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Regulation of phospholipid 
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Abstract

Cellular membranes function as permeability barriers that separate 
cells from the external environment or partition cells into distinct 
compartments. These membranes are lipid bilayers composed o f  
g ly ce ro ph os ph olipids, sphingolipids and cholesterol, in which  
proteins are embedded. G  l y  ce  r o  ph  o s  ph olipids and sphingolipids  
freely move laterally, whereas t  r a  ns  v e rse m  o v  em  ent between lipid 
bilayers is limited. Phospholipids are asymmetrically distributed 
between membrane leaflets but change their location in biological 
processes, serving as signalling molecules or enzyme activators. 
Designated proteins — flippases and scramblases — mediate this lipid 
movement between the bilayers. Flippases mediate the confined 
localization of specific phospholipids (phosphatidylserine (PtdSer)  
and phosphatidylethanolamine) to the cytoplasmic leaflet. Scramblases 
randomly scramble phospholipids between leaflets and facilitate the 
exposure of PtdSer on the cell surface, which serves as an important 
signalling molecule and as an ‘eat me’ signal for phagocytes. Defects 
in flippases and scramblases cause various human diseases. We herein 
review the recent research on the structure of flippases and scramblases 
and their physiological roles. Although still poorly understood, we 
address the mechanisms by which they translocate phospholipids 
between lipid bilayers and how defects cause human diseases.
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PtdSer is a phospholipid with the most extreme asymmetrical 
distribution — almost exclusively localizing to the inner membrane 
leaflet — and its exposition on the cell surface performs various biologi-
cal functions. PtdSer is thus a prominent substrate for flippases and 
scramblases, and the mechanisms involved in PtdSer movement across 
the bilayer are the best characterized. We herein review how P4-ATPase 
flippases maintain PtdSer in the inner leaflet of plasma membranes and 
discuss when this asymmetrical distribution is disturbed (in response 
to both physiological signals and disease) by exposition of PtdSer on 
the ectoplasmic leaflet of the plasma membrane. We describe the 
mechanisms by which PtdSer is exposed on the cell surface by scram-
blases, how PtdSer supports biological processes and how abnormal 
distribution of PtdSer caused by mutations in flippases and scramblases 
contributes to pathology.

Families of flippases and scramblases
As all phospholipids are synthesized intracellularly, and phospho-
lipids cannot easily transverse the lipid bilayer, early on in the field 
of membrane biology it has been postulated that proteins that are 
able to ‘flip’ (inward moving), ‘flop’ (outward moving) and ‘scramble’ 
(bidirectional moving) phospholipids between the lipid bilayer must 
exist19 (Fig. 1b). Flippases and floppases specifically translocate Ptd-
Ser and PtdEtn from the outer to the inner leaflet of the membranes 
and PtdCho in the opposite direction, respectively. Scramblases non-
specifically and bidirectionally translocate phospholipids between the 
lipid bilayer and collapse the membrane asymmetry20. Flippases and 
floppases require the energy from ATP to perform the ‘uphill’ reaction 
or transport phospholipids against the concentration to establish the 
asymmetrical distribution of phospholipids. By contrast, phospho-
lipid scrambling is a ‘downhill’ reaction and does not require ATP. The 
identity of flippases, floppases and scramblases had been elusive for a 
long time. The flippase and scramblase activities can be assayed by the 
incorporation of the fluorescently labelled phospholipids or with stain-
ing agents for PtdSer and PtdEtn (that is, Annexin V and cinnamycin, 
respectively), and are well characterized. We now know that P4-ATPases 
serve as the flippases at various cellular compartments, whereas two dif-
ferent families (TMEM16 and XKR) work as Ca2+-dependent or caspase-
dependent scramblase, respectively12. Although the ABC transporters 
appear to work as floppases6, their characterization was hampered 
because there is no convenient assay system for the floppase activity. 
Here, we describe flippases and scramblases, which are relatively well 
characterized.

Flippases
The flippase activity that specifically incorporates PtdSer and PtdEtn in 
an ATP-dependent manner was first detected in human erythrocytes21. 
The ATPase was purified from human erythrocyte membranes, and 
flippase activity was reconstituted in proteoliposomes22. A protein 
(ATP8A1) with similar biochemical characteristics was purified from 
bovine chromaffin granules, and its molecular cloning identified it as 
a member of the P4-ATPase family23.

The role of P4-type ATPases in lipid ‘flipping’ between the bilayer. 
P-type ATPases constitute a large protein family that transport cations 
and lipids across the membrane24. They are named ‘P-type’ because 
a conserved aspartic acid is transiently modified by phosphoryla-
tion during the reaction cycle. A phylogenic analysis divided the 
family into five subfamilies (P1–P5 types). Similar to other P-type 
ATPases, P4-ATPases are membrane proteins with cytoplasmic amino 

Introduction
Plasma membranes separate cells from the external environment, 
whereas the membranes at the endoplasmic reticulum (ER), mito-
chondria, the Golgi, lysosomes and nuclei separate organelles from 
the cytosol, ensuring cellular compartmentalization. Cellular mem-
branes comprise lipid bilayers that consist of glycerophospholipids, 
sphingolipids and cholesterol. The ratio of various lipids differs among 
the membranes of different cellular organelles, with abundant sphin-
golipids at plasma membranes, the Golgi and lysosomes but fewer 
at mitochondria and the ER1,2. Phosphatidylcholine (PtdCho), phos-
phatidylethanolamine (PtdEtn), phosphatidylinositol (PtdIns) and 
phosphatidylserine (PtdSer) are major glycerophospholipids in cellular 
membranes, whereas sphingomyelin (SM) is the main sphingolipid.

Early studies utilizing the treatment of intact erythrocytes or 
their membrane fraction with chemical reagents that specifically label 
amino groups indicated that PtdCho and SM were mainly present in 
the extracellular leaflet, whereas PtdSer and PtdEtn were exclusively 
in the cytoplasmic leaflet3. Freeze-fracture electron microscopy sub-
sequently confirmed the predominant localization of PtdSer in their 
cytoplasmic leaflets4,5. This asymmetrical distribution of phospholip-
ids6–9 is essential for maintaining the integrity of plasma membranes 
and cellular organelles and also for signal transduction10,11. In various 
biological processes, PtdSer is exposed on the cell surface and serves 
as a signalling molecule or activates enzymes8,12. Phospholipids have 
a charged head group and two hydrophobic long acyl chains (Fig. 1a). 
As phospholipids with the charged head group hardly move spontane-
ously through the lipid bilayers of membranes, maintenance of their 
asymmetrical distribution and reshuffling rely on the presence of 
designated membrane proteins6.

At least three protein families regulate the distribution of phos-
pholipids in cellular membranes. To confine specific phospholipids 
to the cytoplasmic leaflet of membranes, most of the type IV P-type 
ATPases (P4-ATPases; also referred to as flippases) translocate or flip 
anionic phospholipids (PtdSer and PtdEtn) from the outer to inner 
leaflets, coupled with their ATPase activity13,14. To disrupt the asym-
metrical distribution of phospholipids, transmembrane protein 16 
(TMEM16) and XK-related (XKR) family members (also referred to as 
scramblases) non-specifically scramble phospholipids along their 
concentration gradient between lipid bilayers in a manner dependent 
on Ca2+ (a ubiquitous second messenger, typically associated with cell 
activation) or caspases (mediators of cell dismantling during apopto-
sis), respectively12. Some of these proteins are ubiquitously expressed, 
whereas others show specific expression limited to only particular cells 
or subcellular localizations.

The importance of these proteins is underlined by the fact that, in 
humans, various recessive and dominant mutations have been identi-
fied in proteins belonging to all three families. Yet the physiological 
roles of these proteins and the molecular mechanisms by which they 
translocate phospholipids in lipid bilayers have been challenging to 
address owing to their large family size and the difficulties in determin-
ing the tertiary structure of membrane proteins. The recent develop-
ment of CRISPR–Cas9 technology for knockout genes15, single-cell 
RNA sequence technology to examine the gene expression16, cryogenic 
electron microscopy technology17 and the AlphaFold artificial intel-
ligence program18 to elucidate or predict the tertiary structures of 
membrane proteins has resulted in notable advances in the field. Also, 
the mechanisms by which each member of the P4-ATPases, TMEM16 
and XKR families regulate the distribution of phospholipids in cellular 
membranes are gradually being clarified.
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and carboxy termini. ATPase activity is executed by a large domain 
 comprising two cytoplasmic loops.

We performed forward genetic screening of a human cell line 
to identify the flippase that functions at the plasma membrane and 
identified ATP11C and CDC50A (ref. 25). By expressing 12 members of 
the human P4-ATPase family in ATP11C–/– cells, ATP11A was also shown 
to function as a flippase at the plasma membrane as a complex with 
CDC50A, the latter functioning as a chaperone to localize ATP11A 
and ATP11C to the plasma membrane26 (Fig. 2a). ATP11A and ATP11C 
are ubiquitously expressed, suggesting that they redundantly work 

in various cells. Several other members of the family are present in 
the plasma membrane (ATP8B1, ATP8B2, ATP8B4 and ATP10D) with 
ATP8B1 at the canalicular (apical) membrane of hepatocytes27; however, 
their intact forms did not exhibit flippase activity against PtdSer at 
the cellular level26. Other members have been detected in endosomes 
(ATP8A1, ATP8A2, ATP9A, ATP11B), the Golgi (ATP9B) and lysosomes 
(ATP10B)28,29. All members, except for ATP9A and ATP9B, require 
CDC50A or its paralogue for their localization to the specific cellular 
compartment. Most members are expressed in a tissue-specific manner: 
ATP8A1 and ATP8A2 in neuronal cells in the brain; ATP8B1 and ATP10B in 
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Fig. 1 | Flippases and scramblases that regulate the phospholipid distribution 
in the lipid bilayer. a, Phospholipids. Glycerophospholipids are phosphatic acid 
(PA) derivatives composed of glycerol attached to two fatty acyl chains (diacylg-
lycerol; DAG) and a phosphate. Serine, choline, or ethanolamine is conjugated with 
the phosphate of PA to produce phosphatidylserine (PtdSer), phosphatidylcholine 
(PtdCho) or phosphatidylethanolamine (PtdEtn). Sphingomyelin (SM) is a cera-
mide to which phosphocholine is attached. b, Flippases and scramblase. Under 
normal conditions, ATP-driven flippases translocate PtdSer and PtdEtn from 

the outer or lumen side to the inner leaflets of the lipid bilayer to maintain their 
confined localization to the inner leaflet. Scramblases non-specifically translocate 
phospholipids to disrupt the asymmetric distribution of phospholipids and to 
expose PtdSer on the outer or lumen side of cell membranes. c, Transfer of PtdSer 
from the endoplasmic reticulum (ER) to plasma membranes. PtdSer synthesized 
by PtdSer synthase at the ER is transferred to plasma membranes via a reciprocal 
exchange with PtdIns(4)P by a lipid transfer protein of the Oxysterol-binding  
protein (OSBP)-related protein (ORP) family265. PSS, phosphatidyl serine synthase.
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epithelial cells in the intestine; ATP8B4 in myeloid cells; and ATP8B3 in the  
testis (Table 1).

In addition to ATP11A and ATP11C, four members (ATP8A1, ATP8A2, 
ATP8B1 and ATP11B) exhibit PtdSer/PtdEtn flippase activity in reconsti-
tuted proteoliposomes or can be activated by PtdSer for their ATPase 
activity27,29–31. By contrast, ATP10B localized at late endosomes and lyso-
somes flips glucosylceramide (GluCer) and PtdCho towards the cyto-
plasmic leaflets32. Surprisingly, two yeast P4-ATPases (Dnf1 and Dnf2)33 
and three mammalian members (ATP8B1, ATP8B2 and ATP10A)34,35 were 
reported to flip PtdCho at the plasma membrane.

Flippase-mediated establishment of the asymmetrical distribution 
of phospholipids. A mouse T cell line (WR19L) that lacks CDC50A con-
stitutively exposes PtdSer on the surface25, indicating that a CDC50A-
dependent enzyme is involved in establishing the asymmetrical 
distribution of phospholipids in plasma membranes. Among the six 
P4-ATPases expected to flip PtdSer, WR19L cells express ATP11A and 
ATP11C at the plasma membrane and ATP8A1 and ATP11B at endosomes 
(Fig. 2a). Cells deficient in these four P4-ATPases did not expose Ptd-
Ser36. However, when the cells were transiently treated with a Ca2+ 
ionophore to increase the intracellular Ca2+ to activate the scramblase, 
PtdSer was exposed to the surface for several hours36. As constitutively 
exposed PtdSer serves as an ‘eat me’ signal, even in living cells25,37, cells 
are equipped with a device in the form of P4-ATPases that counteracts 
this exposure (Fig. 2a). ATP11A and ATP11C quickly flip PtdSer or inter-
nalize it to the inner leaflet; this is further supported by ATP8A1 and 
ATP11B, which recycle between the plasma membrane and endosomes. 
Nevertheless, PtdSer is not constitutively exposed on cells lacking these 
flippases36. It may be that the long-term asymmetry in PtdSer distribu-
tion is supported by the transport of PtdSer from the site of its synthesis 
in the ER — a process confined to the cytoplasmic leaflet (Fig. 1c).

Scramblases
Once an asymmetrical distribution of phospholipids is established, 
the charged head group hardly moves through the hydrophobic lipid 
bilayer without lipid transporters38. Yet platelets treated with collagen 
and thrombin expose PtdSer within minutes39, and cells undergoing 
apoptosis expose it within hours of pro-apoptotic signal reception40,41. 
A scramblase that provides a non-specific path for phospholipids to 
access the ectoplasmic leaflet was postulated to explain this swift expo-
sure of PtdSer. A protein called PLSCR1 (phospholipid scramblase) was 
purified based on a cell-free assay with proteoliposomes42. However, 
its molecular and physiological characteristics were inconsistent with 
the scramblase activity43.

Scramblases of the TMEM16 family. To identify the scramblase, we 
repeatedly sorted mouse Ba/F3 haematopoietic cells to obtain the 
population that strongly responded to a Ca2+ ionophore for PtdSer 
exposure. A cDNA library was prepared from these cells. The trans-
formation of Ba/F3 cells with the cDNA library identified two differ-
ent cDNAs: TMEM16F, also called anoctamin 6 or ano6, and XKR8 
(refs. 44,45) (Table 1 and Fig. 2a–c).

TMEM16F belongs to the TMEM16 family. As its founding member 
(TMEM16A) is a Ca2+-dependent Cl– channel, several groups reported 
that TMEM16F functions as an ion channel46–49. However, their results 
are conflicting. It was claimed to be a volume-regulated anion channel48, 
a Ca2+-activated chloride channel46, an outwardly rectifying chloride 
channel49 or a non-selective cation channel47. The Ca2+-dependent 
Cl− channel activity was not detected under the conditions where 
TMEM16A and TMEM16B show strong ion channel activity50–52. We 
reason that the main function of TMEM16F is likely lipid scrambling, 
whereas ion transport is the secondary activity triggered under 
extreme, less physiological conditions53.

The TMEM16 family has ten members. Seven members localize to 
plasma membranes, five of which (TMEM16C, TMEM16D, TMEM16F, 
TMEM16G and TMEM16J) respond to a Ca2+ ionophore for PtdSer expo-
sure50. An analysis of the scramblase activity of the chimaera between 
the TMEM16A Cl− channel and TMEM16F scramblase predicted that 
a 35 amino acid domain between transmembrane 4 (TM4) and TM5 
was responsible for scrambling activity52. Replacing the correspond-
ing region of TMEM16A with that of other TMEM16 family members 
showed that TMEM16E and TMEM16K localized at the ER can scram-
ble phospholipids54 (Table 1). The scramblase activities of TMEM16F 
and TMEM16K were confirmed by reconstituting the purified pro-
teins in proteoliposomes55–57. Thermodynamic analysis indicated that 
mouse TMEM16F transported 4.5 × 104 lipids per second at 25 °C58. 
This value is much higher than that observed with ATP-dependent 
transporter (<102 molecules per second)59, which is consistent with 
the model whereby TMEM16F provides a cleft or conducting pathway 
for  phospholipids upon Ca2+ binding (see below).

Among the five TMEM16 members that function as Ca2+ scram-
blases at the plasma membrane, TMEM16C, TMEM16D, TMEM16G and 
TMEM16J are expressed in a limited number of tissues, such as the brain, 
skin and intestines50. TMEM16F is ubiquitously expressed, and is solely 
responsible for the Ca2+-dependent scrambling of phospholipids at 
the plasma membranes of most cells, including hepatocytes, lympho-
cytes and haematopoietic cells. Of the ER-specific Ca2+-dependent 
scramblases, TMEM16K is ubiquitously expressed, whereas TMEM16E 
is mainly expressed in bone, muscle and the testis60.

Fig. 2 | Asymmetrical distribution of PtdSer and its breakdown. a, Type IV 
P-type ATPase (P4-ATPase)-mediated confinement of phosphatidylserine 
(PtdSer) to the inner leaflet of the plasma membrane. ATP11A and ATP11C are 
complexed with CDC50A at the plasma membrane and serve as flippases to 
specifically translocate PtdSer from the outer leaflet to the inner leaflet in 
growing cells. ATP8A1 and ATP11B seem to recycle between the endosomes 
and plasma membranes and maintain the asymmetrical distribution of PtdSer 
at the plasma membrane. b, Ca2+-induced PtdSer exposure and microvesicle 
release. When platelets, osteoblasts and other cells are activated, the intracellular 
Ca2+ concentration increases. Binding of Ca2+ to ATP11A and ATP11C inhibits 
their flippase activity while activating TMEM16F, which causes temporal PtdSer 
exposure on the cell surface and the release of microvesicles. These micro-
vesicles also expose PtdSer, which conveys further functions (see also Fig. 4c).  

c, When cells undergo apoptosis, caspase 3 is activated and cleaves the carboxy-
terminal part of XKR8 to trigger its scrambling activity. At the same time, caspase 
3 cleaves ATP11A and ATP11C in the middle of the molecule to inactivate them, 
allowing the cells to expose PtdSer irreversibly. This process is accompanied by  
the release of apoptotic bodies, which also expose PtdSer and are engulfed 
by phagocytes. d, ATP-induced PtdSer exposure and cell lysis. XK, a member 
of the XK-related (XKR) family, is complexed with VPS13A lipid transporter 
via its β-hairpin in the centre of the molecule. ATP released from necrotic cells 
binds the P2X7 homotrimer, and an unidentified signal (question mark) from 
the ATP-engaged P2X7 receptor activates the XK–VPS13A complex to scramble 
phospholipids in the plasma membrane. This causes the PtdSer exposure 
on the cell surface, followed by cell rupture. PtdCho, phosphatidylcholine; 
SM, sphingomyelin; TMEM16, transmembrane protein 16.
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Table 1 | Mammalian flippases and scramblases

Protein Tissues and cells Subcellular 
localization

Substrates or 
scramblase activity

Global and cellular phenotypes associated with 
mutation/misexpression

Refs.

P4-ATPases

ATP8A1 Ubiquitous Endosomes PtdSer Recessive biallelic mutations in humans: inefficient 
memory; PtdSer exposure on hippocampal cells

248

ATP8A2 Retina, cerebral 
cortex, cerebellum, 
hypothalamus
Pituitary gland

Endosomes
Outer segment 
of photoreceptors

PtdSer Recessive biallelic mutations in humans: 
chorea, cerebellar ataxia and mental retardation; 
chromatolysis, axonal degradation and optic atrophy; 
mice with recessive mutation (wabbler-lethal) die 
within 130 days

249–251

ATP8B1 Intestines, colon, 
stomach

Plasma membrane PtdSer, PtdCho Recessive biallelic mutations in humans: cholestasis 
and hearing loss; increased sensitivity of canalicular 
membranes to bile acid, degeneration of cochlear 
hair cells

252,253

ATP8B2 Ubiquitous Plasma membrane PtdCho NR

ATP8B3 Testis NR NR NR

ATP8B4 Bone marrow (myeloid) Plasma membrane NR NR

ATP9A Ubiquitous Endosomes NR Recessive biallelic mutations in humans: intellectual 
disability and microcephaly

254,255

ATP9B Ubiquitous Golgi NR NR

ATP10A
(also known as 
ATP10C)

Ubiquitous Plasma membrane PtdCho Recessive biallelic mutations in humans: 
neurobehavioural abnormality
Obesity, insulin resistance

256,257

ATP10B Intestines and colon Endosomes, lysosomes PtdCho, GluCer NR 32,258

ATP10D Kidney and placenta Plasma membrane GluCer C57BL/6 mouse strain carries the nonsense mutation: 
susceptible to diabetes exposed to high-fat diet

259,260

ATP11A Ubiquitous except for 
hepatocytes, B cells 
and red blood cells

Plasma membrane PtdSer, PtdEtn Dominant heterozygous mutation in humans: 
developmental delays, neurological deterioration 
and hearing loss
Knockout mice: embryonic lethal due to poor 
development of syncytiotrophoblasts

102,180,215

ATP11B Ubiquitous Endosomes PtdSer, PtdEtn NR

ATP11C Ubiquitous except for 
trophoblast in placenta

Plasma membrane PtdSer, PtdEtn Recessive biallelic mutations in humans: anaemia
Knockout mice: B cell lymphopenia, cholestasis

37,205, 
208,209

TMEM16 scramblases

TMEM16A 
(also known as 
anoctamin 1)

Ubiquitous Plasma membrane Inactive NR

TMEM16B Retina, nasopharynx, 
bronchus and fallopian 
tube

Plasma membrane Inactive NR

TMEM16C Cerebral cortex
Basal ganglia

Plasma membrane Active (Ca2+) Dominant heterozygous mutation in humans: dystonia
Recessive biallelic mutations in humans: febrile seizure
Knockout rat: dysregulated Ca2+ homeostasis

217,218,261

TMEM16D Cerebral cortex, basal 
ganglia, adrenal gland, 
seminal vessel, ovary

Plasma membrane Active (Ca2+) NR

TMEM16E Cerebral cortex, 
cerebellum
Heart and skeletal 
muscle

ER Active (Ca2+) Dominant heterozygous mutation in humans: 
gnathodiaphyseal dysplasia
Recessive biallelic mutations in humans: muscle 
dystrophy caused by dysregulated Ca2+ homeostasis 
in myotubes

71

TMEM16F Ubiquitous Plasma membrane Active (Ca2+) Recessive biallelic mutations in humans and mice: 
bleeding disorder caused by inefficient PtdSer 
exposure in platelets

44,226–228

TMEM16G Stomach, intestines, 
prostate, skin

Plasma membrane: cell 
contact site

Active (Ca2+) Low expression associated with human prostate 
cancer (function as a tumour suppressor?)

232
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TMEM16F plays an indispensable role in the exposure of PtdSer 
in various physiological contexts. One notable example is activated 
platelets. When endothelial cells are damaged, collagen is released 
leading to platelet activation. The activated state is associated with 
transient increases of the intracellular Ca2+ concentrations to several 
hundred micromoles per litre beneath the plasma membrane61. This 
increase in Ca2+ activates TMEM16F scramblase and inactivates the 
flippases of ATP11A and ATP11C (ref. 26), thereby rapidly exposing 
PtdSer (Fig. 2b). In response to the increased Ca2+ concentration62, dif-
ferentiating osteoblasts also expose PtdSer in a TMEM16F-dependent 
manner63. In addition, TMEM16F supports the release of microparticles/
microvesicles from platelets, neutrophils and osteoblasts63–65. Fur-
thermore, TMEM16F-mediated scrambling of phospholipids has been 
implicated in the repair of pores in the plasma membrane introduced 
by stress or toxins, or after triggering cell death via pyroptosis, which 
is followed by the expansion of plasma membranes and the release of 
damaged membranes as vesicles66–68.

The physiological roles of other TMEM16 family members remain 
unknown, with a few hints for TMEM16E and TMEM16K. For example, 
when the sarcolemma, the plasma membrane of skeletal muscle cells, 
is damaged, TMEM16E moves from the ER to the damaged sites. Then, 

it undertakes the repair of the membranes by arranging annexins69 on 
the patches with a not well-understood mechanism70–72. The scrambling 
activity of TMEM16K contributes to the distribution of phospholipids 
between intracellular organelles4, regulating endosomal sorting at 
the ER–endosome contact sites73. Various human diseases are caused 
by mutations in the TMEM16 family members (Table 1), necessitating 
further research in this field.

Scramblases of the XKR family. The TMEM16F-null mouse T cell 
line cannot respond to Ca2+ but responds to apoptotic stimuli for the 
exposure of PtdSer50. This PtdSer-exposing activity in the apoptotic 
cells was lost when the XKR8 gene was knocked out74. XKR8 carries a 
caspase 3-recognition site at its C-terminal region. When cells undergo 
apoptosis, caspase 3 cleaves XKR8 to activate it. These findings estab-
lished the presence of two independent systems for the PtdSer expo-
sure: Ca2+-mediated or caspase-mediated mechanisms75,76 (Fig.  2b,c). 
In apoptotic cells, caspase 3 cleaves ATP11A and ATP11C to inactivate 
them, indicating the apoptotic PtdSer exposure is irreversible.

The nine XKR family genes in human chromosomes appear to be 
generated by co-duplicating neighbouring genes77. Apart from XKR2, 
all XKR members localize to the plasma membrane (Table 1). XKR4, 

Protein Tissues and cells Subcellular 
localization

Substrates or 
scramblase activity

Global and cellular phenotypes associated with 
mutation/misexpression

Refs.

TMEM16 scramblases (continued)

TMEM16H Ubiquitous ER NR NR

TMEM16J Skin and intestines: 
enterocytes

Plasma membrane Active (Ca2+) High expression associated with human colorectal and 
pancreatic cancer (function as a tumour promoter?)

262,263

TMEM16K Ubiquitous Contact site between 
ER and endosomes

Active (Ca2+) Recessive biallelic mutations in humans: 
spinocerebellar ataxia
Recessive mutations in mice: defective endosomal 
sorting

73,264

XKR scramblases

XK Ubiquitous Plasma membrane Active, with VPS13A 
(ATP)

Recessive biallelic mutations of XK or VPS13A in 
humans: neuroacanthocytosis; Xk or Vps13a-knockout 
mice: thinner myelin sheet

124,238,239

XKR2 Skin ER NR NR

XKR3 Testis Plasma membrane NR NR

XKR4 Cerebral cortex, basal 
ganglia, thalamus, 
amygdala

Plasma membrane Active (caspase) NR

XKR5 Neutrophils Plasma membrane NR NR

XKR6 Cerebral cortex, 
cerebellum

Plasma membrane NR NR

XKR7 Cerebral cortex, 
cerebellum, basal 
ganglia

Plasma membrane NR NR

XKR8 Ubiquitous Plasma membrane Active, with Basigin 
(caspase)

Knockout mice: SLE-type autoimmune disease, male 
infertility; splenomegaly and glomerulonephritis

78,240

XKR9 Intestines, stomach, 
testis

Plasma membrane Active (caspase) NR

The tissue distribution (The Human Protein Atlas) for each P4-ATPase, TMEM16 and XKR family member is listed with their subcellular localization. The known substrate for P4-ATPase is shown. 
For TMEM16 and XKR family members, the proteins with documented scramblase activity shown at the cellular level are indicated as ‘Active’. The triggers (Ca2+, caspase or ATP) that activate 
the scramblase are shown in parentheses. ER, endoplasmic reticulum; GluCer, glucosylceramide; NR, not reported; P4-ATPase, type IV P-type ATPase; PtdCho, phosphatidylcholine; PtdEtn, 
phosphatidylethanolamine; PtdSer, phosphatidylserine; SLE, systemic lupus erythematosus; TMEM16, transmembrane protein 16; XKR, XK-related.

Table 1 (continued) | Mammalian flippases and scramblases
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XKR8 and XKR9 carry a caspase recognition site in the C-terminal 
region and can support the exposure of PtdSer during apoptosis74. 
The expression of XKR8 is ubiquitous, whereas XKR4 and XKR9 are 
confined to the brain and intestines, respectively. Therefore, XKR8 is 
responsible for the apoptotic exposure of PtdSer in most cell types78. 
XKR8 associates with Basigin or Neuroplastin of the immunoglobulin 
superfamily for its localization to plasma membranes79. It remains 
unclear whether Basigin and Neuroplastin, and any other protein(s), 
contribute to the scrambling activity of XKR8. XKR8 can function as 
a constitutively active scramblase in an interleukin (IL)-3-dependent 
mouse Ba/F3 cell line because it is phosphorylated at three serine/
threonine residues downstream of the caspase recognition site80. 
As discussed below, the C-terminal domain of human XKR8 down-
stream of the caspase recognition site seems to bind to the cytoplasmic 
region of the transmembrane helices to inhibit the scrambling activity 
of XKR8. It is likely that the phosphorylation of the residues in this 
region blocks this interaction. In some biological processes such as 
the capacitation of sperm that occurs in the female reproductive tract, 
PtdSer is exposed on the surface of sperm heads in a kinase-dependent 
manner81. How and when XKR8 is activated by phosphorylation remains 
to be determined.

Many cells undergo necrosis in inflamed tissues or the tumour 
microenvironment, and a large amount of ATP released from the 
necrotic cells accumulates locally, reaching several hundred micro-
moles per litre82,83. ATP at this high concentration binds to P2X7 ATP 
receptors in various cells, particularly CD25+CD4+ regulatory T cells 
and macrophages, to induce PtdSer exposure, followed by cell lysis. 
Screening for molecules responsible for the ATP-induced exposure of 
PtdSer on T cells identified XK — a paralogue of XKR8 —as a scramblase 
responsible for this ATP-induced PtdSer exposure. Interestingly, XK 
partners with lipid transporter VPS13A at the plasma membrane to 
function as a scramblase84. An unidentified signal(s) seems to be trans-
ferred from ATP-engaged P2X7 receptors to the XK–VPS13A complex 
to scramble phospholipids at plasma membranes84 (Fig. 2d). This pro-
cess is followed by necrosis in T cells and pyroptosis in macrophages. 
VPS13A transports phospholipids between membranes of intracellular 
organelles and the ER85. It is tempting to speculate that the XK–VPS13A 
complex directly transfers phospholipids from the outer leaflet of 
the plasma membrane to the cytoplasmic leaflets of the ER, and vice 
versa. To understand the physiological role of this system, we have to 
know how the extracellular ATP, or P2X7-mediated signal, activates 
the system.

Models for lipid transport
The mechanisms underlying phospholipid translocation by flippases 
and scramblases have been a topic of much debate in recent years. 
Based on the amino acid sequence, the structure of P4-ATPases was 
thought to be similar to other P-type ATPases. However, the canonical 
substrate-binding pocket is too small for lipid substrates, which are 
considerably larger than the inorganic ions transported by other P-type 
ATPases, posing a problem referred to as the ‘giant substrate’ problem86. 
To overcome this issue, a ‘credit card’ model has been proposed in 
which only the hydrophilic head groups of phospholipids penetrate 
and traverse the hydrophilic groove87 (Fig. 3a). At the same time, their 
acyl chains remain within the membrane environment. The structure 
of the P4-ATPases, TMEM16 and XKR essentially supports the credit 
card model and refines the model with the concept of a ‘central cavity 
model’88, ‘alternating pore/cavity mechanism’89, ‘clamshell model’ and 
‘thinning the membrane model’90.

The central cavity model proposes that the central membrane 
cavity of the P4-ATPase accommodates the lipid head groups during 
lipid transportation across the membrane. The alternating pore/cavity 
mechanism suggests that the TMEM16 family adopts two alternating 
conformations with varying degrees of groove opening when activated, 
one with an ion-conductive pore and the other with a lipid-conductive 
cavity. The clamshell model proposes that the interface of two helices 
composing the groove for phospholipid permeation can open and 
close similar to a clamshell, changing the accessibility of phospholipid 
head groups to the hydrophilic interior of the track. In the thinning the 
membrane model, TMEM16 thins the membrane around the groove, 
which lowers the energy barrier for lipid scrambling.

Tertiary structures of P4-ATPases and a model for lipid 
transport
The tertiary structures of several P4-ATPases (human ATP8A1, ATP8B1, 
ATP11C, yeast Drs2, Dnf1 and fungus Dnf1) complexed with their acces-
sory subunits, CDC50 protein family members, were elucidated by 
X-ray crystallography and cryogenic electron microscopy, and revealed 
the phospholipid flipping mechanism30,31,88,91–97 (Fig. 3b). The overall 
structures of P4-ATPases represent the characteristic P-type ATPase 
architecture, which contains ten TM helices as well as three cytoplasmic 
domains for ATP catalysis: the actuator (A) domain, which dephos-
phorylates the phosphorylated P domain, the nucleotide-binding 
(N) domain and the phosphorylation (P) domain. The N-terminal and  
C-terminal regions (ATP8B1) or the C-terminal regions (ATP8A1  
and Drs2) can regulate their ATPase activities. The CDC50 subunit has a 
large extracellular domain, two TM helices and cytoplasmic N-terminal 
and C-terminal regions. The two TMs of CDC50A are located close to 
the TM10 of P4-ATPases and form hydrophobic interactions with the 
residues. The heavily glycosylated extracellular region of CDC50A cov-
ers all of the extracellular loops between the TM helices of the ATPase, 
except for that between α1 and α2. The N-terminal cytoplasmic tail 
runs along the membrane and interacts with the cytoplasmic side of 
the TMs of P4-ATPases.

The structures of several catalytic states of P4-ATPases, stabi-
lized with ATP analogues and ATPase inhibitors, were elucidated. 
Although the scale of conformational changes during the reaction 
cycle differed among various P4-ATPases88,91–93,95–97, the flipping mecha-
nism essentially follows the Post–Albers cycle described for cation-
transporting P-type ATPases98,99. In this model, substrate-binding 
sites alternate between the cytosolic site-open state (E1, E1-ATP and 
E1P-ADP), temporary occlusion (E1P and E2) and the ectoplasmic or 
lumen site-open state (E2P and E2-Pi), in which E1P and E2P represent the  
phosphorylated form.

A notable feature of P4-ATPases is the significant movement 
of the A domain during the E1P to E2P transition, which separates 
TM1 and TM2 from TM4 and TM6, forming a cavity comprising TM2, 
TM4 and TM6 (refs. 88,91,93,96,97) (Fig. 3b). The cavity spans from 
the ectoplasmic side to the middle of the membrane. It is wide enough 
to accommodate phospholipid head groups, providing an outward 
pathway for phospholipids. At the bottom of the cavity, an uncoiled 
conserved PISL/PVSM (Pro-Ile-Ser-Leu/Pro-Val-Ser-Met) motif is pre-
sent at the centre of TM4 and appears to act as a gate to control lipid 
access100. In the outward open state, this gate blocks the access of 
the lipid to the cytoplasmic side, whereas in the inward open state, 
this gate is predicted to be open allowing the lipid to diffuse into the 
cytoplasmic leaflet. In the E2P state, the cavity has an outward-facing 
conformation in which PtdSer is captured in the cavity with a head 
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group coordinated by several polar residues at the bottom of the cavity 
and acyl chains orienting to the hydrophobic core of the membrane 
(Fig. 3b). In the following E2-Pi state, PtdSer is occluded in the cavity 
because conformational changes in TM1 and TM2 close the entrance 
gate from the ectoplasmic side. In the following form (E2), the cavity 
adopts the inward open conformation, with hydrophilic residues 
exposed to the cytoplasmic side to release PtdSer96,97. In this flipping 
mechanism, the lipid head group moves in the groove between TM2 
and TM4 containing charged residues, whereas the lipid tail moves 
along the hydrophobic surface of TM2 and TM4. This mechanism is 
essentially consistent with the credit card model87.

The structure of human ATP8A1, ATP11C and yeast Drs2p and 
Neo1p which flip PtdSer and PtdEtn, and yeast Dnf1p and fungi CtDnf1p 
which flip PtdCho, revealed a phospholipid entry site at the end of TM1 
facing the ectoplasmic side88,93,96,97,101 (see Supplementary Fig. S1). The 
replacement of Gln84 in this region of ATP11A by glutamic acid triggers 
the flipping of not only PtdSer but also PtdCho102. The structure of 
ATP11C and a molecular dynamic simulation indicate that the serine 
moiety of PtdSer is coordinated with Gln79 (corresponding to Gln84 in 
ATP11A), Thr86, Thr90, Ser91 and Asn352 (refs. 93,102), and confirmed 
that glutamic acid at position 79, but not glutamine, accommodates 
PtdCho. The amino acid sequences critical for coordination with the 
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Fig. 3 | Models for lipid transport. a, Credit card model for lipid transport. 
The hydrophilic head group of the phospholipid (corresponding to the 
magnetic strip on the credit card) is protected by the hydrophilic groove of the 
transporter (track of the card reader) during lipid transport. Image reproduced 
from Pomorski et al., ref. 87. b, Structure of ATP11C–CDC50A and a model for 
lipid flipping. Tertiary structure of human ATP11C and CDC50A complex in a 
phosphatidylserine (PtdSer) occluded E2-Pi state [PDB:7BSV] shown on the 
left. P4-ATPases are coloured grey with selected helices (α1, α2, α4 and α6) in 
blue, whereas CDC50A is red. Actuator domain (A) which dephosphorylates the 
phosphorylated P site shown in yellow. PtdSer is coloured green–red–white. 
Right panel shows the proposed lipid transport cycle. In an outward open state 
(E2P), in which the phosphorylation (P) site is phosphorylated (P in yellow circle), 
a phospholipid binds to the external open cavity. In the phospholipid occluded 
state (E2-Pi), the phosphate is detached from the P site (Pi in a yellow circle), and 
helices α1 and α2 move to cover the ectoplasmic side of the cavity (red arrow). 
In the inward open state (E2), the phosphate (Pi in yellow circle) is released from 
the molecule (blue arrow), which is coupled by the movement of the A domain 
to the periphery (black arrow). This changes the arrangement of helices α1 and α2 

(green arrow), and the cavity is now accessible to the cytosolic leaflet releasing the 
phospholipid. c, Structure of transmembrane protein 16 (TMEM16) and model for 
lipid scrambling. The Ca2+-bound open state structure of Nectria haematococca 
(nh)TMEM16 [PDB:4WIS] is viewed from the front and side (left). Each protomer 
of TMEM16 is coloured grey or dark grey. Selected helices (α3, α4, α5 and α6) are 
coloured blue and labelled. On the right, the activation and scrambling, viewed 
from the side, are schematically depicted. In a Ca2+-free closed state, the cavity 
is shielded from the membrane with helices α4 and α6 tightly interacting. The 
binding of Ca2+ triggers the conformational change to the open state; helices 
α4 and α6 are separated, and the cavity is accessible to the phospholipid head 
group. d, Structure of XK-related 8 (XKR8) and a model for lipid scrambling. The 
tertiary structure of the human XKR8–Basigin complex [PDB:7DCE] is shown 
with phosphatidylcholine (PtdCho) bound to the hydrophobic cleft. Selected 
helices (α1, α2, α4 and α11) are coloured blue and labelled. A model for the 
caspase-activated scrambling mechanism is shown on the right. A phospholipid 
is recruited from the outer leaflet to the hydrophobic cleft, even in a closed state. 
When cells undergo apoptosis, caspase 3 cleaves helix 11, which likely induces the 
movement of helix 2 (red arrows) to expose the path for phospholipid transport.
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serine residues in ATP11A and ATP11C differ from those in ATP8B1 and 
ATP10A, which flip PtdCho34,35, supporting the notion that the region 
surrounded by these amino acids in TM1, TM2 and TM4 serves as a 
substrate-specific entry site. In addition, a comparison of the structures 
between the PtdSer and PtdCho flippases identified another region 
(exit site) of P4-ATPases critical for the substrate specificity96,97,101, which 
is consistent with previous analysis with yeast P4-ATPase mutants100,103. 
How the exit site extending into the cytosolic domain determines the 
substrate specificity remains elusive.

Tertiary structure of TMEM16 scramblase and models for lipid 
scrambling
The X-ray structure of Nectria haematococca (nh)TMEM16, a fungus 
homologue of TMEM16F, provided the first insight into the scram-
bling mechanism for TMEM16 (ref. 104). The Ca2+-bound or unbound 
structures of Aspergillus fumigatus (af)TMEM16, mouse TMEM16F, and 
human TMEM16K were then elucidated by X-ray and cryogenic electron 
microscopy analyses55–57,105,106. These analyses and molecular dynamic 
simulation led to the proposal of a ‘clamshell’ model or a ‘stepwise 
gating’ mechanism, which describes how the groove conformation 
changes from a closed to an open state, thereby enabling lipids to 
undergo scrambling by TMEM16 (refs. 107–109) (Fig. 3c).

TMEM16 scramblases share a rhomboidal architecture (130 × 40 Å) 
with a ‘butterfly fold’, a homodimer with each protomer comprising 
ten TM helices. At the periphery of each protomer, they have a trans-
bilayer hydrophilic groove. The two Ca2+-binding sites composed of 
five negatively charged residues are located within the membrane in 
TM6–TM8 (refs. 104,110) (see Supplementary Fig. S2). Without Ca2+, 
phospholipids cannot access the groove (closed state), because the cav-
ity is shielded from the membrane owing to tight contact between ΤΜ4 
and ΤΜ6 (Fig. 3c). The binding of Ca2+ generates an open conformation, 
in which ΤΜ6 rearranges into a straight conformation through interac-
tions between its acidic residues and Ca2+. ΤΜ4 and ΤΜ6 lose contact 
(Fig. 3c), and the groove becomes accessible to the phospholipid head 
group, as predicted in the credit card model.

The pathway in the groove includes the scrambling domain, pre-
dicted as the region required for the scrambling of phospholipids 
based on comparisons of the amino acid sequences of TMEM16 family 
members52,54 (see Supplementary Fig. S2). Atomic simulations and 
mutagenesis assays supported the interaction of lipids with amino 
acid residues in the interior surface of the groove111 or the ‘alternative 
pore/cavity’ model89, in which charged residues were predicted to serve 
as ‘stepping stones’ for the hydrophilic head group of phospholipids. 
The molecular dynamic simulation suggests that the conformation 
of the groove is modified by the passing phospholipids, which results 
in the complete opening of the groove allowing lipid scrambling108,109. 
In addition, the lipid bilayer, particularly around the groove, deforms 
and thins, which shortens the path that lipid head groups need to 
traverse, lowering the energy barrier for lipid scrambling56,90,105,106,111,112. 
TMEM16 family proteins induce membrane distortion in the pres-
ence or absence of Ca2+, suggesting that this is an intrinsic property 
of TMEM16.

Using a cell-free, proteo-liposome assay, it has been reported that 
afTMEM16 and nhTMEM16 scrambled phospholipid derivatives conju-
gated with polyethylene glycol (PEG) in the head region113. As the PEG-
conjugated head group was too large to pass through the groove, an 
‘out-of-the-groove’ model was proposed in which membranes deform 
to allow phospholipids to translocate outside the groove113. As the 
open structure was not captured for the Ca2+-bound TMEM16F, this 

‘out-of-the-groove’ model was applied to the TMEM16F-mediated 
scrambling55,56. Although this is an interesting model, it is inconsistent 
with the findings that charged amino acids in the track or the scram-
bling domain are essential for TMEM16F-mediated phospholipid trans-
port52,54,55,107. Recent molecular dynamics simulation analysis of mouse 
TMEM16F also supported the Ca2+-induced conformational change in 
which the groove opening correlates to the rearrangement of the Ca2+ 
binding site located distant from the groove114.

The tertiary structures of TMEM16 family members are similar 
to those of OSCA mechanically activated ion channels115–117 and TMC 
mechanotransduction channels118–120. The lipid scramblase activity was 
recently demonstrated in TMC1 in the ear’s inner and outer hair cells to 
regulate the phospholipid distribution in the membrane121. The defect 
of TMC1 causes deafness. It is interesting to note that, contrary to the 
TMEM16 family, the scramblase activity of TMC1 was inhibited by Ca2+ 
under physiological conditions and was activated by Ca2+ buffering.

Tertiary structure of XKR scramblase and a model for lipid 
scrambling
We and others elucidated the tertiary structures of the human XKR8–
BSG complex and rat XKR9 in their resting states122,123. The amino acid 
sequence of XKR8 and XKR9 is well conserved (see Supplementary 
Fig. S3), and they have a similar protein fold, featuring eight trans-
membrane helices and two helices that partially enter the lipid 
bilayer (Fig. 3d). Their structure is divided into two similar domains 
(N-terminal, TM1–TM5; and C-terminal, TM6–TM10) (see Supple-
mentary Fig. S4). A hydrophobic crevice was identified in the surface 
exposed to the outer leaflet between the two domains, which carried 
a  phospholipid molecule122.

The structures of human XKR family members, predicted by 
AlphaFold, are similar to those of XKR8 and XKR9. The XK’s residues 
Arg222 and Glu327, which mutated in McLeod syndrome — a human 
disorder that affects erythrocytes, and the central and peripheral 
nervous system124 — are conserved among the members. The tertiary 
structure of human XKR8 indicates that a salt bridge between these 
residues stabilizes the protein structure122. Caenorhabditis elegans 
CED8 exhibits phospholipid scrambling activity45, and its structure 
is similar to human XKR8. Six charged residues are arranged in a step-
wise manner in transmembrane helices (ΤΜ1, TM4 and TM5) in the 
N-terminal, but not C-terminal, domains of XKR8, XKR9 and CED8 
(see Supplementary Fig. S4). These residues are essential for XKR8 
to scramble phospholipids in the inward and outward directions122. 
An alanine mutation of Trp45 in XKR8 at the extracellular end of the 
hydrophilic stairway resulted in a constitutively active form of the pro-
tein122, suggesting that Trp45 functions as a ‘gate-keeper’ and shields 
hydrophilic residues in the stairway from lipid access. A segment in 
the N terminus of CED8 or the C terminus of XKR8 and XKR9 carries a 
caspase 3-recognition site and appears to stabilize its closed structure. 
The cleavage by caspase 3 at the C terminus seems to cause a confor-
mational change in the molecule, exposing hydrophilic residues to the 
membrane to provide the ‘stepping stones’ for phospholipids (Fig. 3d). 
The cleavage of human XKR8 with caspase 3 caused its aggregation, 
indicating that the caspase-cleaved form of XKR8 is more unstable than 
the uncleaved form, supporting the notion that the caspase cleavage 
induces a conformational change in the protein. Of note, in one study, 
caspase 3-cleaved or non-cleaved XKR9 proteins were reported to have 
very similar structures123. Yet in this study, an anti-XKR9 sybody was 
used, which may have prevented the conformational change associated 
with caspase cleavage.
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In contrast to caspase-activatable XKR members (XKR4, XKR8 
and XKR9), charged residues are not present in the corresponding 
intramolecular region of XK (see Supplementary Fig. S3). XK carries a 
β-hairpin structure that interacts with VPS13A for its scrambling activ-
ity84,125,126, suggesting that the scrambling mechanism of XK may differ 
from that of XKR8 activated by caspase cleavage. The exact mechanism 
of XK-mediated scrambling and the contribution of VPS13A to this 
process remain elusive.

Consequences of PtdSer exposition at plasma 
membranes
Phospholipids are asymmetrically distributed at plasma membranes 
and this distribution is tightly coupled to various functions (Box 1). 
Thus, changes in this asymmetry will have an impact on numerous 
biological processes. We focus here on the best-studied example of 
the loss of phospholipid asymmetry — the exposition of PtdSer on the 
cell surface. Exposed PtdSer functions as an ‘eat me’, ‘fuse me’ or ‘repair 
me’ signal. The PtdSer is recognized and bound by different receptors 
to promote cell–cell interactions and/or uptake of PtdSer-exposing 
cells or vesicles67,127,128

PtdSer as an ‘eat me’ signal
Every day, 1010–1011 cells undergo apoptosis and are engulfed by phago-
cytes, mainly macrophages129–131. This process is called efferocytosis132, 
and inefficient efferocytosis results in the accumulation of cell debris 
in the extracellular milieu, which triggers autoimmunity leading to 
systemic lupus erythematosus (SLE)133. It is difficult to find unengulfed 
apoptotic cells in vivo130,134, indicating that macrophages recognize 
and engulf them as soon as they undergo apoptosis; this is mediated 
by the ‘eat me’ signals delivered specifically by apoptotic cells135. This 
signal was attributed to PtdSer exposition on the ectoplasmic leaflet41 

(Fig. 4a). As discussed above, there are at least two mechanisms for the 
PtdSer exposure — Ca2+-induced or caspase-induced. The Ca2+-induced 
PtdSer exposure is transient: when the intracellular Ca2+ concentration 
decreases, the flippase quickly internalizes or flips PtdSer to the inner 
leaflet of the plasma membranes. The caspase-induced PtdSer exposure 
is irreversible: the flippases at the plasma membranes are destroyed 
by caspase and XKR8 scramblase is activated irreversibly by caspase 
cleavage. This irreversible PtdSer exposure is essential for the PtdSer 
to serve as the ‘eat me’ signal37,136.

PtdSer-dependent efferocytosis. Macrophages are heterogeneous: 
microglia, osteoclasts, Kupffer cells, Hofbauer cells, and tingible-body 
macrophages are tissue-resident macrophages in the brain, bones, liver, 
placenta and germinal centres, respectively137, and are all involved in 
efferocytosis. The peritoneal cavity carries two types of macrophages 
(resident and exudate), with exudate macrophages referring to those 
recruited by the peritoneal cavity during infection. Efferocytosis by 
peritoneal macrophages requires one of the three TAM receptor tyros-
ine kinases (Tyro3, Axl and MerTK)138–140 together with PtdSer-binding 
proteins (Protein S or GAS6)138. Milk fat globule–EGF factor 8 (MFGE8) 
and its paralogue DEL1 expressed in exudate and resident macrophages, 
respectively, bind PtdSer on apoptotic cells and promote efferocy-
tosis by bridging dead cells to the integrin complex (αvβ3) on macro-
phages141–143. TIM4 (T cell immunoglobulin domain, mucin domain 4)  
expressed in resident macrophages has a high affinity to PtdSer and 
functions as a PtdSer receptor40,138; however, its short cytoplasmic 
region cannot transduce the signal for efferocytosis. Resident perito-
neal macrophages, Kupffer cells and skin macrophages138 have at least 
three PtdSer-recognition systems (TIM4, DEL1 and GAS6/Protein S). By 
contrast, exudate macrophages use two systems (MFGE8 and GAS6/
Protein S). This may explain why efferocytosis by resident macrophages 

Box 1

Roles of the intracellular phospholipids in cell death and cell 
signalling
The primary function of phospholipids is to compartmen-
talize the cellular cytoplasm or organelles to separate 
them from the extracellular environment or cytosol. 
The size and charge of the head group and the number of 
double bonds in acyl chains affect membrane curvature 
or propensity for deformation266. The negatively charged 
head group and its phosphorylated derivatives serve 
as a platform for various enzymes in the cytoplasm 
and contribute to signal transduction (see the figure). 
Phosphatidylserine (PtdSer) activates (star symbol in 
the figure) protein kinase C (PKC) family members for 
cell proliferation267. Rac1, Rac2 and K-ras are recruited 
to plasma membranes via the interaction of their 
positively charged domains with PtdSer and PtdIns(4,5)
P2 (refs. 268–271), and are activated. Gasdermin D and 
gasdermin A, cleaved by caspases or Streptococcal exotoxin B, 
and phosphorylated MLKL (mixed lineage kinase domain-like 
protein) bind to the phospholipids of PtdSer, PtdIns(4)P and 

PtdIns(4,5)P2 in the plasma membrane and form pores to induce 
pyroptosis or necroptosis150,272,273. PtdCho, phosphatidylcholine; 
SM, sphingomyelin.
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is more efficient than that by exudate macrophages144. Other membrane 
proteins (BAI1 and stabilins) have been proposed to function as Ptd-
Ser receptors145,146. However, different from the molecules described 
above (TIM4, MFGE8, Protein S and Gas6), BAI1 and stabilins recog-
nize lipopolysaccharides, lipoproteins and proteoglycans to serve as 
 scavenger receptors147,148.

PtdSer recognition in other pathways of cellular clearance. Cells die 
via apoptosis, necroptosis, pyroptosis, ferroptosis and other methods 
of programmed cell death149. In necroptosis, an RIP kinase (receptor-
interacting (serine/threonine) protein kinase) cascade is activated 
downstream of the TNF receptor. Phosphorylated MLKL (mixed lineage 
kinase domain-like protein) oligomerizes and permeabilizes the plasma 
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membrane by binding to PtdIns phosphates150. In this process, damaged 
plasma membranes with exposed PtdSer are released together with 
other DAMPs (damage-associated molecular patterns) in an ESCRT (endo-
somal sorting complexes required for transport)-dependent manner151. 
A similar mechanism appears to apply to the release of PtdSer-exposing 
vesicles in pyroptosis or gasdermin-induced pore formation152.

Another mechanism by which PtdSer is exposed is ATP-triggered 
cell death. The extracellular ATP binds P2X7 ATP receptor153 to expose 
PtdSer, followed by cell lysis84. The extracellular concentration of 
ATP reaches a high level in the inflamed tissues and tumour environ-
ment82,83, and the P2X7 receptor is highly expressed in regulatory T cells 
but not CD8 effector T cells84,154. We thus propose that ATP-induced, 
XK-mediated cell death in regulatory T cells (which are implicated in 
immunosuppression) and release of cytokines from the pyroptotic 
macrophages contribute to the eradication of tumour cells or infected 
cells by effector T cells155.

In addition to the recognition of dying cells, PtdSer was shown 
to be important in the clearance of senescent red blood cells. When 
red blood cells age, they behave similarly to apoptotic cells (Fig. 4a). 
This process, called eryptosis, is accompanied by cell shrinkage, an 
increased intracellular Ca2+ concentration and the exposure of Ptd-
Ser156. Macrophages clear these senescent red blood cells in the liver 
and spleen. PtdSer is also involved in the recognition and clearance of 
pyrenocytes (nuclei surrounded by plasma membranes), which are 
generated in the last step of definitive erythropoiesis (occurring in the 
fetal liver and bone marrow). Pyrenocytes expose PtdSer on their sur-
face (owing to the lack of an ATP-generating system; see next section) 
soon after separation from reticulocytes (immature red blood cells)157 
(Fig. 4a). Macrophages then engulf PtdSer-exposing pyrenocytes in 
PtdSer-dependent and MerTK-dependent manners158. Another process 
requiring PtdSer exposition is neuronal pruning. During development, 
many neuronal networks are rebuilt by eliminating and reconnecting 
synapses. This pruning process also occurs in adulthood in response to 

external stimuli159. Several groups demonstrated that the degenerating 
dendrites and dendritic spines locally expose PtdSer on their surface, 
and microglia engulf them in a PtdSer-dependent manner160–164 (Fig. 4a).

PtdSer in cell fusion
In the development of various tissues, cells need to fuse, giving rise to 
multinucleated cells (Fig. 4b). For example, the formation of osteoclasts 
in the bones relies on the fusion of monocytes/macrophages165. Myo-
blasts in the muscle fuse into myotubes to incorporate actin fibres166 
and trophoblasts in the placenta fuse to form syncytiotrophoblasts at 
the maternal–fetal interface167,168. During fertilization, sperm fuse with 
eggs to generate zygotes169. PtdSer is exposed at the initial stage of the 
cell fusion, and masking PtdSer blocks the fusion of osteoclasts, myo-
blasts, trophoblasts and fertilization168,170–173. In addition, enveloped 
viruses and liposomes exposing PtdSer promote syncytium forma-
tion174, supporting that extracellular PtdSer promotes cell fusion. The 
involvement of various PtdSer-recognition systems has been proposed 
for the fusion process, but how they work remains elusive128,175,176.

When muscle-derived C2C12 cells are induced to differentiate 
into myotubes, they transiently expose PtdSer on their surface177. To 
examine the involvement of flippases in the cell fusion process, two 
groups established C2C12 derivatives that constitutively expose PtdSer 
by knocking out the flippase activity (ATP11A or CDC50A) and reported 
controversial results (negligible or uncontrolled cell fusion)178,179, which 
suggests that the transient or regulated exposure of PtdSer, rather 
than its constant exposure, might be important for the efficient fusion 
of myoblasts. Similarly, a deficiency in plasma membrane flippase 
(ATP11A) results in the poor development of syncytiotrophoblasts in the 
mouse placenta, probably due to the constitutive exposure of PtdSer180.

PtdSer in membrane repair
Plasma membranes are damaged by internal (gasdermin and MLKL) 
or external (toxins, complement, and perforin) factors, leading to cell 

Fig. 4 | Biological role of PtdSer. a, Phosphatidylserine (PtdSer) as an ‘eat me’ 
signal. When cells undergo apoptosis, they expose PtdSer (red ellipse) on the sur-
face. They are then dismantled into apoptotic bodies with PtdSer on their surface. 
These bodies are recognized by phagocytes via TAM receptors and swiftly elimi-
nated to ensure the removal of cellular debris and immunogenic reactions. At the 
final stage of definitive erythropoiesis, erythroblasts divide into reticulocytes 
and pyrenocytes. Soon after the separation from reticulocytes, the pyrenocytes 
expose PtdSer and are engulfed by macrophages. Human red blood cells have 
a lifetime of about 120 days. The senescent red blood cells expose PtdSer for 
engulfment by macrophages. Similar mechanisms operate in neurons, whose 
membranes undergo regular, experience-driven pruning to remove unconnected 
or damaged dendritic spines (the primary location for excitatory synapses). 
These dendritic spines expose PtdSer, which is recognized by microglia for their 
removal. b, Involvement of PtdSer in cell fusion. Fusion of macrophages into 
osteoclasts: when macrophages are treated with macrophage colony-stimulating 
factor (M-CSF) or receptor activator of nuclear factor-κB ligand (RANKL), 
they fuse into giant osteoclasts, during which PtdSer (red ellipse) is transiently 
exposed to the cell surface promoting fusion. Enveloped virus-mediated cell 
fusion: when an enveloped virus infects cells, they fuse in a PtdSer-dependent 
manner. Fusion of myoblasts and trophoblasts: myoblasts and trophoblasts 
differentiate and fuse to form myotubes and syncytiotrophoblasts, respectively, 
which involves exposed PtdSer. The fusion process is also important for further 
growth and membrane repair in myotubes and syncytiotrophoblasts. Fusion 
of sperm with eggs into zygotes: before fertilization, sperm are capacitated in 
the female reproductive tract, which is accompanied by the PtdSer exposure on 

the head region. The blocking PtdSer inhibits the fusion process. Many molecules 
have been proposed for this process. However, very little is known about how cell 
fusion proceeds. c, Activation of enzymes by the exposed PtdSer. Activation of the 
blood clotting system: during blood clot formation, platelets are activated to  
expose PtdSer. This allows the binding and activation of factors VII, IX and X, which 
recognizes PtdSer via its ‘Gla’ domain. Factor X forms a complex with factor VII 
and factor IX and mediates the cleavage of prothrombin (factor II) into thrombin 
for blood clotting. Activation of a disintegrin and metalloproteinase (ADAM) 
proteases: membrane proteases, ADAM10 and ADAM17, are activated by the 
exposed PtdSer and work to cleave TNF, Fas ligand, TGFα, secretin, TNF receptor 
superfamily member 1A (TNFRSF1A) and others, releasing them into the micro-
environment to allow paracrine signalling. d, Release of the PtdSer-exposing 
particles. When platelets and osteoblasts are activated, they expose PtdSer and 
produce microvesicles, which also expose PtdSer. The platelet-derived micro-
vesicles are involved in propagating the blood clot cascade (see part c), whereas 
microvesicles released by osteoblasts (called matrix vesicles) carry concentrated 
phosphate and Ca2+ that form hydroxyapatite crystal — a process required for 
bone mineralization and supported by PtdSer, which has been proposed to act 
as a nucleator for the crystallization process. Mammary glands secrete milk fat 
globules (MFGs) — triglycerides covered by plasma membranes exposing PtdSer. 
Enveloped viruses are nucleic acids surrounded by the PtdSer-exposing plasma 
membrane. Exosomes derived from the multivesicular bodies are secreted from 
various cells and expose PtdSer. MFGs, enveloped viruses and exosomes may 
rebind to the cell surface in a PtdSer-dependent manner, supporting their uptake. 
ER, endoplasmic reticulum; PtdCho, phosphatidylcholine; SM, sphingomyelin.
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death. Furthermore, muscle cells are under daily mechanical stress 
and are prone to membrane lesions. To resist cell death, damaged 
membranes are repaired by covering the injured site with the patches 
formed by aggregates of PtdSer-exposing vesicles and by removing the 
excess patches by macrophages181,182. Two groups showed in C. elegans 
that severed axons exposed PtdSer before being repaired183,184. An 
involvement of TMEM16 scramblases in membrane repair has been 
proposed60,66–68,70–72, suggesting that the PtdSer-exposing vesicles 

mentioned above were produced by the TMEM16F-dependent 
mechanism.

The role of PtdSer in activating enzymes
PtdSer is indispensable for the propagation of the blood coagulation 
cascade. Activated platelets expose PtdSer to the surface185, which is 
driven by the activation of TMEM16F scramblase and concomitant inac-
tivation of ATP11A and ATP11C flippases26. The blood clotting factors, 
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kinase receptors (Tyro3, Axl and MerTK). 
Macrophages require one of them for 
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proteins (human VPS13A, 3,174 amino 
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cavity that may be a path for transferring 
lipids between organelles.
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factors II (prothrombin), VII, IX and X, carry a ‘Gla’ domain of 9–12 amino 
acids, which contains a carboxylated glutamic acid generated by a 
vitamin K-dependent reaction. These clotting factors, as the enzyme or 
substrate, bind to PtdSer on the activated platelets in Ca2+-dependent 
and ‘Gla’-dependent manners and convert prothrombin to thrombin, 
which then converts fibrinogen into fibrin — a key and final step in the 
coagulation cascade186 (Fig. 4c).

A disintegrin and metalloproteinase 17 (ADAM17), called TACE or 
TNF-converting enzyme, is a metalloproteinase anchored to plasma 
membranes187 (Fig. 4c). It is responsible for the shedding of TNF from 
the membrane by cleavage at the extracellular site proximal to the 
membranes. It also generates the soluble form of TGFα and cleaves 
TNF receptor superfamily member 1A (TNFRSF1A) and L-selectin. Its 
deficiency causes neonatal inflammatory skin and bowel diseases in 
humans and embryonic lethality in mice187. ADAM17 was shown to be 
activated by the PtdSer exposed on the cell surface188. The treatment 
of T cells with ATP causes the exposure of PtdSer, which is accompa-
nied by L-selectin shedding189. Similarly, activating keratinocytes with 
Ca2+-ionomycin causes the PtdSer-dependent release of TGFα188. The 
shedding activity of ADAM10, another member of the ADAM family that 
sheds cadherins and Fas ligand190,191, is also dependent on  externalized 
PtdSer192.

PtdSer exposure in extracellular particles and enveloped 
viruses
Various membrane-bound structures (microvesicles and exosomes) 
secreted from cells are characterized by the exposition of PtdSer 
(Fig. 4d), which can be linked to their functions. For example, to nurse 
infants, mammary glands produce milk fat globules (MFGs), which 
are triglycerols covered by plasma membranes193. Similar to pyreno-
cytes157, MFGs carry ATPases in the plasma membranes but lack the 
ATP- generating system (mitochondria and glycolysis system), which 
will cause the swift depletion of internal ATP, leading to inactivation of 
flippase and the Ca2+ pump (ATPase). This will activate Ca2+-dependent 
scramblase such as TMEM16F to expose PtdSer. MFGE8 protein, also 
known as lactadherin, is secreted from mammary epithelial cells and 
binds to PtdSer on MFGs194. When infants cease sucking milk, MFGs 
remain in the mammary glands and are phagocytosed by mam-
mary epithelial cells and macrophages in an MFGE8-dependent and 
 PtdSer-dependent manner194.

Nearly all cells are capable of secreting extracellular vesicles, 
which are understood to serve as means of cell–cell communication195. 
A subtype of these vesicles, exosomes, are generated in the endosomal 
pathway, via the inward budding of endosomal membranes to form 
multivesicular bodies. As a result of the inward budding, the intralumi-
nal vesicles inside the multivesicular bodies and the exosomes released 
upon multivesicular body fusion with the plasma membrane expose 
PtdSer195,196 due to the lack of an ATP-regeneration system as described 
for MFGs. PtdSer, as an ‘eat me’ signal, seems to help the uptake of the 
exosomes by target cells195,197. Furthermore, as described earlier, acti-
vated platelets expose PtdSer to the surface185,198. At the same time, they 
produce many microparticles (extracellular vesicles with a diameter 
of 50–1,000 nm), exposing PtdSer to robustly activate blood clotting 
factors199 (see previous subsection).

Enveloped viruses, such as retroviruses, coronaviruses, herpes-
viruses and influenza viruses, expose PtdSer200, most likely due to 
the lack of an ATP-generating system, as discussed for pyrenocytes. 
PtdSer, on the surface, has been proposed to enhance the infectivity 
of an enveloped virus by supporting its binding to TIM or TAM family 

members of the PtdSer-receptor system on host cells201. However, 
another possibility is that PtdSer receptors, such as TIM family pro-
teins, trap the virus to inhibit its release from virus-producing cells202. 
It remains unclear whether the PtdSer-receptor system affects the 
enveloped virus infection in vivo.

Diseases caused by malfunction of flippases and 
scramblases
Loss-of-function or gain-of-function mutations in P4-ATPases, TMEM16 
and XKR family members cause various human diseases, including 
cerebellar ataxia, chorea-acanthocytosis, mental retardation, opti-
cal atrophy, lymphopenia, muscular dystrophy, bleeding disorder 
and tumorigenesis (Table 1). Although the molecular mechanisms 
leading to these diseases are elusive in most cases, we have obtained 
some novel insights into how perturbed lipid asymmetry contributes 
to pathology.

Diseases caused by malfunction of flippases at plasma 
membranes
Several members of the P4-ATPase are expressed in specific tissues 
(ATP8A2 in the retina, ATP8B1 and ATP10B in the intestines, ATP8B3 in 
the testis, ATP8B4 in haematopoietic cells and ATP10D in the kidney), 
and their subcellular localization also differs among the members 
(Table 1). The other members are apparently detected ubiquitously 
at the tissue level, but the Human Cell Atlas established by single-cell 
RNA sequence analysis203 indicated that most of them are specifically 
expressed in a limited type of cells, implying that these proteins have 
specific, non-redundant functions in selected cell types. In line with 
this, mutations in the P4-ATPase genes have been identified in various 
human diseases.

ATP11A and ATP11C are widely expressed and work redundantly 
in most cell types at plasma membranes. Yet a deficiency in either 
gene causes diseases because some cells only express one of them. For 
example, ATP11A is not expressed in hepatocytes, B cell progenitors 
or red blood cells204. Therefore, a loss-of-function mutation in Atp11c 
causes haemolytic anaemia, B cell lymphopenia and cholestasis in mice 
and humans205–209. When red blood cells pass through narrow vessels, 
the intracellular Ca2+ concentration transiently increases due to shear 
stress210, which may activate Ca2+-dependent scramblases to expose 
PtdSer. The exposure of PtdSer will be sustained without flippases at 
the plasma membrane of Atp11c-null cells, and cells will be removed by 
macrophages from the circulation by entosis in a mechanism equivalent 
to that proposed for senescent red blood cells211. During development 
in the bone marrow, B cell progenitors are activated, which induces the 
exposure of PtdSer. In normal B cell progenitors, PtdSer quickly with-
draws from the surface through the effects of ATP11C, but it remains 
exposed on the surface of Atp11c–/– B cells. PtdSer-exposing B cell pro-
genitors are then engulfed alive by macrophages in the bone marrow 
resulting in entosis37. CDC50A, a common subunit for P4-ATPases,  
is highly localized at synapses212. When the gene encoding CDC50A is 
knocked down in the nerve, the synapses constitutively expose PtdSer 
due to the lack of the flippases and are eliminated by microglia. These 
results suggest an involvement of the flippase system to regulate the 
PtdSer exposure in the synapse-pruning process160–164.

Trophoblasts in mouse placentas express ATP11A but not ATP11C 
(ref. 180). Therefore, Atp11a–/– trophoblasts lack flippases at the plasma 
membrane and cannot establish syncytiotrophoblasts, resulting in 
embryonic lethality. By contrast, the epiblast-specific deletion of 
Atp11a does not affect mouse development180, indicating that ATP11C 



Nature Reviews Molecular Cell Biology

Review article

is sufficient to maintain homeostasis in normal mouse tissues. A point 
mutation (Gln84Glu) in the substrate entry site of ATP11A was identi-
fied in a patient with developmental delays and neurological dete-
rioration102. Knock-in mice carrying the Gln84Glu point mutation 
in ATP11A fully re-capitulated the patient’s phenotype, displayed 
neurological deficit phenotypes and died within 5 weeks of birth. 
This mutation allows ATP11A to translocate PtdSer and PtdCho. Inter-
nalized PtdCho strongly upregulates the expression of SM synthase 
(SMGS1) and replaces PtdCho with SM at the outer leaflet of plasma 
membranes102, which renders cells susceptible to cell lysis by the serum 
sphingomyelinase, the concentration of which increases during inflam-
mation213,214. Sphingomyelinase, secreted into serum, is transported 
through the body and damages specific tissues, neurons, lungs and 
kidneys that expose a high level of SM because they strongly express 
ATP11A (ref. 102). These findings indicate that the substrate specifici-
ties of plasma membrane flippases, at least ATP11A, need to be strictly  
regulated. Another autosomal dominant mutation in ATP11A that 
removes 82 amino acids in the C terminus was recently detected in 
human families with hearing loss215. This mutant ATP11A has not yet 
been biochemically characterized, and it is unclear whether haploin-
sufficiency or dominant-negative characteristics cause the disease. 
Because the C-terminal region of ATP11A is responsible for localizing 
it to plasma membranes216, it is tempting to speculate that this mutant 
ATP11A is mislocalized from the plasma membrane, causing flipping 
of phospholipids at an intracellular site, thereby interfering with lipid 
distribution in the membranes.

Many other mutations have been identified in other P4-ATPases in 
various human diseases, including chorea, ataxia, cholestasis, hearing 
loss, obesity and others (Table 1). Currently, we know little about how 
these mutations lead to pathology.

Diseases caused by malfunction of TMEM16 scramblases
Some members of the TMEM family are ubiquitously expressed whereas 
others are specifically expressed in the brains, intestines, bones, mus-
cles and testis. The loss-of-function mutations in TMEM16 family mem-
bers as well as their gain-of-function mutations have been identified in 
various human diseases (Table 1). The involvement of specific TMEM16 
genes with human tumours has also been reported.

A genome-wide association scanning identified Tmem16c as 
a risk factor for febrile seizure in humans217 (Table 1). Accordingly, 
Tmem16c-null rats show greater sensitivity to hyperthermia-induced 
seizures218. TMEM16C is localized at the plasma membrane of neurons 
in the cerebral cortex and basal ganglia (The Human Protein Atlas). 
It will be interesting to study how the phospholipid scrambling at the 
plasma membrane regulates thermo-sensitivity. In many patients with 
dystonia, autosomal dominant mutations were found throughout the 
TMEM16C molecule (see Supplementary Fig. S2) (The Human Gene 
Mutation Database). Although it must be confirmed, these mutations 
may result in a constitutive active form of the scramblase as found 
with the dominant mutations of TMEM16E (ref. 219). The constitutive 
active scrambling by TMEM16F causes the PtdSer exposure136. Thus, it 
is tempting to think that the dominant mutations of TMEM16C cause 
the neurons to expose PtdSer resulting in thrombosis as reported 
with the PtdSer-exposing blood cells220.

Loss-of-function mutations in the Tmem16e gene underlie muscle 
with limb-girdle muscular dystrophy 2L, Miyoshi muscular dystrophy 3  
or non-specific myopathy221,222, whereas autosomal dominant gain-
of-function mutations cause the bone disorder gnathodiaphyseal 
dysplasia223. Myoblasts from a patient with a loss-of-function mutation 

in Tmem16e efficiently fused to myotubes but were defective in repair-
ing the injured sarcolemma71. Tmem16e–/– animals have conflicting 
phenotypes. We and others found no apparent phenotype in bones 
and muscles, although the fertility of male mice was reduced owing to 
a defect in sperm mobility60,224. By contrast, other studies reported that 
the Tmem16e–/– mutation affected the repair system of muscle fibres, 
leading to muscle dystrophy in mice and rabbits72,225. What caused this 
difference among different laboratories is not clear.

A loss-of-function mutation of Tmef16f is responsible for Scott 
syndrome, a mild bleeding disorder44,226–228. The platelets of a patient 
with Scott syndrome are defective in exposing PtdSer upon treat-
ment with thrombin and collagen229. Canine hereditary bleeding disorder 
with similar characteristics to Scott syndrome was also shown to be driven 
by a mutation in the Tmem16f gene230. Platelet-specific or conventional 
Tmem16f–/– mice confirmed the role of TMEM16F in the exposure of PtdSer 
on tissue factor-activated platelets and in the release of PtdSer-exposing 
microparticles from platelets47,64.

TMEM16G is highly expressed in the prostate, localizes to the 
plasma membrane, in particular the cell-to-cell contact site231, and 
has Ca2+-dependent scramblase activity50. Recently, one of the single-
nucleotide polymorphisms strongly associated with prostate cancer 
was shown to cause exon skipping in the Tmem16g gene to reduce its 
protein expression232. How the loss-of-function mutation of Tmem16g, 
or the lack of scramblase in the prostate, promotes tumorigenesis 
remains to be studied.

TMEM16K is ubiquitously expressed and localized at the 
ER–endosomes contact sites. Several patients suffering from cerebral 
ataxia carry the loss-of-function mutation caused by nonsense and 
missense mutations in the Tmem16k gene233–235. The mutation in its 
Drosophila melanogaster homologue (Axs) causes the defect in the 
mitotic spindle assembly and chromosome seggregation236. Little is 
known about how the malfunction of the TMEM16K scramblase leads 
to these phenotypes.

Diseases caused by malfunction of XKR scramblase
XK is highly expressed in the plasma membranes of red blood cells, 
and is complexed with a blood antigen, Kell237. XK is also expressed 
in various tissues, including skeletal muscle, the spinal cord and the 
cerebral cortex, in which Kell is not associated with XK. XK is the gene 
responsible for McLeod syndrome, an X-linked recessive multisys-
tem disorder with central nervous system, neuromuscular, cardio-
vascular and haematological manifestations in males124. VPS13A, 
the partner of XK for its scramblase activity, is also responsible for 
chorea-acanthocytosis238, a multisystem disorder similar to McLeod 
syndrome. Many missense and nonsense mutations were identified in 
the XK and VPS13A genes of human patients124,238,239. However, whether 
these mutations affect the scrambling activity of the XK–VPS13A 
complex has not been addressed.

The Xkr8 null mutation in mice blocks the exposure of PtdSer on 
apoptotic cells and causes male infertility due to the accumulation of 
uncleared dead cells in the testis240. Its deficiency also accelerates SLE-
type autoimmune diseases in autoimmune-prone female mice78, similar 
to the mice deficient in the PtdSer-recognition system for  clearance of 
apoptotic cells241,242.

Conclusion and perspectives
Our understanding of the distribution of phospholipids in the plasma 
membrane has greatly increased since the initial demonstration of 
membrane asymmetry in 1972 (ref. 3), particularly in the last 10 years. 

https://www.proteinatlas.org/
https://www.hgmd.cf.ac.uk/
https://www.hgmd.cf.ac.uk/
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However, many open questions remain. For example, we now know 
that flippases, P4-ATPases, are required to recover an asymmetrical 
distribution of PtdSer and PtdEtn at the plasma membrane36 when 
various stimuli disrupt the asymmetry. But we have yet to learn the 
mechanisms contributing to establishing an asymmetrical distribution 
of phospholipids in response to larger-scale membrane remodelling 
events, such as cell division.

We also now understand how the activated platelets expose Ptd-
Ser on their surface to trigger blood clotting factors44. The molecular 
mechanisms by which PtdSer is exposed on the surface of apoptotic 
cells and how phagocytes recognize it have been elucidated12. These 
findings explain why PtdSer on apoptotic cells, but not on the acti-
vated platelets, serves as an ‘eat me’ signal. PtdSer is also exposed on 
the cell surface in various biological processes, such as cell fusion, 
lymphocyte activation, axon pruning, cell senescence, membrane 
repair and formation of extracellular particles, such as pyrenocytes, 
exosomes and enveloped viruses. However, limited information is cur-
rently available on how PtdSer is exposed in these different contexts. 
The role of PtdSer in the respective biological processes also remains 
poorly understood.

The identification of P4-ATPase as a flippase and TMEM16 and 
XKR as Ca2+-dependent and caspase-dependent scramblases revealed 
that the individual molecules belong to a family that includes 9–14 
members12. Some members are ubiquitously expressed, whereas the 
expression of others is confined to cells in the brain or intestines. 
In addition, some members localize to the ER, endosomes and/or 
lyso somes. Although the involvement of the lipid transporters in the 
various events, such as endocytic recycling, endocytosis, exocytosis 
and fission of organelles, has been proposed29,243–245, it is not well under-
stood whether the proteins in the scramblase and flippase families 
have an instructive role in these processes and how exactly they impact 
these membrane dynamics events. This is because, compared with the 
proteins in plasma membranes, more difficulties are associated with 
examining the biological activity of these proteins in specific organelles 
using a cell-based assay system. Our understanding of the organelle 
fusion process was advanced with the cell-free system with proteoli-
posomes246. To study the biological role of the intracellular scramblases 
and flippases, we may need a cell-free system, ideally with liposomes of 
the lipid bilayer in which phospholipids are asymmetrically distributed 
between the two leaflets.

Defects in members of the P4-ATPases, TMEM16 and XK families 
cause many different diseases; apart from a few exceptions, their aetio-
logies remain unclear. In particular, we have evidence that if ATP11A 
flippase flips PtdCho in addition to PtdSer, it will cause harmful effects 
in humans102. Yet ATP8B1, ATP8B2 and ATP10A were reported to flip 
PtdCho at the plasma membrane34,35,247, suggesting that the expression 
of these flippases is restricted to a specific type of cells. In addition, the 
substrate is unknown for some of the P4-ATPases (ATP8B3, ATP8B4, 
ATP9A, ATP9B and ATP10D), but knowing their substrate is essential 
to understand their physiological function. The tertiary structure of 
nine members of the XKR family, predicted by AlphaFold, is similar. 
So far, four of them (XK, XKR4, XKR8 and XKR9) were shown to have 
scramblase activity with or without their partner (VPS13A or Basigin). 
But how they are activated to function as a scramblase is elusive, except 
for XKR8 which is activated by caspase 3 during apoptosis. In addition, 
whether or not other members (XKR2, XKR3, XKR5, XKR6 and XKR7) 
have the scramblase activity remains to be explored.
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