toxicity and lower masses
required to achieve therapeutic efficacy, which makes them an
attractive option. However, other studies have exhibited
opposing results disputing their potential for clinical use.
Au NPs have been reported to lack inherent antibacterial

properties altogether134,135 or to inhibit biofilm formation
without having toxic effects against pathogens.136 Other studies
have suggested that they do have an antibacterial effect, but this
is weak, with high MIC values measured (e.g., 197 μg mL−1

against Streptococcus mutans).106 Another study found no
concentration-dependent effects of Au NPs against Escherichia
coli, but did report that Au NPs affected cell division.137 There is
evidence that Au NPs have antifungal effects, with one study
reporting excellent size-dependent antifungal activity against
Candida isolates.138

Presumably due to their lack of clear potent antibacterial
effects, there is little evidence in the published literature
describing the use of Au NPs in antimicrobial coatings.
Adsorption of Au NPs on a silica surface tested against
Escherichia coli and Staphylococcus aureus did not demonstrate
any bactericidal properties.139 Au NPs can be applied as a shell
around a dielectric core to produce an Au nanoshell, while these
structures are physiologically inert, they can have photothermal
effects and generate significant heat by their strong surface
plasmon resonance. The plasmon resonance can be tuned to
different wavelengths by varying the relative size of the dielectric
core and the thickness of the Au layer.140 These Au nanoshells
were applied to a silicone catheter surface and tested for
antimicrobial activity against a drug-resistant strain of Enter-
ococcus faecalis using a near-infrared diode laser to produce heat
with potentially bactericidal effects. Application of the laser for 5
and 10 min resulted in severely diminished surviving bacterial
numbers, with scanning electron microscopy showing thermally
induced rupturing of bacterial cell walls.141 The success of the
nanoshell coating becoming antimicrobial upon exposure to the
near-infrared laser suggests a possible mechanism where
segments of silicone catheter or other materials could be coated
and subsequently sterilized on a regular basis. The comparative
effects on bacteria in biofilms should also be investigated, though
due to the physical method of bacterial killing, it is unlikely that
biofilm formation alone would protect bacteria from the
relatively high local temperatures (73 °C) encountered.
There is another field of research examining the use of AuNPs

in combination with other molecules to deliver an antimicrobial
effect, for example, by doping Au NPs with a tRNA analogue,142

loading them with 5-fluorouracil, an anticancer drug,143 or by
coating them with the antibiotic amoxicillin.144 This type of
application has previously been reviewed145 and is beyond the

scope of this review because in those cases, the nanomaterial
itself was not the active antimicrobial but acted as a carrier for
drug delivery.

Zinc Nanocoatings. Zinc NPs are most used as antimicro-
bials in the form of zinc oxide (ZnO). A proposed benefit for
ZnO nanocoatings applied to orthopedic or dental implants is
the effect of zinc in augmenting bone formation by stimulation
of osteoblast activity and cell proliferation.146,147 Zinc also has a
role as a cofactor for collagen synthesis, and supports bone
mineralization via alkaline phosphatase.148 This strong associ-
ation with bone formation and mineralization makes ZnO NPs
ideal candidates for use in antimicrobial nanocoatings near
calcified tissues, such as bone scaffolds and joint replacement
implants. The antimicrobial effects of ZnO NPs appear to be
high, albeit potentially dependent on the morphology of the
nanocoating. The strongest antimicrobial effect has been
observed for nanomaterials with rod-like morphology and a
high degree of crystallinity.149 These findings were contradicted
by another study150 showing that ZnO nanocoatings had strong
antibacterial activity toward Escherichia coli and Staphylococcus
aureus, but no significant differences between particle
morphologies were observed. Light-producing biosensor
versions of the bacterial cells acting as reporters (constitutively
expressing the Lux operon and emitting a light signal correlating
with cell numbers) allowed real-time measurement of the
antibacterial effect, demonstrating that a long incubation was
not necessary; the antibacterial effects of ZnO nanocoatings
were apparent even after short exposure times. Antibacterial
effect also increases with thicker films of NPs, affecting the
bacterial generation time and essentially retarding growth and
leading to fewer bacterial cells present.151 Thicker films consist
of larger quantities of NPs and presumably result in higher local
concentrations of ions following NP dissolution.
Despite ZnO NPs showing good bactericidal efficacy, their

biocompatibility and cytotoxic effects must also be considered.
It has been reported that ZnO nanofilms significantly decrease
cell viability (as confirmed by MTT assay) of cultured
macrophages by 54% and 65% depending on NP size (100
and 20 nm, respectively) after a 48 h incubation, although no
cytotoxicity was measured after 24 h.152 This initial lack of
cytotoxic effect suggests a gradual release of material which
accumulates over time to produce a more cytotoxic concen-
tration, or alternatively could suggest a time-dependent
cytotoxic effect. This contrasts with the alternative toxicoki-
netics where most material is released faster in the short term,
causing higher toxicity in the early stages. A later report
highlighted that direct exposure of cells to ZnO nanofilms could
cause apoptosis and necrosis, two forms of both controlled and
uncontrolled eukaryotic cell death, in a murine macrophage cell
line.153 Depending on the type of bioassay employed (MTT
versus LDH), cells grown on ZnO nanofilms showed a 43−68%
loss of viability following a 24 h exposure compared to controls,
with cells separately exposed to undiluted extracts from the
coatings showing even greater viability loss. Two diluted coating
extracts, 25% and 50% (corresponding to concentrations of 3.03
and 6.07 μg mL−1, respectively) showed no cytotoxic effects
against macrophages, indicating a tolerable concentration of
ZnO NPs, but it was unclear whether these concentrations
would have an antimicrobial effect. Petrochenko et al.153

highlighted the importance of using both direct-exposure and
extract-based methods to assess toxicity, as nanocoatings show
gradual material release which can accumulate to a toxic level
over time and extracts can simulate the result of this
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accumulation. It is difficult to draw wide conclusions based on
these individual studies, but there are indications that ZnO
nanocoatings could have inherent biocompatibility issues.
Research efforts to address the biocompatibility of ZnO
nanocoatings have been scant, with most studies looking at
ZnO coatings at particle sizes greater than the nanoscale. Amore
recent study investigating the in vitro biocompatibility of ZnO
nanofilms at the nanoscale found that direct exposure to ZnO
nanofilms reduced cell viability of mouse fibroblasts due to
inhibition of cell adhesion, regardless of ZnO crystallinity.154

This study appears to agree with that published by Petrochenko
et al.153 and provides further evidence of the adverse effects of
ZnO nanocoatings on eukaryotic (i.e., host) cells, leading to
concerns over the safety and biocompatibility of ZnO
nanocoatings in vivo.
TitaniumNanocoatings.Titanium (Ti) and its alloys are the

industry standard for implanted biomaterials due to their
inherent biocompatibility, inert chemistry, strength, corrosion
resistance, and lack of toxicity.155 Ti NPs have also been the
subject of extensive research due to their well-established
photocatalytic properties,156 further enhanced by the high
surface area of NPs, providing antimicrobial properties.157

Titanium dioxide (TiO2) is most associated with this
application, and exists in three main forms: anatase, rutile, and
brookite. Anatase is the most photochemically active phase of
TiO2, though combinations of different phases may show
heightened activity compared to anatase alone.158,159 The high
photoactivity and stability of TiO2, along with its relatively low
cost and lack of toxicity has led to its consideration as a
potentially self-disinfecting or self-sterilizing surface coat-
ing.160,161 An advantage of a photocatalytic self-disinfecting
surface is that there is no necessity to add other chemical
reagents; the only requirements would be oxygen, water and
light.162 The band gap energy of anatase TiO2 is approximately
3.2 eV, corresponding to activation by photons with wavelength
shorter than 385 nm and therefore to UVA light.163 However,
since only 8% of solar radiation is UV, there is a need to develop
photocatalysts which can be activated predominantly by visible
light (42% of solar radiation), especially if a surface is intended
for environmental use with activation by sunlight.164 The extent
to which activation by sunlight is a relevant mechanism will
depend on the intended application of TiO2 nanocoatings;
activation of antimicrobial properties by the ambient lighting on
a hospital ward or similar environment would be highly
beneficial.
The nature of the antimicrobial mechanism based on ROS

production suggests that TiO2 nanocoatings can be hostile to
both bacterial cells and eukaryotes, limiting their use in vivo.
Several studies have reported that TiO2 NPs exhibit toxicity,
including evidence of genotoxicity, in both light and dark
conditions.165−168 The production and toxicity of ROS are
indiscriminate, and therefore there is a presumption that ROS
are likely to damage all cells within the vicinity.163 Despite this,
TiO2 nanocoatings have been investigated in a dental context,
applied to orthodontic brackets.169 Brackets coated with
nitrogen-doped TiO2 nanofilms were shown to cause significant
CFU reductions over 90 days compared to uncoated brackets
when tested with the oral pathogen Streptococcus mutans. To
date, there is little robust evidence regarding safety of TiO2
nanocoatings to oral cells, but additional research exposing
eukaryotic cells to these coatings and their associated ROS, over
relevant time periods, will be crucial prior to clinical testing.
However, it should also be remembered that TiO2 is already

heavily used as an additive (E171) in the food industry170 as a
mixture of micro- and nanosized particles for food coloring
purposes. E171 has been found to induce ROS generation in a
cell-free environment but not in exposed Caco-2 cells, induce
single-strand DNA breaks and cause chromosome damage.171

However, no acceptable daily intake is currently defined in the
European Union (EU) due to TiO2 bioavailability being found
to be low and independent of particle size, the vast majority of
TiO2 being eliminated unchanged in feces, and a maximum of
0.1% being absorbed by gut-associated lymphoid tissue and
distributed to organs.172

Equally important to the development of implanted
biomaterials utilizing a TiO2 photocatalytic surface is the
longevity of antibacterial activity following cessation of UV
irradiation. While environmental surfaces can be suitable for
continuous or repeated photocatalytic activation where
antibacterial effects are immediate but short-lived following
cessation, this model may not be suitable for implanted
biomaterials which are inaccessible. A nanocomposite of resin
and TiO2 NPs demonstrated detectable antibacterial effects for
30 min following cessation of UV irradiation.173 The post-UV
treatment effect was tested against five bacterial strains:
Escherichia coli, Staphylococcus epidermidis, Streptococcus pyo-
genes, Streptococcus mutans and Enterococcus faecalis. Although
UV treatment did not affect bacterial adhesion to coated
specimens, the viability of bacteria was reduced by 37%. This
finding is particularly relevant because the highest risk of
bacterial colonization for implanted biomaterials is prior to or
during implantation. Maintaining a UV-induced antibacterial
effect for even 30 min following cessation of irradiation may
allow enough time for implant surfaces to self-disinfect following
implantation and reduce the possibility of biofilm development
and subsequent infection, which can in certain cases result in
implant failure.

Aluminum Nanocoatings. Aluminum oxide (Al2O3, also
termed alumina) NPs have been shown to have some
antimicrobial effects, albeit at very high concentrations (1000
μg mL−1) when tested against Escherichia coli.174 It was
postulated that while they exhibit toxicity to bacteria through
surface charge interactions with cell membranes and walls, their
free radical scavenging properties may limit intense antimicro-
bial action and disruption of the cell wall. Essentially, they may
simultaneously exhibit antimicrobial properties by one mecha-
nism while reducing that antimicrobial effect by another. A
similar MIC in the range of 1700�3400 μg mL−1 was reported
for a multidrug-resistant strain of Staphylococcus aureus.175 More
recent work has demonstrated antibacterial activity at a
concentration 1 order of magnitude lower (100 μg mL−1)
against both Escherichia coli and Staphylococcus aureus.176 The
EC50 (half maximal effective concentration) of Al2O3 NPs
against Pseudomonas putida has even been reported at 0.5 μg
mL−1 over 16 h.177 The differences in values between these
reports demonstrate the confounding factors of NP size, shape
and synthesis method and suggest that they could be as
important as concentration in terms of antimicrobial activity.
Nevertheless, most studies investigate alumina NPs in the form
of nanosolutions with very little evidence in the literature where
they have been used as nanocoatings.
Nonmetallic Nanomaterials. Carbon-Based Nanocoat-

ings. There are a number of unique carbon-based nanomaterials
(CBNMs), primarily allotropes of carbon such as graphene, with
intrinsic antimicrobial properties and distinct material proper-
ties which make them useful for a range of applications in
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medicine and dentistry. A key property of CBNMs is their
excellent biocompatibility, resulting in their testing in a range of
biomedical applications including drug delivery, biosensor
development, diagnostics and therapeutics.186 The various
types of CBNMs available, in addition to graphene, include
single- and multiwalled carbon nanotubes, fullerenes, and
nanodiamonds.187

Graphene. Graphene consists of a single layer of carbon atoms
arranged hexagonally and is the base component of materials
including carbon nanotubes (CNTs), diamond, charcoal,
graphite, and fullerenes (collectively referred to as graphene-
based materials, GBMs). GBMs have intrinsic antimicrobial
properties and appear to exert stronger effects if presented as
coatings.188 Graphene can disrupt the bacterial cell membrane,
most likely due to its physically sharp structure, interfering with
the membrane potential and inducing membrane stress.189,190

While graphene in free-floating form exerts its bactericidal effect
through both biomechanical interactions and ROS-mediated
biochemical responses, surface-immobilization of graphene as a
coating appears to limit the mechanism to primarily physical
interactions causing cell membrane damage.191 Superoxide ion-
induced ROS production does not appear to occur; however,
oxidative stress can be produced by oxidation of glutathione, a
redox mediator in bacteria.192,193 Like some other nanomateri-
als, the direct biomechanical mechanism of bactericidal activity
offers the potential to be effective against drug-resistant
pathogens, helping to protect surfaces from colonization. It
has been suggested that graphene has antibacterial activity due
to its ability to transfer electrons away from bacteria, as they
maintain a negative resting membrane potential and require
proper electron movement for the functioning of the respiratory
chain.194 As graphene is an excellent electron acceptor, physical
contact between bacteria and graphene may be sufficient to
cause the bacteria to steadily lose electrons, interrupting the
electron transport chain and leading to bacterial cell death. This
effect also depends on the properties of the underlying substrate,
in particular the substrate’s electrical conductivity.195 Research
into the use of GBMs as antimicrobial coatings is still at a
comparatively early stage, with relatively few publications
available compared to the other groups of nanomaterials
presented in this review; however, multiple methods of GBM
application to relevant substrates have been reported.
Graphene was applied in the form of immobilized graphene

nanoplatelets (i.e., stacked graphene sheets with thickness of 2−
10 layers) to the surface of silicone rubber to offer antimicrobial
protection against Staphylococcus epidermidis. Independent of
application methodology, the oxidized form of graphene had
augmented bactericidal properties versus the nonoxidized form
whichmay be explained by additional exertion of oxidative stress
and production of ROS, leading to lipid peroxidation,
mitochondrial dysfunction and protein inactivation.196,197

Graphene nanoplatelets have also been applied by spray coating
onto a segment of silicone catheter.198 Spray coating has the
advantage of simple adjustment of coating thickness by altering
the number of passes of the nozzle over the sample surface.
Dybowska et al.198 found that the graphene nanoplatelet coating
was an effective antibiofilm agent preventing mature biofilm
formation. However, graphene nanoplatelets decorated with Ag
NPs were found to be even more effective indicating possible
graphene-nanosilver synergism.
Other studies have investigated the potentially higher

antimicrobial efficacy of graphene oxide (GO) nanocoatings.
GO coatings have been applied to a polymeric substrate by

immersion of plasma activated silicone films in a GO
dispersion.199 Both colony counting and live/dead assay results
showed considerable antibacterial activity against Escherichia coli
and Staphylococcus aureus, with stronger activity against the
former. That study concluded that the majority of bactericidal
activity was the result of oxidative stress mechanisms, rather than
physical or mechanical cell damage, due to the “edge-free”
nature of the coating. However, this would not seem to eliminate
possible antibacterial mechanisms involving interruption of
electron transport. In a different study, GO-coated surfaces were
prepared by two different methods, and effective inhibition of
biofilm formation was reported for both Escherichia coli and
Staphylococcus aureus.131 The synthesis method was a major
factor affecting antibacterial efficacy, as different methods
resulted in variations in functional groups present as well as
nanosheet size, roughness, porosity, and thickness. These factors
were significant as confirmed by the increased bacterial adhesion
on the rougher nanocoating with less uniform thickness. In
addition toGO coatings, reducedGO (rGO) coatings have been
synthesized using the whole cell biomass of the fungus Rhizopus
oryzae, coated on aluminum.200 Both the GO and rGO coatings
showed excellent bactericidal activity against Escherichia coli
(72% and 93% respectively), although their activity was lower
than that shown for the same nanomaterials in a dispersed phase
(80% and 97%); potentially because immobilization as a coating
prevented access of the nanomaterials to intracellular compart-
ments. Findings regarding bactericidal activity of the coatings
were confirmed by live/dead assay, which also revealed reduced
bacterial adherence to the rGO coatings and suggested that its
more hydrophobic nature prevented cell attachment in addition
to direct bactericidal activity. These findings indicate that GO
and its variants have impressive potential to be used as
antimicrobial nanocoatings, combining relatively facile and
eco-friendly synthesis with potent antibacterial and biocompat-
ible properties.
Carbon Nanotubes. CNTs are forms of graphene arranged in

a cylindrical structure and can be structured with a single wall
(SWCNTs) or multiple walls (MWCNTs). The single versus
multiwalled nature is one of the variable properties of CNTs,
along with diameter, length, surface functionalization (e.g.,
addition of chemical groups), and chirality. There is a strong
evidence base to support the antibacterial properties of
CNTs,201 but only a few reports of applications as surface
coatings. CNTs have been reported to be compatible with
photodynamic antimicrobial chemotherapy, where light is used
to activate or tune the antimicrobial effects. This approach has
been shown to be effective against both Staphylococcus aureus202

and Escherichia coli.203 Antimicrobial and antibiofilm activity
have been suggested to be the result of ROS generation which
allows antimicrobial photodynamic inactivation via cell
membrane damage.
Carbon nanotubes have been applied as an antimicrobial

coating to paper, which can widen the range of surfaces that can
be coated to protect against bacterial colonization and
transmission in healthcare settings.204 Direct interaction of
bacteria with paper coated with acid functionalized SWCNTs
for 1 h resulted in substantial morphological changes with loss of
shape and integrity, explained by damaged cell walls leading to
osmotic swelling. Both Staphylococcus aureus and Escherichia coli
experienced these morphological changes, but those were more
severe for Staphylococcus aureus; probably because of the greater
rigidity of the Escherichia coli cell wall.
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The mechanical properties of CNTs can also be useful in
producing an antibacterial effect. Vertically aligned carbon
nanotubes (VACNTs) have a very high aspect ratio with
extreme flexibility, meaning that they deform in contact with
bacteria before releasing their stored elastic energy. Arrays or
“forests” of VACNTs with gaps smaller than the size of bacterial
cells have been found to have potent bactericidal activity against
Pseudomonas aeruginosa and Staphylococcus aureus.82 The
proposed mechanism of action involves CNTs retracting and
stretching in response to cell attachment, with release of the
stored elastic energy resulting in tearing of the adsorbed
bacterial cell. This mechanical killing mechanism is an attractive
complement to other mechanisms involving oxidative stress or
disruption of biomolecules, with the additional benefit of killing
both Gram positive and Gram-negative bacteria.

Silica Nanocoatings. Silica nanoparticles (SiO2 NPs) have
exhibited potent antibacterial effects expressed by high killing
efficacy (>99%) against Pseudomonas aeruginosa and Escherichia
coli biofilms, while demonstrating good clinical biocompatibility
by inhibiting fibroblast proliferation less than conventional
antiseptics.205 Attachment of SiO2 NPs to tissue culture
polystyrene has been shown to reduce the attachment and
growth of Candida albicans,206 and SiO2 NPs have also been
found to be useful as abrasives for tooth polishing when tested
on human teeth ex vivo.207

SiO2 NPs have been deposited as a coating on titanium
substrates by an electrophoretic-enhanced microarc oxidation
technique and tested against Staphylococcus aureus and
Escherichia coli.81 The coated substrate showed slightly reduced
bacterial growth, but cell morphology was the same when
compared to uncoated substrates. Results showed that coated
surfaces slightly inhibited bacterial adhesion and growth, but this
effect was greatly enhanced by addition of octenidine, a cationic
surfactant and antiseptic. The authors attributed the anti-
bacterial properties of the SiO2 coating without octenidine to
the highly porous structure of the surface, suggesting that
bacteria became physically trapped which resulted in restricted
movement and proliferation. This is analogous to the “trap-
killing” previously reported against Staphylococcus aureus on Ag
nanocoatings applied to titanium.208

Coatings of SiO2 NPs have been applied to tiles and tested for
antifungal activity against Acremonium kiliense, Acremonium
strictum, and Fusarium solani. Measurements of the fungal
growth showed a reduction by 27.5%, 21.5% and 37.5%,
respectively.209 Antifungal activity was also found to be higher
for silica−titania core−shell NPs when compared to pure SiO2
NPs, suggesting that it was the layer of titania enhancing their
antimicrobial performance.

Chitosan Nanocoatings. Chitosan is a polycationic polymer
obtained commercially from shrimp and crab shell chitin by
alkaline deacetylation, usually by sodium hydroxide.210 Both
chitin and chitosan are biocompatible, biodegradable and
nontoxic, though chitosan is favored due to its higher solubility
and enhanced antimicrobial activity.211

A hybrid nanomaterial incorporating chitosan and silica was
applied to the surface of titanium implants and tested as an
antibacterial coating.212 Chitosan was the intended antibacterial
component, whereas silica was selected for its osteogenic
properties. The nanocoating was synthesized following the sol−
gel process with chitosan covalently bonded to the silica
network. Work using human fibroblasts demonstrated that the
hybrid nanocoating was not cytotoxic, and cell proliferation was
supported on the nanocoated surfaces, suggesting goodT
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biocompatibility. Significant antibacterial performance against
Staphylococcus aureus was demonstrated for 5−10% chitosan,
with antibacterial activity increasing with chitosan content. It is
important to be aware of the hydrophilicity or hydrophobicity of
any nanocoating, as this can impact directly upon interactions
with the biological environment and dictate cell attachment.213

Palla-Rubio et al.212 found that adding chitosan decreased
hydrophilicity of the coatings and reported contact angles for
optimal biological interactions from 60 to 80°.
Surface Nanotopography. Modification of surface nano-

topography has been explored as an alternative antibiofilm
strategy to the application of nanocoatings (Table 3). Certain
nanotopography features, such as nanospikes or other controlled
surface patterns, have been found to either hinder bacterial
adherence or cause cell death by physically damaging the
structure of the bacterial cell wall224,225 as well as by inhibiting
cell division or by causing oxidative stress.226 The main
advantage of this approach is that there are no biologically or
chemically active substances involved that may leach from the
surface over time, potentially causing local tissue or environ-
mental toxicity and leading to long-term reduction or loss of
antimicrobial efficacy. However, it is possible that nano-
patterned surfaces may still become damaged following
environmental exposure (e.g., corrosion, abrasion), or nano-
topographical details become masked by contaminants in the
immediate environment. A natural buildup of biomolecules
could potentially occlude the surface nanotopography and even
enhance microbial adhesion; akin to the formation of a
“conditioning film” which forms on abiotic surfaces upon
contact with biological fluids containing proteins and poly-
saccharides and facilitates attachment of biofilm-forming
cells.227 An additional caveat of modifying the surface
nanotopography is the effect on biocompatibility. It is generally
anticipated that rendering a surface inhospitable to bacteria by
modifying its physical nanotopography would also affect the

ability of eukaryotic cells to adhere and proliferate; a major issue
for medical implants where the surface needs to be nontoxic
while allowing integration with the adjacent host tissues. Some
studies have reported that topographical features can affect
immune cell function, raising questions about the indirect effect
on biocompatibility and long-term host integration in addition
to the more immediate effects on host cells. The morphology
and spatial orientation of macrophages, key innate phagocytic
cells with roles in determining downstream immune responses,
are affected by topography and this may affect macrophage
differentiation and the type and level of cytokine secretion. This
suggests that physical cues, including surface topography, could
modulate differentiation toward M1 (proinflammatory) or M2
(pro-healing/homeostatic) phenotypes.228,229 While this sug-
gests that nanotopographical modifications should be applied
with care, it could also present an opportunity for surfaces to be
designed to stimulate a desired anti-inflammatory and pro-
healing environment and thereby improve biomaterial integra-
tion.
It should be noted that some of the terminology in this area is

not well-defined or standardized, with different publications
describing types of nanostructures in different ways (e.g.,
nanopillars, nanoneedles, nanospikes, nanocones). Due to this
potential ambiguity, the more general term “nanoprotrusions” is
used in this review.

The Role of Surface Roughness. There is general acceptance
of the idea that bacteria are more likely to adhere to rougher
surfaces due to the increased contact area, as well as the defects
in the surface (pits, bumps or troughs) which provide protection
from shear forces or contact abrasion with other surfaces (see
review by Crawford et al.230). This has led to a common belief
that smoother surfaces will reduce bacterial adhesion and so are
the best strategy for inhibition of biofilm formation.231 However,
a certain degree of nuance should be considered as there is some
conflicting data from a range of studies which collectively find

Figure 5. Advantages of nanoprotrusions and their potential to be fine-tuned. The direct biomechanical mechanism of action (A) of
nanoprotrusions avoids possible concerns regarding resistance to antimicrobial agents, however the surfaces can be designed to be compatible
with host cells while hostile to bacteria due to cellular structural differences as quantified by Young’s modulus (B). The antimicrobial and
biocompatible properties of nanoprotrusions can be fine-tuned by modifying certain variables such as nanoprotrusion height and spacing (C).
Features of graphic not to scale. Figure was created using BioRender.com.
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that surface roughness alone is not a good predictor of bacterial
adhesion or colonization. Previous conclusions concerning
surface roughness and bacterial adhesion have often failed to
take into account bacterial appendages such as flagella which are
able to aid in attachment by reaching crevices much smaller than
the bacterial cells themselves232 (evidence reviewed by Mi et
al.233). It could be that smoother surfaces are indeed more
hostile surfaces for adhesion, but due to the very small size of
these appendages, surfaces must be far smoother with fewer
nanoscale defects than previously considered. Other factors such
as surface free energy, wettability/hydrophobicity, surface
chemistry and phenotypic differences between bacteria should
also be considered central to affecting the likelihood of
successful adhesion.234 There is also a dilemma for the
development of surfaces intended for implantation in vivo; a
roughness of 1−2 μm is deemed necessary for osseointegration
and the long-term success of the implant.235 The relationship
between surface characteristics or topography and biofilm
development has been reviewed in detail by Teughels et al.236

Nanoprotrusions. Surfaces can be modified to have physical
protrusions on the nanoscale similar to those observed in nature,
for example on insect wings (cicada and dragonfly) and indeed
natural nanotopography has been the inspiration for a number of
biomimetic engineered surface modifications.237 These surfaces
exert antimicrobial activity by direct biomechanical disruption of
bacterial structures such as the cell wall or envelope238 by
penetrating bacterial cell walls and causing irreversible cell
damage (Figure 5A). Additionally, shear forces induced when
bacteria move laterally relative to the nanoprotrusions increase
the damage to the cell wall, also resulting in antimicrobial
activity.239 The activity and specificity of nanoprotrusions may
be dictated by their spacing and width (Figure 5C). In terms of
bacterial variables, antimicrobial efficacy is thought to depend
on cell shape and cell wall rigidity.240 Evidence suggests that the
rigidity or stiffness of bacterial cell walls is significantly greater
than that of eukaryotic cell membranes, with the Young’s
modulus (a measure of resistance to elastic deformation where
larger numbers indicate increased stiffness) of human
mesenchymal stem cells in the region of 0.09−49 kPa compared
to 50−200 kPa for certain bacterial cell envelopes, though it
should be noted that these values are affected by cell type and
viability or membrane integrity.241,242 This difference in cell wall
rigidity between eukaryotes and prokaryotes could explain why
some nanostructured surfaces facilitate eukaryotic cell prolifer-
ation but result in cell death for bacteria (Figure 5B). Eukaryotic
cells have been shown to be able to stretch and distort to
accommodate the shape of nanostructures, either growing
around them or sitting on top and distorting to accommodate
their shape, thereby avoiding membrane damage and cell
death.243 When exposed to nanostructured surfaces, flexibility
and adaptability appear to be superior to a rigid or stiff structure.
Within prokaryotes, it has also been reported that Gram-
negative bacteria are more susceptible to killing by nano-
patterned structures such as cicada wings, with Gram positive
bacteria showing greater resistance, presumably due to their
thicker cell wall and differences in rigidity.225

Arrays of TiO2 nanowires have been shown to be selectively
bactericidal against Pseudomonas aeruginosa with no activity
against Staphylococcus aureus.244 Although this may be partly
explained by the previous points regarding Gram-negative
bacterial cell wall thickness, Diu et al.244 suggested that bacterial
motility may also be associated with stronger bactericidal effects.
Upon investigation with a panel of Gram positive and Gram-

negative bacteria, significantly higher bactericidal activity was
indeed found against motile versus nonmotile bacteria.
Antimicrobial efficacy against Staphylococcus aureus has also
been shown by using gold245 and titanium246 nanoprotrusions.
Black Silicon. Black silicon, a surface-modified variant of

silicon produced by reactive-ion etching techniques, has been
shown to kill a variety of bacteria (both Gram positive and
Gram-negative) and endospores by surface contact.225 Nano-
protrusions of black silicon are sharper, more distinct, and
approximately double the height of those found on a dragonfly
wing. The high bactericidal efficiency of black silicon was
particularly noteworthy, with a reported killing rate of ∼450,000
cells min−1 cm−2. Combining this evidence with known
minimum infective doses (MIDs) for certain bacteria, one
may conclude that 1 cm2 of black silicon could be capable of
killing the MID of Staphylococcus aureus 810 times or that of
Pseudomonas aeruginosa 77,400 times over 3 h. However, black
silicon may not be as efficient against spores since it has been
found that it was not able to kill or rupture dormant spores of
Bacillus subtilis, Bacillus cereus or Bacillus megaterium, although
germinated Bacillus subtilis spores were rapidly killed.225 This
lends insight into the possible limits of mechanical bactericidal
approaches.247 The efficacy of black silicon surfaces against
Escherichia coli has also been confirmed, with nanoprotrusion
density reported to be more important than length. Interest-
ingly, Streptococcus gordonii was unaffected by the surfaces; most
likely due to its small size, thicker cell wall and/or lack of motility
leading to less lateral movement.248 This highlights that
antimicrobial effects are dependent on microbe properties,
and it is unlikely that any nanocoating will be effective against all
microorganisms, all the time. Regarding different properties
such as nanoprotrusion height, density and aspect ratio, one
study found that three black silicon surfaces with apparently
similar nanoarchitecture had different bactericidal efficiencies
against different bacteria, though no single variable could be
directly correlated with bactericidal efficiency.249 This suggests
that the variations in properties affecting bactericidal efficiency
are subtle, making it difficult to reach a conclusion regarding the
best nanotopography for antibacterial properties, and demon-
strating that further investigation is needed.
Available data suggest that black silicon may be best suited for

use in antimicrobial nanocoatings on unimplanted materials but
not in vivo, due to its reported ability to rupture mammalian cells
(e.g., mouse osteoblasts).250 This is in contrast to another study
showing that black silicon favored the proliferation of eukaryotic
cells (Cercopithecus aethiops kidney fibroblast-like cells) without
eliciting a host inflammatory response in vivo in mice.251 Clearly
there is need for further research on the biocompatibility of
black silicon as it is possible that it may be specific to certain
types of eukaryotic cells used, test conditions or specific
properties of the surface.
Nanocomposites. A composite can broadly be defined as a

“multicomponent material comprising multiple different phase
domains in which at least one phase domain is a continuous
phase”,256 and these domains are combined to achieve
properties not exhibited by any single constituent part.257 In
the case of nanocomposites, the same definition applies, but at
least one of the phases has one dimension at the nanoscale
(<100 nm).256,258 Generally, antimicrobial nanocomposites
tend to take the form of biomaterials with a structural matrix
phase, such as a polymer, and antimicrobial NPs (dispersed
phase) acting as a filler within that matrix. Thus, biomaterials
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already in use can be modified to incorporate NPs which confer
an antimicrobial effect (Table 4).
An example of a nanocomposite is the incorporation of Ag

NPs in poly(lactic-co-glycolic acid) (PLGA) grafts, conferring
antibacterial properties against an antibiotic-resistant strain of
Staphylococcus aureus and showing good biocompatibility with
MC3T3-E1 preosteoblasts.259 This antimicrobial nanocompo-
site graft was intended for use to improve healing of infected
bone defects, and results with infected femoral defects in rats
showed greatly improved healing within 12 weeks without
evidence of residual bacteria, compared to control grafts which
failed to heal in the continued presence of bacteria. Similarly,
selenium NPs have been immobilized within PLGA and used to
coat bone scaffolds. These materials with a nanocomposite
selenium NP-PLGA coating showed antibacterial activity
against Staphylococcus aureus and Staphylococcus epidermidis,
and thus offer a potential antibacterial scaffold coating material
for use in bone tissue engineering.260

The use of composites is common in dentistry due to
favorable esthetics and longevity, and their strength and
toughness comparable to dental amalgams.261,262 This popular-
ity and the relevance of antibacterial activity and tissue
integration to dentistry make dental composites ideal candidates
for the inclusion of antimicrobial NPs as fillers. A resin-based
dental material incorporating a AgBr/cationic polymer nano-
composite was found to have potent bactericidal activity against
Streptococcus mutans, a relevant oral pathogen, preventing
biofilm formation.263 Cytotoxicity measured against macro-
phages was found to be close to that of unmodified resins.
Furthermore, the addition of the nanoparticles to the matrix
increased the Vickers hardness of the resins, whereas it did not
adversely affect their flexural strength. The combination of
antimicrobial properties, host biocompatibility and favorable
mechanical properties is essential for the development of an
effective antimicrobial dental nanocomposite.
Other studies have reported similar success with the

modification of dental resins with nanomaterials for improved
antibacterial properties and biocompatibility. PMMA has been
mixed with modified cellulose nanocrystals decorated with Ag
NPs to improve mechanical properties and provide antibacterial
activity against Staphylococcus aureus and Escherichia coli, while
causing almost no toxicity to L929 fibroblasts.264 PMMA
modified with TiO2 NPs has also been shown to inhibit the
growth of Candida scotti,265 and PMMA incorporating CuO and
TiO2 NPs showed significant antimicrobial activity against
Streptococcus salivarius, Streptococcus sanguinis, and Candida
dubliniensis, while some groups were also active against
Streptococcus mutans. However, TiO2 experimental groups did
not show antimicrobial activity against Streptococcus mutans.266

SAFETY OF MEDICINES AND MEDICAL DEVICES
CONTAINING NANOCOATINGS
The Safety of Patients. The regulatory procedures for

approving new nanomedicines and medical devices have been
extensively discussed.273−276 The pathways and regulations for
approving a nanomedicine are generally the same as any other
type of medicine. Indeed, the concern from the scientific
community is that more nanospecific guidance is needed to
smooth the regulatory process along in a safe way that accounts
for the novel behaviors and properties of ENMs.273,275 Briefly, in
the EU, any medicine intended for human use will undergo
clinical trials for safety and efficacy according to the Clinical
Trials Directive (Directive 2001/20/EC) which sets out the

implementation of good clinical practice for such trials, and
various codes relating to medicinal products for humans (e.g.,
Directive 2004/27/EC). Furthermore, regulation EC number
726/2004 indicates the procedure for the authorization and
supervision of medicinal products, and this also established the
European Medicines Agency (EMA) as an organization with
oversight of national level authorities within Europe (Regulation
(EC) no. 26/2004). Currently, the EMA offers no overarching
guidance on nanospecific issues within those regulations.
However, pragmatically, one might also argue that adding to
the regulation every time a new type of medicine came along
would soon make a cumbersome and unworkable process, and it
is for the clinical trial to tease out the substance-specific safety
concerns. In the United States, the FDA provides federal
regulations on the safety of medicines (e.g., Federal Regulations
21). In 2017, the FDA issued some draft guidance on
nanomaterials in drugs and biological products,277 but similar
to Europe and globally, nanospecific guidance is still being
developed. Nonetheless, regardless of geographical location or
jurisdiction, the key principles in the safety of medicines should
apply. These include demonstrating that the new product is
effective for its intended clinical use or more effective than the
existing medicine or medical device, and it must be safe for the
patient.273

In the case of dentistry, in the EU, Annex I of the Medical
Devices Directive 93/42/EC traditionally identified require-
ments on the use of devices that could include dentures and
dental implants. This was one part of several pieces of regulation,
and for simplicity, these were repealed in 2017 in favor of a more
streamlined document (Regulation (EU) 2017/745). The
transition period to the new regulation is now complete, and
Directive 2017/745 has been mandatory since May 2021. In the
UK, following Brexit, the Medicines and Healthcare products
Regulatory Agency (MHRA) retained responsibility for medical
devices, including those with dental applications under the
Medical Devices Regulations 2002278 and its amendments,
which essentially implements the EU directives. In the United
States, the FDA has responsibility for medical devices, and there
are a series of steps necessary to bring a product to market, and
new devices should be registered with the FDA, undergo
premarket safety screening, etc. Most of the regulation is detailed
in the FDA’s ‘Title 21 Code of Federal Regulation (CFR), parts
800−1299’.279 Again, all these regulations are intended to be
generic and there is no guidance specifically on medical devices
containing ENMs, antimicrobials, or other chemical substances.
The intended use is a crucial aspect in deciding which
regulations need to be followed. So, for example, an ENM
coated with an antimicrobial substance might be considered as
an antimicrobial drug if it was given systemically or orally, but
the same composite material would be considered a medical
device if it was part of a dental implant. There are some
difficulties in this approach to regulation, for example, where the
nanocoating is bioactive and therefore might be both a drug and
part of a medical device.
Nonetheless, such regulations ensure that nanosafety can be

addressed before a nanomedicine or medical device becomes
available for clinical use. Risk is essentially a function of both the
type of exposure and the hazard (toxicity), and there are now
numerous reviews of the toxicity of ENMs.107,280−285 For
patients, the route of exposure is defined by the intended
treatment method (oral, topical, injection to systemic
circulation, etc.) and the cumulative dose will be a function of
ENM concentration in the medicine, its bioavailability, and the
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treatment duration. The concern for antimicrobial nano-
medicines is that the biocidal component of the material
might also be toxic to human cells or tissue. For antimicrobial
ENMs made from nutritionally required metals such as zinc or
copper, there may be less concern for health because these
metals are already in the human body and are homeostatically
regulated. However, this is not the case for ENMs made of
nonessential toxic metals such as Ag NPs, where the concern is
for potential hazard to the internal organs of the patient and/or
long-term bioaccumulation. The challenge is to find an effective
dose that has the desired antimicrobial effect without causing
harm to the surrounding tissue, and in the case of silver, that is
certainly possible.104,286 The durability of the coating is also a
toxicological concern. For example, whether an organic polymer
or carbon-based coating could be metabolized to toxic
metabolites, but this problem is no different from many
traditional medicines that are degraded, and this would be
identified in pharmacokinetic studies in Phase 0 clinical trials
(animal studies). In other circumstances, it may be desirable for
the surface coating to slowly dissolve to release an active biocide
(e.g., slow release of silver ions from Ag NPs). This approach is
fine provided that the dissolution kinetics of the material are
well-defined in the intended tissue or body fluid, thus enabling
some understanding of the possible hazard.
For medical devices, the safety concerns are around the use of

the device and the effect that may have on the patient. However,
for items such as medical instruments or implants, the surgical
risks of the operation itself might be similar if the item was
nanoenhanced or not. Crucially, the antimicrobial nanocoating
on a medical implant would help to minimize the risk of
postoperative infection from the wound site, since the biocidal
properties of the material would persist after the wound is
closed. Similarly, instruments and other devices with antimicro-
bial coatings would be less likely to introduce infection in the
first place. However, the use of surgical disinfectants such as
iodine or chlorhexidine should continue since the risk of side
effect such as inflammation or dermatitis from the disinfectant is
tiny (<1%)287 and the relative risks of similar effects from
nanocoatings on medical devices will remain unclear until a
substantial data set has been collected on use in patients.
In terms of the safety regulations, antimicrobial nanocoatings

have some potential advantages over traditional antibiotics.
First, there is an assumption that the problem of antibiotic
resistance would be less likely to arise from ENMs, and there is
evidence that ENMs can tackle antibiotic resistant infections.288

Second, nanocoatings have the potential to give persistent
antimicrobial activity after surgery, at a time when the
postoperative benefits of traditional antibiotics are in doubt.289

Finally, many of the antimicrobial nanocoatings can be made of
substances that already occur naturally in the human body (zinc,
copper) or are part of our diet (e.g., chitosan from shellfish).
Thus, there would be less concerns for risk assessment compared
to an entirely foreign chemical that is not normally found in the
body. However, a quantitative systematic risk analysis
comparing antibiotics with ENMs in patient care has not yet
been done and the benefits should be weighed against the risks.
For example, we may need to be cautious with the use of metallic
nanocoatings as antimicrobials because microbes often have
genes associated with antibiotic resistance and metal homeo-
stasis on the same plasmid, and there is evidence of metallic
ENMs promoting the transfer of antibiotic resistance to other
microbes in ecosystems.290 There are also theoretical concerns
that ENMs in the particulate formmay be seen as antigens by the

immune system,291 although this has not been substantiated in
patients, and in any case, adverse effects on immunity or acute
inflammation reactions should be detected in early clinical trials
before a product comes to market. The schemes that allow
clinicians to report the adverse side effects of approved
medicines are also not nano-specific. For example, it is not
possible to search the MHRA database (‘yellow card scheme’)292

for “nanomaterials” as all substances are listed by their brand
names. Similarly, the FDA Adverse Event Reporting System and
the ‘EudraVigilance’ reporting scheme in the EU both use brand
names. In any event, of those nanomedicines approved so far,
very few, if any, are based on a coating-mediated effect.293

Occupation Exposure of the Practitioner. In the
workplace, safe systems of work are intended to prevent
exposure so that there is negligible risk to employees. This
approach is used for all new chemicals including ENMs.294−296

Potential exposure of the practitioner (e.g., medical doctor,
nursing staff, dentist, etc.) could arise from incidental inhalation
or ingestion of the ENM, or dermal contact. Of course, the usual
practice of wearing surgical gloves, a face mask, not eating or
drinking while treating patients should minimize these exposure
routes. The health concerns for the practitioner would include
contact dermatitis caused by handling the novel antimicrobial,
the effects of accidental/incidental ingestion or respiratory
exposure on health, especially with repeated doses over the
working week or longer. These are concerns that apply to all
substances in the clinical workplace, but there are some
nanospecific issues around setting occupational exposure limits
(OELs) for ENMs.296 First, uncertainties in the exposure
scenario (e.g., exactly how the ENM behaves in aerosols during
use, etc.) and the bioavailable dose of ENMs have led to the use
of a wide range of extrapolation factors, and therefore a broad
range of suggested OELs, even for the same material.296

Furthermore, most of the OEL studies to date have been on pure
ENMs,296 and not ENMs applied as coatings, and seemingly not
as antibiotic coatings. There are also some specific concerns for
the development of antibiotic resistance in the workforce. The
latter has been indicated for staff working on the manufacturing
of traditional antibiotics,297 but the situation is unclear for
medical practitioners who would be exposed to much lower
quantities in the clinic, or whether novel antimicrobial ENMs
(e.g., those made of metals) might present a similar concern for
antibiotic resistance in medical staff.
In dentistry, one special concern might be respiratory

exposure to the ENMs during dental repairs such as drilling or
activities involving abrasion of the tooth. Inevitably, these
activities will create an aerosol, but the risks to both practitioners
and the patient are yet to be evaluated for ENMs, or ENMs with
antimicrobial coatings. Interestingly, with respect to dental
prosthetics, the main concern for chemical exposure is during
the manufacture and adjustment of the prosthetic, for example,
respiratory exposure to ultrafine particles during modeling the
shape of the prosthetic with acrylic materials, sandblasting,
working with metal alloys, or preparing porcelain veneers.298

However, how any hazard quotients or calculation of lifetime
cancer risk would be altered by including antimicrobial ENMs in
such prosthetics is unknown. Clearly, further research is needed
on workplace exposure to ENMs and specifically on
antimicrobial ENMs that may have coatings and be made of
several chemical substances.
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CONCERNS REGARDING BACTERIAL RESISTANCE TO
ANTIMICROBIAL NANOMATERIALS
Although widely reported advantages of antimicrobial nanoma-
terials are their multiplicity of bacterial targets, and their
mechanisms of action which generally differ from those of
antibiotics, it is unlikely that they are exempt from the
development of bacterial resistance. Where the antimicrobial
takes the form of individual agents such as NPs, it is possible for
bacteria to develop resistance through sequestration or
aggregation of NPs,299 efflux,300,301 or reduction of ions.302 In
the case of engineered surfaces with nanotopographical
modifications, it is less clear which mechanisms could evolve,
though these could incorporate thickening of the cell wall to
avoid mechanical disruption, changes to cellular elasticity to
reduce rigidity, or changes to surface charge (as in the polymyxin
resistance mechanism)303 to introduce repellence from the
surface to avoid contact with nanostructures.
A particular concern, in the wider context of AMR, is the

possibility of the use of non-antibiotic antimicrobials leading to
promotion of resistance against antibiotics. This may take the
form of co-resistance, where genes conferring resistance to both
antibiotics and non-antibiotics are present in the same cell, or
cross-resistance, where resistance to a non-antibiotic also results
in resistance to an antibiotic (e.g., efflux pumps).304 The
prevalence of, e.g., silver resistance genes, appears to be low
(3.6% in hospital isolates reported), and the presence of
resistance genes in the bacterial genome does not necessarily
result in phenotypic resistance.305 Generally, bacteria more
readily develop resistance to antibiotics than to antimicrobial
nanoparticles, with resistance to the latter requiring slower,
stepwise increases in concentration when investigated in vitro.306

This suggests that while widespread resistancemay not currently
be apparent, it is likely to develop eventually with increasing
clinical use of antimicrobial nanomaterials.
Multiple studies have reported that certain nanomaterials

enhance the transmission of antibiotic resistance genes in
Escherichia coli, Staphylococcus aureus, and Pseudomonas putida
by transformation and conjugation, two mechanisms of
horizontal gene transfer in bacteria. Lu et al.307 reported that
both Ag NPs and Ag+ increase conjugative transfer frequency by
inducing ROS overproduction and increasing membrane
permeability at environmentally and clinically relevant concen-
trations. Ding et al.308 reported that Al2O3 NPs, but not bulk
Al2O3, promote plasmid-mediated transformation. This effect
was reported to likely be due to Al2O3 NP-induced damage to
the cell membrane allowing plasmids to enter bacteria. This
report was later followed up by a finding that certain nanometal
oxides (Al2O3 and ZnO) augment the mutation frequencies of
drug-resistant Escherichia coli isolates, whereas the correspond-
ing metal ions have weaker effects.309 Another study has
reported that ZnO and TiO2 NPs oppositely impact the
transformation efficiency of Bacillus subtilis, by modifying the
induction of competence; the first step of the transformation
process.310 The authors showed that two oligopeptide ABC
transporters were differentially expressed in response toNPs and
thus the effect was due to a physiological adaptation rather than
due to cell injury. In contrast, AgNPs had no significant effect on
competence under the same experimental conditions. This was a
clear description of NPs in the physiological induction of
horizontal gene transfer in bacteria. There are scenarios
independent of genetic changes which may also lend a form of
resistance to bacteria in a community, for example, Pseudomonas

aeruginosa produces the metabolite pyocyanin which reduces
Ag+ to nontoxic Ag0; co-incubation experiments have showed
increased survival of Ag+-exposed bacteria if other pyocyanin-
producing bacteria were present as the reduction of local Ag+
rendered their environment less toxic.302 This is particularly
relevant to polymicrobial biofilms where the prevalence of a
pyocyanin-producing Pseudomonas aeruginosa subset could lend
protection to the rest of the biofilm. Another example is β-
lactamase-producing bacteria conferring resistance to β-lactam
antibiotics to nearby susceptible bacteria due to the excretion of
β-lactamase enzymes.311 This form of cooperative resistance is
independent of genetic modification or the acquisition of
resistance elements from other cells.
These studies collectively show that the development of

resistance to antimicrobial nanomaterials is inevitable and
reinforce the idea that NPs may have the potential to affect
dissemination of antibiotic resistance in bacteria, potentially
affecting the long-term antibacterial efficacy of nanocoatings as
well as posing a public health concern by leading to wider AMR.
More generally, this highlights the potential hazards of
introducing nanomaterials into the environment without
complete understanding of their wider consequences. The vast
majority of research conducted onNPs has been conducted in in
vitro settings and clinical applications will lead to unquantifiable
consequences. The extent to which these effects are relevant to
nanocoatings needs to be investigated; it has not been
demonstrated that nanoparticles presented as surface coatings
have a comparable effect regarding competence or induction of
horizontal gene transfer. The role of bacterial stress and the
potential for nanocoatings to produce subinhibitory or sublethal
concentrations of antimicrobials, encouraging more rapid
emergence of resistance, needs to be more thoroughly
investigated.

CONCLUSIONS
In this review, a range of different nanocoatings have been
evaluated. In general, these nanocoatings take two major forms:
those carrying active antimicrobial nanoparticles, and those
relying on a biomechanical mechanism of action, such as
nanoprotrusions. For every introduction of a potential
antimicrobial nanocoating, a number of possible new nano-
composite coatings are also produced, allowing the strengths of
multiple approaches to be combined. Traditional medical and
scientific research has generally favored siloed, individual-
disciplined approaches to problems, but serious and impending
public health emergencies, such as AMR and its implications for
healthcare-acquired infections, require a more multidisciplinary
and collaborative approach. The development of antimicrobial
nanocoatings is the prototypic example of the interface between
microbiology and biomedical engineering. It appears from the
evidence synthesized here that antimicrobial nanocoatings will
play a significant role in the future protection of surfaces from
bacterial colonization, whether those surfaces are environmental
or implanted in nature. The benefits of antimicrobial nano-
coatings over conventional antibiotics allow targeted effects
rather than dispersed and potentially unintended consequences,
and combined strategies may be most favorable. A cautious
approach should be adopted, ensuring continued biocompati-
bility, long-term biological activity and minimal ecological
impacts, as well as careful consideration of the consequences for
bacterial resistance and interactions with AMR. Without doubt,
the increasing use of nanomaterials in medicine and dentistry
will require the construction of new legislative and regulatory
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frameworks to ensure safety is maintained and the benefits are
maximized. Current evidence suggests an optimistic and exciting
future for the use of antimicrobial nanocoatings in improving
clinical outcomes in medicine and dentistry.
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VOCABULARY
Engineered nanomaterials, intentionally manufactured materi-
als containing particles with one or more external dimensions in
the size range 1−100 nm; nanocoating, a layer or film of
particles with one or more external dimensions in the size range
1−100 nm applied to a surface to protect it or improve its
function in some capacity; biofilm, any consortium of
microorganisms in which cells aggregate and become enclosed
in a self-produced exopolysaccharide matrix; antimicrobial
resistance, the outcome of microorganisms changing over time
to be able to survive exposure to antimicrobial medicines such as
antibiotics which are designed to kill them or inhibit their
growth; surface nanotopography, the arrangement of physical
surface features at the nanoscopic scale
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