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Abstract 

Background  This study aimed to develop and externally validate prediction models of spinal surgery outcomes 
based on a retrospective review of a prospective clinical database, uniquely comparing multivariate regression and 
random forest (machine learning) approaches, and identifying the most important predictors.

Methods  Outcomes were change in back and leg pain intensity and Core Outcome Measures Index (COMI) from 
baseline to the last available postoperative follow-up (3–24 months), defined as minimal clinically important change 
(MCID) and continuous change score. Eligible patients underwent lumbar spine surgery for degenerative pathology 
between 2011 and 2021. Data were split by surgery date into development (N = 2691) and validation (N = 1616) sets 
for temporal external validation. Multivariate logistic and linear regression, and random forest classification and regres-
sion models, were fit to the development data and validated on the external data.

Results  All models demonstrated good calibration in the validation data. Discrimination ability (area under the 
curve) for MCID ranged from 0.63 (COMI) to 0.72 (back pain) in regression, and from 0.62 (COMI) to 0.68 (back pain) 
in random forests. The explained variation in continuous change scores spanned 16%-28% in linear, and 15%-25% in 
random forests regression. The most important predictors included age, baseline scores on the respective outcome 
measures, type of degenerative pathology, previous spinal surgeries, smoking status, morbidity, and duration of hos-
pital stay.

Conclusions  The developed models appear robust and generalisable across different outcomes and modelling 
approaches but produced only borderline acceptable discrimination ability, suggesting the need to assess further 
prognostic factors. External validation showed no advantage of the random forest approach.
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Background
Chronic back pain is the single greatest cause of years 
lived with disability worldwide [1] with annual direct 
healthcare costs in the UK of £1,632 million [2]. Spinal 
surgery is the largest component of healthcare expendi-
ture for managing low back pain (costing £5000-£10,000 
per patient) and its rate has doubled over 15-years from 
2.5 to 4.9 per 10,000 adults [3]. However, success rates 
of lumbar spine surgery are highly variable—only about 
60% of patients achieve reductions in pain of at least a 
minimal clinically important difference (MCID), and 1/5 
experience persistent long-term pain after surgery [3–5].

Reliable predictive factors could maximise patient ben-
efit and cost-effectiveness of surgery. Although several 
systematic reviews concluded that medical, sociodemo-
graphic, and psychological factors are linked to improve-
ment in pain and disability following lumbar spine 
surgery [6–10], we lack clear clinical guidelines on the 
reliable predictors [11] and predictive factors are rarely 
formally documented.

Statistical prediction models enable probabilistic 
estimation of treatment outcome given a set of preop-
erative patient data. Previously developed regression-
based models demonstrated good ability to discriminate 
between patients who did and did not achieve MCID 
in pain or disability after lumbar spine surgery [12–16]. 
However, performance of the existing prediction mod-
els has been rarely quantified in patient data other than 
that used to develop them. In the few available examples, 
external validation revealed poorer discrimination abil-
ity in the new data [17, 18], or poor calibration leading to 
under- and overestimation of outcome probabilities [19].

Machine learning has been found to improve predic-
tive performance relative to regression [20], including 
for spinal surgery outcomes [21–23]. This may stem from 
the ability to capture nonlinear or interactive effects, 
often characteristic of clinical data. Conversely, machine 
learning algorithms are prone to overfitting smaller 
datasets and comparisons to standard regression have 
lacked external validation; thus, such predictions may not 
extrapolate well to new data. External validation is rare 
but necessary before any prediction models can be imple-
mented in clinical practice [24, 25].

Our primary objective was to develop and externally 
validate prediction models of patient-reported spinal 
surgery outcomes based on routinely collected pro-
spective data, for the first time comparing the perfor-
mance of multivariate regression and machine learning 
approaches, the latter hypothesised to improve prediction 
accuracy. Secondarily, we identify the most relevant pre-
dictors from the available medical and patient-reported 
information, since existing models (particularly those 
from the US [14–16, 21]) may not translate well to UK 

cohorts due to different healthcare systems, type of data 
recorded, and cultural and demographic differences.

Methods
The present article follows the Transparent Reporting of 
a multivariable prediction model for Individual Prognosis 
Or Diagnosis (TRIPOD) guidelines [26].

Source of data
This study was based on retrospective review of a pro-
spective clinical database from a single Neurosurgery 
Department at the Walton Centre NHS Foundation Trust 
(UK). The Walton Centre contributes data to the Euro-
spine’s international Spine Tango registry [27], which 
governs standardised data collection protocols. Spe-
cifically, patients complete a self-assessment form (Core 
Outcome Measures Index, COMI) [28, 29] at the preop-
erative consultation and postoperative follow-ups at 3, 
12, and 24  months. The surgeon completes the surgery 
form before discharge, detailing the patient’s history, type 
of pathology and surgery, and hospital stay [30]. The Wal-
ton Centre’s database was reviewed once on 26/04/2021 
to extract lumbar spine surgery cases with degenera-
tive disease as the main pathology. This data included 
patients operated between 4/04/2011 and 30/03/2021, 
with the last follow-up dated 21/04/2021.

Participants
Eligible patients had lumbar disc herniation and/or ste-
nosis and underwent elective spinal decompression 
surgery with or without fusion. These most common 
degenerative pathologies and surgical measures were 
selected to obtain a representative sample and minimise 
clinical heterogeneity. Eligible patients completed pre-
operative and at least one postoperative self-assessment 
form. If there were multiple surgery cases per patient, 
only chronologically first eligible surgery was included.

Outcomes
The spinal surgery outcomes were defined as reduction in 
back and leg pain intensity and reduction in COMI from 
baseline to the last available follow-up. Due to the self-
reported nature of outcomes, their assessment was not 
blinded.

Back and leg average pain intensity in the past week was 
measured on 0 (no pain) to 10 (worst pain I can imag-
ine) numerical rating scales embedded within COMI. 
This scale is a recommended outcome measure of pain in 
studies evaluating effectiveness of treatments for chronic 
pain [31]. COMI [28] is a multidimensional instrument 
consisting of measures of pain, function, symptom-spe-
cific well-being, quality of life, social disability, and work 
disability. Average COMI score can range from 0 to 10, 
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where higher scores indicate worse level of functioning. 
This instrument is an official outcome measure of Euro-
spine’s international spine registry and has been exten-
sively validated in patients with back pain [29, 32].

Both continuous and dichotomous outcomes were 
considered for their precision and clinical utility, respec-
tively. Indeed, relative to dichotomisation, continuous 
outcomes provide greater statistical power, minimise 
information loss and risk of false positive results, and 
allow more accurate estimation of variability in outcomes 
(e.g. those close to and far from the MCID cut-off) [33]. 
Here continuous outcomes represent numerical differ-
ences between the baseline and follow-up back pain, leg 
pain, and COMI. Positive scores correspond to improve-
ment (i.e., reduction in pain and functional impairment). 
Dichotomous outcomes represent achievement of MCID 
between baseline and follow-up back pain and leg pain 
(reduction of ≥ 2 points [34]), and COMI (reduction 
of ≥ 2.2 points [35]).

Predictors
As candidate predictors we assessed preoperative fac-
tors, and controlled for potential intra- and postoperative 
confounders (see Table 1 for a full list). Assessment of all 
predictors was blinded to outcomes assessed ≥ 3 months 
later, but predictors were not blinded to each other, as 
they were either self-reported by the patients before sur-
gery on a single form, or recorded by the surgeon on a 
single form before discharge.

Sample size
To estimate the minimum required sample size and min-
imise the risk of overfitting, at least 20 participants per 
predictor should be included for continuous outcomes 
[36], and 10 or more events (i.e., achieving MCID) per 
predictor for dichotomous outcomes [37]. We considered 
19 predictor variables, however, since several categorical 
factors had more than two levels, each additional factor 
level was counted separately, resulting in 34 predictors in 
total. Therefore, a minimum of 680 participants would be 
required for continuous outcomes, and 340 participants 
who achieve MCID for dichotomous outcomes.

Data processing and statistical analysis
Data was processed and analysed using R software, ver-
sion 4.1.1 [38]. Details of data processing and handling of 
predictors are described in Methods S1, Additional file 1. 
Except for categorising portion of the BMI data to match 
the variable types across two versions of the surgery 
form, other continuous factors were treated as continu-
ous in the analysis. Due to severely skewed distribution, 
hospital duration was log-transformed (base 10).

Handling missing data
As per our eligibility criteria, only patients with complete 
outcome data (i.e. with a preoperative and at least one 
postoperative assessment) were included in the analysis, 
thus we did not impute any missing outcome data. We 
report attrition and summary statistics on the portion of 
excluded data, and between-group comparisons with the 
final included sample.

We did not exclude any patients based on missing pre-
dictor data. This data was assumed to be missing at ran-
dom and addressed through Multivariate Imputation 
by Chained Equations (MICE) with 40 iterations using 
mice R package, [39]. The MICE procedure is explained 
in Methods S2, Additional file  1. Values were missing 
in 11 out of 19 predictor variables, with partial miss-
ing rates from < 1% to 36% (see Results for details), and 
a total missing rate of 3.75% across all predictors. Mul-
tiple imputation has been found to remain unbiased 
up to 50% missing rates [40, 41]. A series of diagnostic 
checks detailed in Methods S2, Additional file  1 dem-
onstrated good convergence and no apparent biases of 
the MICE algorithm, with overlapping range and distri-
butions of the imputed and observed data (Figs. S1-S4, 
Additional file  1), and the missingness of each variable 
was associated with other factors in the imputation data-
set (Table S1, Additional file 1), therefore supporting the 
missing at random assumption. In addition to the main 
analysis using imputed predictor data, we also conducted 
a separate sensitivity complete case analysis excluding 
cases with missing data on any of the predictors.

Model development and validation data
The dataset was split into model development and vali-
dation samples based on the date of surgery (2011–2017 
and 2018–2021, respectively). For large datasets, a non-
random split has been recommended, e.g., by time [37], 
so that temporal external validation could be performed 
[42]. The chosen time-split coincided with the introduc-
tion of a new version of the surgery form. The setting, 
eligibility criteria, predictors, and outcomes used were 
consistent across the development and validation data, 
except for some differences between the surgery form 
versions (see Methods S1, Additional file 1).

Multivariate regression analysis
As our primary analysis, we developed multivariate logis-
tic regression models for each dichotomous outcome, 
and multivariate linear regression models for each con-
tinuous outcome. Models were fitted using R functions 
glm (with binomial family and logit link function) and lm 
(for linear regression) within the stats package [38]. Full 
model approach (i.e., including all candidate predictors) 
was used to estimate prediction accuracy based on the 
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Table 1  Multivariate regression models results in the development data and models’ performance in the validation data

COMI MCID Back pain MCID Leg pain MCID COMI change Back pain change Leg pain change

Predictors OR (95% CI) OR (95% CI) OR (95% CI) Beta (95% CI) Beta (95% CI) Beta (95% CI)

   (Intercept) 0.5 (0.21, 1.22) 0.28 (0.11, 0.68) 0.48 (0.19, 1.26) 0.16 (-0.16, 0.47) 0.24 (-0.05, 0.54) 0.2 (-0.09, 0.50)

  Age (years) 1.01 (1.00, 1.02) 1.01 (1.01, 1.02) 1.01 (1.00, 1.02) 0.07 (0.02, 0.11) 0.09 (0.05, 0.14) 0.06 (0.02, 0.10)

  Gender (ref. 
female)

male 1.14 (0.97, 1.34) 1.18 (1.00, 1.39) 1.18 (0.99, 1.41) 0.08 (0.00, 0.15) 0.08 (0.02, 0.15) 0.1 (0.03, 0.17)

  Degen. disease 
(ref. disc hernia-
tion)

stenosis 0.61 (0.47, 0.77) 0.63 (0.49, 0.81) 0.77 (0.59, 0.99) -0.21 (-0.31, -0.10) -0.15 (-0.25, -0.05) -0.18 (-0.28, -0.08)

disc herniation & 
stenosis

0.78 (0.60, 1.02) 0.74 (0.56, 0.97) 0.89 (0.67, 1.19) -0.12 (-0.24, -0.00) -0.15 (-0.26, -0.04) -0.12 (-0.23, -0.01)

  Previous surger-
ies (ref. no)

yes 0.67 (0.55, 0.82) 0.78 (0.63, 0.96) 0.67 (0.54, 0.83) -0.24 (-0.33, -0.15) -0.13 (-0.22, -0.05) -0.24 (-0.33, -0.16)

  Treatment 
duration 
(ref. < 3 months)

3–12 months 0.95 (0.79, 1.15) 0.85 (0.70, 1.02) 0.94 (0.77, 1.15) -0.06 (-0.15, 0.02) -0.05 (-0.13, 0.02) -0.04 (-0.12, 0.03)

 > 12 months 1 (0.79, 1.26) 0.89 (0.70, 1.13) 0.99 (0.77, 1.27) -0.03 (-0.14, 0.07) -0.06 (-0.16, 0.04) -0.05 (-0.14, 0.05)

  BMI (ref. 
normal)

overweight 1.13 (0.93, 1.38) 1.13 (0.92, 1.38) 0.95 (0.77, 1.18) 0.04 (-0.05, 0.12) 0.01 (-0.07, 0.09) -0.04 (-0.12, 0.05)

obese 1 (0.80, 1.24) 1.02 (0.82, 1.28) 1.04 (0.82, 1.32) -0.06 (-0.16, 0.04) -0.08 (-0.17, 0.01) -0.01 (-0.10, 0.08)

  Current smoker 
(ref. no)

yes 0.6 (0.47, 0.75) 0.67 (0.52, 0.84) 0.56 (0.44, 0.72) -0.24 (-0.34, -0.13) -0.21 (-0.31, -0.11) -0.27 (-0.37, -0.17)

  Morbidity (ref. 
ASA1)

ASA2 0.72 (0.58, 0.88) 0.73 (0.59, 0.89) 0.61 (0.48, 0.76) -0.14 (-0.23, -0.05) -0.12 (-0.21, -0.04) -0.16 (-0.24, -0.07)

ASA3/4 0.57 (0.43, 0.77) 0.67 (0.49, 0.91) 0.55 (0.40, 0.76) -0.31 (-0.44, -0.18) -0.18 (-0.31, -0.06) -0.25 (-0.37, -0.12)

  Baseline COMI 1.24 (1.16, 1.33) 0.91 (0.85, 0.97) 0.95 (0.88, 1.02) 0.32 (0.27, 0.36) -0.05 (-0.10, -0.01) -0.03 (-0.08, 0.01)

  Baseline back 
pain

0.87 (0.83, 0.90) 1.37 (1.31, 1.42) 0.89 (0.86, 0.93) -0.21 (-0.25, -0.16) 0.5 (0.46, 0.54) -0.16 (-0.19, -0.12)

  Baseline leg 
pain

1.02 (0.98, 1.07) 0.99 (0.95, 1.04) 1.44 (1.37, 1.53) 0.03 (-0.02, 0.07) -0.02 (-0.06, 0.02) 0.48 (0.44, 0.52)

  Extent of 
surgery (ref. 1)

2 1.13 (0.69, 1.86) 0.99 (0.59, 1.66) 1 (0.58, 1.69) 0.09 (-0.13, 0.31) 0.06 (-0.16, 0.27) 0.06 (-0.15, 0.27)

3 1.37 (0.80, 2.34) 1.13 (0.65, 1.96) 1.21 (0.67, 2.14) 0.09 (-0.15, 0.33) 0.09 (-0.14, 0.31) 0.08 (-0.15, 0.30)

 ≥ 4 1.01 (0.49, 2.04) 0.91 (0.44, 1.87) 0.75 (0.35, 1.57) -0.01 (-0.32, 0.31) 0.01 (-0.29, 0.30) -0.03 (-0.33, 0.27)

  Surgical 
measures (ref. 
decompression)

decompression & 
fusion

1.98 (1.21, 3.28) 1.45 (0.89, 2.39) 1.81 (1.06, 3.13) 0.37 (0.16, 0.58) 0.28 (0.08, 0.48) 0.33 (0.13, 0.53)

  Surgeon (ref. 
specialized spine)

board certified 
neuro

1.14 (0.94, 1.39) 1.1 (0.90, 1.34) 0.94 (0.76, 1.16) 0.03 (-0.05, 0.12) 0.02 (-0.06, 0.10) 0 (-0.08, 0.08)

board certified 
ortho

1.12 (0.50, 2.61) 1.09 (0.47, 2.54) 1.58 (0.63, 4.60) -0.04 (-0.40, 0.32) -0.01 (-0.34, 0.33) 0.16 (-0.18, 0.50)

neuro in training 0.95 (0.76, 1.19) 0.85 (0.67, 1.07) 0.87 (0.68, 1.11) -0.04 (-0.14, 0.06) -0.01 (-0.11, 0.08) -0.03 (-0.12, 0.07)

ortho in training 0.87 (0.38, 2.00) 0.53 (0.22, 1.23) 0.86 (0.36, 2.17) -0.14 (-0.51, 0.23) -0.21 (-0.56, 0.15) -0.01 (-0.36, 0.35)

other 1.13 (0.69, 1.87) 1.3 (0.78, 2.21) 0.87 (0.52, 1.50) 0.01 (-0.21, 0.23) 0.06 (-0.15, 0.27) 0.02 (-0.19, 0.23)

  Operation time 
(ref. < 1)

1–2 0.88 (0.73, 1.05) 0.95 (0.79, 1.14) 0.92 (0.76, 1.12) -0.06 (-0.14, 0.02) -0.03 (-0.11, 0.04) -0.05 (-0.13, 0.02)

2–3 0.91 (0.62, 1.36) 0.98 (0.66, 1.46) 1.03 (0.67, 1.58) -0.05 (-0.22, 0.13) -0.02 (-0.18, 0.15) 0.04 (-0.12, 0.21)

 > 3 0.55 (0.28, 1.05) 0.58 (0.30, 1.11) 0.75 (0.37, 1.51) -0.33 (-0.61, -0.04) -0.31 (-0.58, -0.04) -0.07 (-0.35, 0.20)

  Blood loss 
(ref. < 100 ml)

100–500 ml 1.19 (0.94, 1.50) 1.29 (1.01, 1.64) 1.22 (0.95, 1.58) 0.09 (-0.02, 0.19) 0.08 (-0.02, 0.17) 0.05 (-0.05, 0.15)

 > 500 ml 0.47 (0.18, 1.12) 0.83 (0.34, 1.97) 0.65 (0.27, 1.59) -0.18 (-0.55, 0.19) -0.19 (-0.54, 0.17) -0.17 (-0.52, 0.18)

  Complications 
(ref. no)

yes 0.83 (0.65, 1.05) 0.73 (0.57, 0.94) 0.78 (0.61, 1.01) -0.05 (-0.16, 0.06) -0.05 (-0.15, 0.05) -0.08 (-0.18, 0.02)

   (log) Hospital 
stay (days)

0.78 (0.66, 0.92) 0.88 (0.75, 1.05) 0.78 (0.65, 0.93) -0.07 (-0.12, -0.03) -0.04 (-0.08, -0.00) -0.05 (-0.09, -0.01)

  Follow-up (ref. 
3 months)

12 months 0.99 (0.61, 1.60) 0.93 (0.57, 1.53) 1.02 (0.61, 1.68) -0.02 (-0.23, 0.19) -0.07 (-0.28, 0.13) 0.01 (-0.19, 0.21)

24 months 1.1 (0.72, 1.68) 1.13 (0.73, 1.73) 1.28 (0.81, 1.98) 0.14 (-0.04, 0.33) -0.01 (-0.19, 0.17) 0.11 (-0.07, 0.28)

Development performance (N = 2691)

  Nagelkerke R2 0.10 0.17 0.17

  Null deviance (df = 2690) / Residual 
deviance (df = 2657)

3669 / 3456 3723 / 3359 3424 / 3077

  AUC (95% CI) 0.65 (0.63, 0.67) 0.69 (0.67, 0.71) 0.70 (0.68, 0.72)

  Sensitivity / Specificity (optimal 
cut-off )

0.66 / 0.56 (0.56) 0.75 / 0.51 (0.49) 0.72 / 0.56 (0.65)

  F-test F(33,2657) = 13.35, 
p < 0.001

F(33,2657) = 24.11, 
p < 0.001

F(33,2657) = 23.62, 
p < 0.001
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available set of routinely collected data in combination 
and to assess relative contribution of specific preopera-
tive factors while controlling for potential confounders. 
Each of the six models (one model per outcome) based on 
the development sample was then fitted to the observed 
predictor values in the validation data to predict the out-
comes of interest in new, untrained data. The predicted 
outcomes were compared with the actual (observed) out-
come values.

Random forests
As our secondary analysis, we used random forests (RF), 
as a particularly flexible machine learning approach, 
which can combine different data types and be applied 
to both dichotomous and continuous outcomes, and 
in some studies demonstrated superior predictive per-
formance over other machine learning algorithms [22, 
43–45]. Compared to statistical regression models, RF 
showed increased accuracy in presence of larger number 
of predictors, nonlinear relationships, and smaller num-
ber of observations [20]. RF is a non-linear classifica-
tion and regression algorithm based on an ensemble of 
deep decision trees. Multiple decision trees are trained 

on different randomly selected bootstrap samples of the 
same training dataset. Each time a decision tree split is 
performed, the best split variable [43] is chosen from a 
random subset of the original predictor set. Each tree 
gives an outcome prediction on the leftover data which 
was not used during training (out-of-bag, OOB). The pre-
dictions are then aggregated (bagging) by assigning class 
labels (MCID vs. no-MCID) by majority vote, or by aver-
aging the continuous dependent variable (change score) 
across all the trees. Prediction errors are calculated as 
OOB error (misclassification rate) for classification or 
OOB mean square error for regression. While aggregat-
ing the predictions of multiple decision trees reduces the 
interpretability of a model, it also reduces variance and 
minimises overfitting (a major problem of individual 
decision trees), thus improving the RF’s ability to gener-
alise to new data. We used Breiman’s implementation of 
RF in randomForest R package [43, 46]. The RF algorithm 
hyperparameters were tuned to maximise the predic-
tive accuracy as described in Methods S3 and Table S2, 
Additional file  1. Using the final hyperparameters and 
500 trees for each model, we applied RF classification to 
predict MCID outcomes, and RF regression to predict 

Table 1  (continued)

COMI MCID Back pain MCID Leg pain MCID COMI change Back pain change Leg pain change

  R2 / adjusted R2 0.142 / 0.132 0.230 / 0.221 0.227 / 0.217

  RMSE 2.84 2.90 3.24

  Calibration intercept (95% CI) 0.01 (-0.06, 0.09) 0.02 (-0.09, 0.12) 0.02 (-0.05, 0.08) 0.10 (-0.28, 0.48) 0.00 (-0.25, 0.26) -0.03 (-0.48, 0.41)

  Calibration slope (95% CI) 0.97 (0.85, 1.09) 0.97 (0.78, 1.16) 0.97 (0.88, 1.07) 0.97 (0.86, 1.08) 1.00 (0.90, 1.09) 1.01 (0.90, 1.12)

  Calibration-in-the-large  < 0.01  < 0.01  < 0.01  > -0.01 0.00  < 0.01

  E/O 1.00 1.00 1.00

  Brier score 0.23 0.22 0.19

  ECI 0.03 0.15 0.02

  Pearson’s r (observed vs. predicted) 0.38 0.48 0.48

Validation performance (N = 1616)

  AUC (95% CI) 0.63 (0.61, 0.66) 0.72 (0.69, 0.74) 0.68 (0.65, 0.71)

  Sensitivity / Specificity (optimal 
cut-off )

0.51 / 0.70 (0.61) 0.53 / 0.77 (0.61) 0.76 / 0.49 (0.63)

  R2 0.156 0.276 0.219

  RMSE 2.93 3.00 3.33

  Calibration intercept (95% CI) 0.09 (-0.06, 0.24) 0.02 (-0.11, 0.14) 0.08 (-0.03, 0.18) 0.18 (-0.23, 0.59) 0.15 (-0.18, 0.48) 0.49 (0.28, 0.69)

  Calibration slope (95% CI) 0.84 (0.59, 1.10) 1.03 (0.81, 1.26) 0.89 (0.74, 1.04) 1.02 (0.90, 1.15) 1.09 (0.97, 1.21) 0.94 (0.89, 0.99)

  Calibration-in-the-large  < 0.01 0.04 0.01 0.25 0.35 0.28

  E/O 1.00 0.93 0.99

  Brier score 0.23 0.21 0.19

  ECI 0.10 0.33 0.10

  Pearson’s r (observed vs. predicted) 0.40 0.53 0.47

Coefficients in bold indicate significant predictors (95% CI does not include 1 for OR, or 0 for beta). ASA American Society of Anaesthesiologists morbidity class, AUC​ 
Area Under the Curve, Beta Standardised regression coefficient, BMI Body mass index, CI Confidence interval, COMI Core Outcome Measures Index, E/O Expected-to-
observed events ratio; EIC estimated calibration index, MCID Minimal Clinically Important Difference; neuro neurosurgeon, OR Odds ratio, ortho Orthopaedic surgeon, 
ref Reference term, RMSE Root mean square error
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continuous outcomes in the development data. Then we 
used the parameters of each of the six developed models 
(one model per outcome) to predict the same outcomes 
in the validation data. Although the leg pain outcome was 
characterised by a moderate class imbalance, with MCID 
rates of 67–68%, no adjustments such as downsampling 
non-events were made, as these could distort the true 
outcome rates, lead to inadequate clinical predictions, 
and increase the risk of overfitting.

Assessment of model performance
Model performance on the development and valida-
tion data was expressed by calibration and discrimina-
tion measures with 95% confidence intervals (CI) where 
applicable. Note that although several internal valida-
tion methods are available, such as bootstrapping [47], 
our primary focus was on the validation on an external 
sample, which is a preferred, more robust, method to 
those based on resampling the internal data [37]. For 
calibration plots, we divided each dataset into 10 deciles 
according to the predicted probability of MCID (or pre-
dicted change score for linear and RF regression), and 
plotted the mean predicted versus mean observed prob-
abilities (or change scores) for each decile [48]. Perfect fit 
would be reflected by all points being aligned on a line 
with intercept 0 and slope 1. We tested whether the 95% 
CIs of the intercept and slope of the calibration line of 
best fit include these values. While this method is appli-
cable to both dichotomous and continuous outcomes, 
other approaches have been proposed as more robust 
for assessing calibration of outcome probabilities, such 
as flexible calibration curves [49], which we present in 
Additional file 1 for reference. We additionally calculated 
calibration-in-the-large (mean observed – mean pre-
dicted outcome probabilities or values), and for MCID 
models, reported expected-to-observed events ratio 
(E/O; 1 would indicate perfect calibration), Brier score 
(mean squared error between the observed and pre-
dicted outcome probabilities; 0 would indicate perfect 
calibration), and estimated calibration index (ECI; aver-
age squared difference between predicted and observed 
outcome probabilities transformed into a single number 
[0–1] summarising a flexible calibration curve, with 0 
indicating perfect calibration) [49, 50]. For linear regres-
sion models, also a correlation between ungrouped 
observed and predicted outcomes was expressed as Pear-
son’s r. Discrimination of the logistic regression and RF 
classification models was assessed via Receiver-Oper-
ating Characteristic curve (ROC) plots with estimated 
Area Under the Curve (AUC; c-index), and classification 
accuracy expressed as sensitivity and specificity estimates 
at the optimal ROC cut-off (probability threshold max-
imising both indices). AUC can range from 0 to 1 and a 

value of 0.5 corresponds to chance discrimination, while 
0.7–0.8 is considered acceptable, and > 0.8 excellent dis-
crimination [51]. Nagelkerke pseudo-R2 and deviance 
were also reported as overall performance measures for 
logistic regression, and OOB errors for RF classification. 
For linear and RF regression, discrimination was quanti-
fied by R2 (pseudo- R2 for RF) and root mean square error 
(RMSE), and also an F-test for linear regression models. 
To express adjusted contribution of each predictor to 
the outcome of interest, we presented log odds and odds 
ratios (for logistic regression) and unstandardised and 
standardised regression coefficients (for linear regres-
sion) with 95% CIs. For RF models, we presented relative 
variable importance based on the mean decrease in accu-
racy (loss in prediction performance) when a particular 
variable is omitted from the training data for each devel-
opment model.

Results
Participants
Fig. S5, Additional file  1 illustrates the flow of partici-
pants through the eligibility screening process and sum-
marises reasons for exclusion. Out of 6810 screened 
surgery cases, 4307 unique patients were included in 
the analysis. Most of these patients underwent an open 
surgery assisted with a microscope. Descriptive charac-
teristics, missingness rates, and statistical comparisons 
between included and excluded participants due to miss-
ing baseline and/or follow-up assessment are reported in 
Results S1 and Table S3, Additional file 1. The most fre-
quent latest available follow-up interval was 24  months 
and the outcomes did not vary depending on the dura-
tion of follow-up. Although there were statistically sig-
nificant differences on 10 predictors, as expected in large 
datasets even when effect sizes of these differences are 
small, the included data were representative: the included 
data covered the full range of possible predictor values 
in the excluded data, and all levels of categorical factors 
present in the excluded data were well-represented in the 
included data.

Development dataset included 2691 and validation 
dataset 1616 patients, thus each was more than suffi-
cient to fit regression models with 34 specified predic-
tors. Patient characteristics are presented in Table  S4, 
Additional file  1, and any group differences and addi-
tional post-hoc sample size considerations based on 
the observed outcome rates and means are described in 
Results S1, Additional file 1. On average, patients in the 
development compared to the validation sample achieved 
less reduction in back pain (mean [SD]: 2.15 [3.30] vs. 
2.51 [3.50]) and leg pain (3.68 [3.69] vs. 3.94 [3.75]), but 
did not differ in COMI change (3.22 [3.07] vs. 3.34 [3.18]) 
or MCID rates in COMI (57% vs. 58%), back pain (53% 
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vs. 57%), or leg pain (67% vs. 68%). There were slight 
statistically significant differences on most of the candi-
date predictors; yet, importantly, the validation data was 
within the range of the development data for all variables.

Development and validation of regression models
Regression diagnostic checks are detailed in Results S2 
and Figs. S7-11, Additional file 1. In summary, there was 
no multicollinearity among the predictors, no severe 
deviations from linearity between the continuous predic-
tors and logit of MCID or continuous outcomes, residual 
variance was homogenous across different levels of cate-
gorical predictors, there were no highly influential values, 
models had good fit across the range of observations, and 
standardised residuals in linear models showed accepta-
ble homoscedasticity and normal distribution, with slight 
deviations on the tails.

Binary outcomes (MCID)
Table 1 presents odds ratios with 95% CIs for each can-
didate predictor in the development models for achieve-
ment of MCID in COMI, back pain, and leg pain 
intensity (see also Fig. S12, Additional file 1). Independ-
ent of other factors included in the models, older age 
was associated with higher odds of achieving MCID after 
surgery across all outcomes. Decompression with fusion 
surgery was related to higher odds of MCID in COMI 
and leg pain, whereas blood loss of 100–500 ml – higher 
odds of MCID in back pain. Additionally, higher baseline 
COMI, back pain, and leg pain predicted better odds of 
improvement in their corresponding outcomes. In con-
trast, patients with spinal stenosis, history of previous 
surgeries, currently smoking, and with higher morbidity 
class had lower odds of achieving MCID after surgery 
across all outcomes. Disc herniation with stenosis, higher 
baseline COMI, and presence of any complications also 
predicted lower odds of MCID in back pain. Finally, 
patients with higher baseline back pain and longer hos-
pital stay had lower odds of MCID in COMI and leg pain. 
Adjusted effect sizes of these predictors were small (odds 
ratios > 0.4 and < 2.5).

The AUC in the development and validation data 
was bordering on between no-better-than-chance and 
acceptable discriminability (Table  1). COMI MCID 
model had the worst discrimination, whereas the high-
est, acceptable, discrimination ability was found for the 
back pain MCID model in the validation data. Using the 
optimal ROC cut-offs for each outcome, development 
models generally had good sensitivity (ability to detect 
true MCID), while specificity (detecting true no-MCID) 
oscillated near chance classification. There was a con-
sistent pattern of classification in the validation data for 
leg pain MCID, however, COMI and back pain MCID 

classification presented an opposite pattern, with good 
specificity but poor sensitivity. The ROC curves are pre-
sented in Fig. S13a, Additional file  1 for development 
data, and Fig. 1a for validation data.

The proportion of explained variation in the devel-
opment models ranged from 10% for COMI to 17% for 
back and leg pain intensity. Residual deviance was lower 
than null deviance, indicating that the included variables 
allow to predict each outcome better than intercept-only 
(null) models. Calibration-in-the-large was near zero 
and E/O equal to or approaching 1, suggesting no over-
all differences between mean observed and predicted 
outcomes. Brier scores ranged from 0.19 to 0.23, con-
sistently across the development and validation mod-
els (Table  1). Calibration plots indicated good model fit 
for MCID outcomes in the development data (Fig. S14a, 
Additional file 1). In the validation data, considering the 
visual inspection (Fig.  2a) and the fact that in all cases, 
the intercept of the calibration lines did not significantly 
differ from 0, and their slope did not significantly dif-
fer from 1, we conclude that the models showed good 
external calibration. On a more granular level, flexible 
calibration curves for COMI and leg pain MCID consist-
ently showed good calibration, whereas that for the back 
pain model, accompanied by a higher ECI, had a positive 
intercept and suggested a small degree of underestima-
tion, particularly in the range of 0.3–0.5 predicted MCID 
probabilities (Fig. S15a, Additional file 1).

Continuous outcomes
Results of the linear regression models on change in 
COMI, back pain, and leg pain are presented in Table 1 
(standardised regression coefficients) and Fig. S12, Addi-
tional file 1. After adjusting for other factors included in 
the models, older age, male gender, and decompression 
with fusion (moderate effect size) were associated with 
greater improvement after surgery across all outcomes. 
Additionally, higher baseline COMI, back pain, and leg 
pain predicted greater improvement in their correspond-
ing outcomes (moderate-large effects). On the contrary, 
patients with spinal stenosis and disc herniation with ste-
nosis, history of previous surgeries, currently smoking 
(moderate effect), with higher morbidity class (moderate 
effect), and longer hospital stay had less improvement 
after surgery across all outcomes. Additionally, higher 
baseline COMI predicted less improvement in back 
and leg pain, higher baseline back pain predicted less 
improvement in COMI and leg pain, and operation 
time > 3 h (moderate effect) predicted less improvement 
in COMI and back pain. Adjusted effect sizes of these 
predictors were small (betas < 0.25), unless specified 
otherwise.
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Discrimination performance in the development mod-
els ranged from 13% (COMI change) to 22% (back and leg 
pain change) and the included set of predictors explained 
each outcome better than intercept-only models (F-test 
ps < 0.001) (Table  1). Unadjusted portion of explained 
variance was higher in the validation than development 
data for COMI and back pain change, but lower for leg 
pain change outcome. Prediction accuracy was slightly 
worse in the validation compared to the development 
data with approximately 0.1 higher RMSEs across all 
outcomes.

Model calibration was very good in the development 
data (Fig. S14b, Additional file  1), and plots in the vali-
dation data also showed close agreement between mean 
observed and predicted outcomes, although there was 

some degree of underestimation of the predicted changes 
in back and leg pain (Fig.  2b), also apparent in flexible 
calibration curves (Fig. S16a, Additional file 1). However, 
only the leg pain model calibration line significantly devi-
ated from the perfect fit. Calibration-in-the-large indi-
cated that average predicted changes in COMI and pain 
outcomes were 0.25–0.35 points lower than observed 
changes (Table 1).

Individual predictions of outcomes based on the devel-
oped logistic and linear regression models can be made 
according to the equations provided in Results S3, Addi-
tional file 1 and log-odds and unstandardised regression 
coefficients presented in Table S5, Additional file 1.

Compared to the primary analyses using the imputed 
predictor data, sensitivity complete case analyses 

Fig. 1  Discrimination ability of the (a) logistic regression and (b) random forest classification models when fitted to the validation data for MCID in 
COMI, back pain, and leg pain. Plots illustrate Receiver-Operating Characteristic (ROC) curves with an optimal probability threshold (black point on 
the ROC curve; specificity and sensitivity indicated in brackets). Area Under the Curve (AUC) is reported for each ROC with 95% confidence interval

Fig. 2  Calibration plots for (a) logistic regression, (b) linear regression, (c) random forest (RF) classification, and (d) RF regression models when fitted 
to the validation data for each outcome. Points correspond to the mean predicted and observed probabilities of MCID or change scores in each 
decile with 95% confidence intervals (CI) of the mean observed probabilities or change scores. Calibration lines of best fit are plotted in red with 
95% CI in grey and their intercept (α) and slope (β) estimates with 95% CIs are presented in the top-left corner of each plot. *95% CI of the intercept 
do not include 0, or the 95% CI of the slope do not 1, indicating significant deviation from the perfect fit

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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presented in Results S4 and Table  S6, Additional file  1 
showed similar or worse model performance in the 
development and validation datasets, and no systematic 
differences in significant predictors except for the current 
smoking status which did not significantly predict any 
outcomes in the sensitivity analyses.

Development and validation of random forest models
Table  2 provides an overview of the RF performance 
measures across MCID (classification) and continuous 
change (regression) in COMI, back pain, and leg pain 
outcomes in the development and validation data.

Binary outcomes (MCID)
Misclassification rates ranged from 30% for leg pain to 
40% for back pain and COMI MCID outcomes. Discrimi-
nation performance was in a similar range for develop-
ment and validation data, with AUC consistently over 
0.60, but still below acceptable discrimination across 
all outcomes, and consistently lower than AUC values 

obtained from logistic regression models. Outcome clas-
sification at the optimal probability threshold in the 
development and validation data across back and leg pain 
outcomes appeared to be biased towards higher sensitiv-
ity at the expense of specificity which oscillated near or 
below chance classification of no-MCID cases. This pat-
tern was reversed for COMI outcome, where classifica-
tion showed better specificity but near-chance sensitivity. 
The ROC curves are presented in Fig. S13b, Additional 
file  1 for development data, and Fig.  1b for validation 
data.

Calibration plots demonstrated good agreement 
between mean observed and predicted MCID probabili-
ties in the development data, however, the calibration 
line for the COMI outcome significantly deviated from 
the perfect fit suggesting some underestimation of the 
predicted MCID (Fig. S14c, Additional file  1). Calibra-
tion of the COMI and back pain models in the validation 
data also suggested a small degree of underestimation of 
predicted outcome probabilities, but without significant 

Table 2  Random forests performance measures in the development and validation data across all outcomes

AUC​ Area Under the Receiver-Operating Characteristic Curve, CI Confidence interval, E/O Expected-to-observed events ratio, ECI Estimated calibration index, MCID 
Minimal Clinically Important Difference, OOB error Out-of-bag misclassification rate, RMSE Root mean square error

Classification outcomes Regression outcomes

COMI MCID Back pain MCID Leg pain MCID COMI change Back pain change Leg pain change

Development
  AUC (95% CI) 0.62 (0.60, 0.64) 0.66 (0.64, 0.68) 0.67 (0.64, 0.69)

  Sensitivity / Specificity (optimal 
cut-off )

0.51 / 0.68 (0.58) 0.67 / 0.56 (0.53) 0.71 / 0.53 (0.67)

  OOB error / RMSE 39.84% 38.72% 29.77% 2.89 2.94 3.33

  pseudo-R2 0.112 0.207 0.186

  Calibration intercept (95% CI) 0.11 (0.04, 0.18) 0.01 (-0.08, 0.10) 0.01 (-0.12, 0.14) 0.04 (-0.46, 0.54) -0.06 (-0.33, 0.22) -0.18 (-0.64, 0.28)

  Calibration slope (95% CI) 0.83 (0.71, 0.95) 1.00 (0.83, 1.16) 0.95 (0.76, 1.13) 0.98 (0.84, 1.13) 1.02 (0.92, 1.13) 1.05 (0.93, 1.17)

  Calibration-in-the-large 0.01  < 0.01 -0.03 -0.02 -0.01  < 0.01

  E/O 0.98 0.99 1.04

  Brier score 0.23 0.22 0.20

  ECI 0.07 0.09 0.16

  Pearson’s r (observed vs. predicted) 0.33 0.45 0.43

Validation
  AUC (95% CI) 0.62 (0.60, 0.65) 0.68 (0.66, 0.71) 0.66 (0.63, 0.69)

  Sensitivity / Specificity (optimal 
cut-off )

0.56 / 0.64 (0.56) 0.86 / 0.39 (0.47) 0.75 / 0.50 (0.66)

  RMSE 2.94 3.04 3.33

  pseudo-R2 0.152 0.252 0.220

  Calibration intercept (95% CI) 0.06 (-0.07, 0.18) -0.06 (-0.17, 0.06) 0.01 (-0.16, 0.19) -0.26 (-0.96, 0.45) -0.04 (-0.42, 0.35) -0.25 (-0.72, 0.22)

  Calibration slope (95% CI) 0.94 (0.71, 1.16) 1.20 (0.99, 1.41) 0.96 (0.72, 1.21) 1.12 (0.91, 1.33) 1.14 (1.00, 1.29) 1.14 (1.02, 1.25)

  Calibration-in-the-large 0.02 0.05 -0.01 0.14 0.28 0.25

  E/O 0.96 0.92 1.02

  Brier score 0.23 0.22 0.20

  ECI 0.07 0.38 0.17

  Pearson’s r (observed vs. predicted) 0.39 0.5 0.47
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deviations from the perfect fit (Fig. 2c). However, higher-
resolution flexible calibration curve for back pain MCID 
with a positive intercept and slope > 1 further suggested 
some degree of underestimation of predicted probabili-
ties in the 0.4–0.6 range of the validation data (Fig. S15b, 
Additional file  1). Back and leg pain calibration curves 
were also accompanied by higher ECIs compared to the 
logistic regression models. Nonetheless, RF models were 
characterised by comparable calibration-in-the-large, 
E/O, and Brier scores, and calibration plots supported 
good agreement between the mean observed and pre-
dicted probabilities of MCID for most quantiles in the 
validation data, similar to the calibration of the logistic 
regression models.

Continuous outcomes
The proportion of explained variance in change in COMI, 
back pain and leg pain ranged from 11% for COMI to 
21% for back pain in the development data, and increased 
in the validation data (15–25%). These values were lower 
compared to R2 from the linear regression models in the 
development data, but did not differ in the validation 
data except for the back pain model. RMSEs were only 
minimally higher in the RF regression, but with less dis-
crepancy between the development and validation data.

RF regression models showed very good calibration in 
the development data (Fig. S14d, Additional file 1). While 
there was also good agreement between mean observed 
and predicted outcomes in the validation data, calibra-
tion plots showed some degree of underestimation of the 
predicted relative to the observed changes in outcomes, 
in particular in the higher deciles, with the slope of the 
leg pain calibration line significantly deviating from the 
perfect fit (Fig.  2d). Similar trends are apparent in the 
flexible calibration curves (Fig. S16b, Additional file  1). 
Tendency to underestimate predicted changes in the vali-
dation data was similar to that in the calibration of linear 
regression models, although underestimation of leg pain 
change was more pronounced in lower deciles. Correla-
tion coefficients between ungrouped observed and pre-
dicted outcomes in the RF models were overall higher 
in the validation than development data, and marginally 
lower compared to linear regression models. Calibration-
in-the-large indicated smaller (relative to linear regres-
sion models) differences between average observed and 
predicted outcomes, in the range of 0.14–0.28 points.

Variable importance
Highest variable importance in RFs was generally 
assigned to the baseline scores on the corresponding out-
come measures (except for COMI MCID), for instance, 
baseline back pain was most important for classifying 
back pain MCID and predicting change in back pain 

intensity (Fig. S17, Additional file  1). While for pain 
intensity outcomes, these baseline scores appeared to 
be the sole most relevant predictors, COMI outcomes 
showed broader distribution of importance over different 
predictors. Across all outcomes, relatively high impor-
tance was also attributed to the duration of hospital stay, 
age, baseline scores on other outcome measures, current 
smoking status, type of degenerative disease, history of 
previous spinal surgeries, and morbidity. The same fac-
tors were found to have significant prognostic effects in 
the logistic and linear regression models.

Discussion
We developed and externally validated multivariate 
regression and RF models to predict patient-reported 
outcomes 3–24 months after lumbar spine surgery based 
on prospectively recorded medical and patient data. The 
models demonstrated good calibration in the temporal 
validation data, while their discrimination ability oscil-
lated between acceptable and no-better-than-chance. 
Linear and logistic regression models performed better 
than RF algorithms, both in the development and valida-
tion data. The most important predictors included age, 
baseline COMI and pain scores, type of degenerative dis-
ease, previous surgeries, smoking, morbidity, and hospi-
tal stay.

This study brings a novel contribution to the field by 
assessing and comparing performance of linear and logis-
tic regression models versus RF regression and classifi-
cation algorithms, and validating them on external data. 
Previous spinal surgery studies focused solely on compar-
ing different machine learning and regression approaches 
for binary outcomes and involved only internal valida-
tion of the developed prediction models [21–23]. Thus, 
it was important to identify whether a non-linear mod-
elling strategy (RF) could outperform a linear approach 
on this type of data, with reference to an external vali-
dation dataset, in order to further develop our ability 
to predict more precisely individual outcomes (i.e. the 
magnitude of reduction in COMI and pain intensity after 
surgery). High number of participants and events per 
variable, which were limited in previous clinical predic-
tion models [44], add to the strength of the present work. 
Comparable performance and consistency in identified 
predictors demonstrate the robustness and generalisabil-
ity of our models across different patient-reported out-
comes (COMI, back, and leg pain MCID and continuous 
change scores) and modelling approaches.

Model performance
There was no substantial decrease in the models’ per-
formance on the new data relative to the development 
data, indicating no overfitting issues. Regression models 
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predicting changes in back pain showed the best external 
validity, with acceptable discrimination (0.72) and 28% 
explained variance, followed by the models predicting 
leg pain outcomes (AUC 0.68, 22% explained variance). 
These metrics are comparable or better than in similar 
externally validated models predicting pain-related out-
comes (AUC 0.52–0.83, 6–19% [17–19]). COMI models 
showed poorer discrimination (AUC 0.63, 16% explained 
variance), although comparable with external validity of 
another model relying on the same measure (17% [18]), 
suggesting that composite outcomes like COMI may be 
more difficult to predict than, for instance, specific dis-
ability measures (AUC 0.71 [19]).

Similar studies relying on internal validation gener-
ally reported better discrimination (AUC 0.64–0.84, 
23–49% [12–16]), highlighting a potential degree of over-
optimism when model performance is only assessed on 
resampled or randomly-split data. Furthermore, model 
calibration was not always assessed [12, 16, 17], but accu-
rate prediction of outcomes can be particularly problem-
atic in external data, and both underestimation of leg 
pain and overestimation of back pain and disability out-
comes have been reported upon external validation [18, 
19]. Our models showed good calibration in the valida-
tion data across all outcomes, although there was a mild 
tendency to underestimate back pain MCID and leg pain 
reduction. The range of the calibration measures in the 
current study (see Table 1) indicated similar or better cal-
ibration compared to other externally validated regres-
sion models in the field (E/O 0.77 – 1.20; Brier score 0.12 
– 0.22; ECI 0.41 – 0.67; r 0.31 – 0.44; [18, 19]).

We found that RF did not outperform linear and logis-
tic regression models. RF showed similarly good cali-
bration in the validation data, with overall calibration 
metrics very close to those of the conventional regres-
sion models, and even slightly better calibration-in-the-
large for continuous outcomes. Nonetheless, calibration 
slope indicated some underestimation of leg pain reduc-
tion, and the flexible calibration curve and ECI suggested 
potential underestimation of back pain MCID (consistent 
with the underestimation tendencies observed for statis-
tical regression models). Brier scores in validation data 
were at the upper limit of the range of those reported in 
previously published RF prediction models (0.14 – 0.20), 
which only assessed internal calibration [21, 22]. Despite 
overall good external calibration, none of the RF models 
reached acceptable discriminability in the validation (or 
development) data (0.62–0.68). This may reflect the dif-
ficulty of RF algorithms to extrapolate to new, untrained 
data, although previous relevant studies only achieved RF 
discrimination of 0.64–0.72 in internal validation [21, 22]. 
Various machine learning classification approaches (e.g. 
elastic net penalised regression, deep neural networks, 

extreme gradient boosting, RF) have previously shown 
superior predictive performance compared to logistic 
regression [20, 22, 23]. The abovementioned approaches 
were also found to outperform RF for some outcomes 
[21, 23], therefore, it is possible that more complex 
machine learning models could further improve predic-
tion accuracy. However, consistent with our findings, a 
recent meta-analysis concluded that based on low risk 
of bias studies, performance of machine learning clini-
cal prediction algorithms, including RF, does not differ 
from logistic regression (their advantage was only found 
in high risk of bias studies) [44]. Our results extend this 
conclusion to linear regression versus RF regression.

There could be several reasons why RFs did not outper-
form statistical regression in the present study. Previous 
work demonstrating an advantage of machine learning 
over logistic regression did not cover external validation 
[20, 22, 23], while regression models are likely to have 
better generalisability. Furthermore, machine learning 
works best for problems with high signal-to-noise ratio, 
which rarely characterises clinical data. Finally, since RFs 
show improved performance on data with nonlinear and 
nonadditive effects, any nonlinearities in the present data 
were likely not severe enough to be detrimental to sta-
tistical regression. Therefore, RFs might not show supe-
rior performance on large enough datasets satisfying the 
regression assumptions.

Relevant predictors
According to the regression models, greater odds of 
achieving MCID and larger reduction in COMI, back, 
and leg pain were significantly associated with older age, 
higher baseline score on the respective outcome measure, 
having decompression surgery with fusion, no stenosis, 
no history of previous spinal surgeries, lower morbidity 
class, not smoking, and shorter hospital stay. The same 
factors (except for surgical measures) were the most 
important predictors in RF analyses, with preoperative 
COMI, back, or leg pain scores leading across all models. 
Relevance of several of the identified predictors was also 
supported by previous research on patient-reported out-
comes from the Spine Tango registry in other countries 
[18, 52]. Our results are also consistent with systematic 
reviews supporting prognostic value of age, preoperative 
pain intensity and disability, type of spinal pathology, pre-
vious surgeries, and smoking [6–10]. In contrast, we did 
not find any effect of symptom duration, here recorded 
indirectly as duration of previous treatment.

Low back pain and spinal surgery are complex clinical 
issues where multifactorial data is necessary to make 
accurate individualised predictions of treatment out-
comes. Suboptimal model performance, particularly on 
COMI and leg pain outcomes, suggests that additional 
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factors to those already recorded in registries such as 
Spine Tango are likely needed to improve the predictive 
accuracy. For instance, other predictors identified in 
the above-mentioned systematic reviews, but not avail-
able in our data, included education level, compensa-
tion, duration of sick leave, sensory loss, comorbidities, 
and psychological pain-related and affective factors. 
Previous prediction models which achieved better dis-
crimination (at least in internal validation) incorpo-
rated additional predictors, such as unemployment, 
medical insurance (although not applicable in the UK 
context), opioid use, antidepressants, mental function-
ing, optimism, control over pain, catastrophising, and 
postoperative psychomotor therapy [12–14, 21].

Limitations
The present study is not without limitations. Class 
imbalance is a common problem for machine learning 
classification algorithms, where selecting the outcome 
occurring more frequently increases overall classification 
accuracy, which may still be poor for the less frequent 
outcome [53]. This could potentially account for the 
sensitivity/specificity trade-off apparent in some of the 
MCID models, although not specific to RF.

Furthermore, there was missing data on several predic-
tors, and although imputation diagnostics did not indi-
cate any biases, complete case sensitivity analysis was 
inconsistent with respect to the predictive value of smok-
ing status, which had the highest missingness rate. This 
suggests that the imputed data may not accurately reflect 
the true smoking status in the population of interest. 
Thus, the missingness of the smoking status could poten-
tially be related to other unmeasured variables. However, 
the significant prognostic value of smoking is consistent 
with several previous prediction models for spinal sur-
gery outcomes [14, 16–18].

To maximise the length of postoperative follow-up that 
could be included in the analyses, in cases where indi-
vidual patients underwent multiple surgeries, we only 
selected the data related to the chronologically first eli-
gible surgery. This could be considered a limitation in 
terms of neglecting potential effects of subsequent sur-
geries on the recorded treatment outcomes. However, 
since the proportion of eligible patients who underwent a 
subsequent surgery within the included follow-up inter-
val of the first surgery was very small (< 4%), this factor 
was not included in the models as a potential confounder.

We cannot rule out that more complex machine learn-
ing approaches, not assessed in the current study, could 
further improve our ability to predict spinal surgery out-
comes, and potentially outperform statistical regression 
(c.f. [44]). However, further studies making similar com-
parisons should consider assessing the performance of 

such models on external data and their accuracy in pre-
dicting continuous outcomes.

Finally, although the developed models performed rela-
tively well in the temporal validation, geographic valida-
tion is often more problematic [54]. Thus, future research 
could include external validation of the prediction mod-
els across different neurosurgery centres to further assess 
their generalisability.

Implications
The developed models demonstrated good ability to 
predict spinal surgery outcomes from new data, thus in 
practice, they could help identify patients at risk of poor 
outcomes. Such patients could be considered for addi-
tional interventions to improve their chance of recovery 
[12]. While all models appeared to be well-calibrated, and 
those predicting change in back pain showed the best 
performance on external validation, the discrimination 
ability of the leg pain and COMI models could be further 
improved, for instance, by including factors that previ-
ously demonstrated important contributions to spinal 
surgery outcomes. Modifiable preoperative predictors 
could be particularly useful for prospectively maximising 
the treatment benefit. The proposed models can there-
fore serve as a benchmark to inform future studies aimed 
at improving the accuracy of individual outcome predic-
tion and potential revision of routinely collected infor-
mation for spinal surgery registries.

Conclusions
We found comparable performance and consistent pre-
dictors across different outcomes, modelling approaches, 
and datasets. Regression models showed good calibra-
tion and acceptable to no-better-than-chance discrimi-
nation in the validation data. For similar datasets (with 
comparable set of predictors, sufficient sample size, and 
satisfying regression assumptions), RFs do not appear to 
outperform statistical regression. A strong advantage of 
statistical regression is its explanatory value and more 
easily interpretable prediction rules readily applicable in 
the clinical context. RFs, however, allow to establish rela-
tive predictor importance, which may assist in prioritis-
ing complex multifactorial data. Nonetheless, there is still 
room for improvement in terms of recorded predictor 
data.
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