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Summary:

High throughput spatial transcriptomics (HST) is a rapidly emerging class of experimental 

technologies that allow for profiling gene expression in tissue samples at or near single-cell 

resolution while retaining the spatial location of each sequencing unit within the tissue sample. 

Through analyzing HST data, we seek to identify sub-populations of cells within a tissue 

sample that may inform biological phenomena. Existing computational methods either ignore the 

spatial heterogeneity in gene expression profiles, fail to account for important statistical features 

such as skewness, or are heuristic-based network clustering methods that lack the inferential 

benefits of statistical modeling. To address this gap, we develop SPRUCE: a Bayesian spatial 

multivariate finite mixture model based on multivariate skew-normal distributions, which is 

capable of identifying distinct cellular sub-populations in HST data. We further implement a novel 

combination of Pólya–Gamma data augmentation and spatial random effects to infer spatially 

correlated mixture component membership probabilities without relying on approximate inference 

techniques. Via a simulation study, we demonstrate the detrimental inferential effects of ignoring 

skewness or spatial correlation in HST data. Using publicly available human brain HST data, 

SPRUCE outperforms existing methods in recovering expertly annotated brain layers. Finally, our 

application of SPRUCE to human breast cancer HST data indicates that SPRUCE can distinguish 

distinct cell populations within the tumor microenvironment. An R package spruce for fitting the 

proposed models is available through The Comprehensive R Archive Network (CRAN).

* chung.911@osu.edu . 

Supporting Information
The proof of Proposition 1 (Web Appendix A), the MCMC algorithm (Web Appendix B), the sensitivity analysis (Web Appendix 
E), and the comparison of model fit criteria (Web Appendix F) referenced in Section 3, supplementary figures (Web Appendix C) 
and supplementary tables (Web Appendix D) referenced in Sections 2, 4, and 5, and an R package spruce for fitting the proposed 
models are available with this paper at the Biometrics website on Wiley Online Library. An R package spruce is also available through 
the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/package=spruce.

HHS Public Access
Author manuscript
Biometrics. Author manuscript; available in PMC 2023 September 28.

Published in final edited form as:
Biometrics. 2023 September ; 79(3): 1775–1787. doi:10.1111/biom.13727.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cran.r-project.org/package=spruce


Keywords

Bayesian models; Conditionally autoregressive models; Mixture models; Skew-normal; Spatial 
transcriptomics

1. Introduction

High throughput spatial transcriptomics (HST) is a developing class of experimental 

technologies that has proven invaluable to studying a wide range of biological processes 

in both diseased (Chen et al., 2020) and healthy (Baccin et al., 2020) tissues. The advantage 

of HST over existing sequencing tools like single-cell RNA-sequencing (scRNA-seq) is 

that HST preserves the spatial location of cells within a tissue sample, while scRNA-seq 

decouples gene expression information from cell locations (Burgess, 2019). However, since 

spatial proximity has been shown to be a principal source of heterogeneity in tissues 

(Moncada et al., 2018), it is critical to properly weigh both the spatial location of cells 

and their gene expression profiles when analyzing HST data.

Since the advent of HST technologies, a few computational and statistical methods have 

been proposed to jointly analyze gene expression and spatial location data to infer 

biologically distinct sub-populations of cells within a tissue sample. Dries et al. (2021) 

introduced Giotto, which first clusters cells solely based on gene expression and then 

spatially refines cell cluster assignments using a hidden Markov random field model. 

Similarly, in a recent version of the popular scRNA-seq analysis package Seurat, Hao et 

al. (2021) included the ability to incorporate spatial information into cell clustering using 

a spatially-weighted similarity matrix. Pham et al. (2020) proposed stLearn, which clusters 

cells by applying the Louvain or K-means algorithm to a spatially perturbed dimension 

reduction of the gene expression space, then infers spatial sub-clusters using the DBSCAN 

algorithm. While these methods offer the ability to introduce spatial information into 

standard cell clustering routines, they each adopt network-based approaches that depend 

heavily on tuning parameters like the number of neighbors and cell clustering resolution, and 

lack the inferential benefits of statistical modeling, such as uncertainty quantification and 

optimization of parameters using model fit criteria.

Zhao et al. (2021) improved on these works by developing BayesSpace, a Bayesian 

multivariate-t mixture model that induces spatial correlation in mixture component weights 

via the use of Potts model prior. However, BayesSpace is limited in that (i) it models 

principal components of gene expression features instead of directly modeling gene 

expression; (ii) BayesSpace assumes symmetric multivariate outcome distributions, which 

makes its direct application to gene expression features difficult to justify, due to the 

inherent skewness of gene expression across a tissue sample as shown in Figure S1; and 

(iii) BayesSpace uses a global spatial smoothing parameter (i.e., common across all cell 

sub-populations) that must be chosen a priori to induce spatial correlation, thus ignoring 

important local heterogeneities in spatial patterns across a tissue sample.

To address these gaps, we developed SPRUCE (SPatial Random effects-based clUstering 

of single CEll data) for identification of cell type sub-populations using HST data. Our 
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proposed model draws upon some of our previous developments for Bayesian mixture 

models with challenging within-component densities (Allen et al., 2021) and spatial 

dependence (Neelon et al., 2014) to improve the current methodology for HST data 

analysis in a number of important ways. First, SPRUCE allows for direct modeling of a 

set of normalized gene features, thus facilitating a more natural interpretation of mixture 

components as sub-groups of cells with distinct gene expression profiles. Next, SPRUCE 

directly accounts for spatial dependence in both gene expression outcomes and cell-type 

membership probabilities. This model design allows for spatially correlated local gene 

expression patterns while simultaneously smoothing mixture components across a tissue 

sample. We also accommodate skewed gene expression distributions – a feature that we 

have found to be ubiquitous to normalized gene expression features in HST data. Finally, 

SPRUCE relies on a robust and efficient Gibbs sampling algorithm written using Rcpp 

(Eddelbuettel and François, 2011) with built-in protection against label switching and is 

implemented in a generalized R package available through CRAN.

2. Data

HST technologies such as the 10X Genomics Visium platform are widely used due to their 

ability to the sequence entire transcriptome. These technologies divide the tissue sample into 

a contiguous array of “spots,” each roughly 55μm in diameter and containing a small number 

(often < 5) of spatially close cells (Maniatis et al., 2021). In situ barcoding of spots is then 

used to correlate spatial centroids with the expression levels of thousands of RNAs in each 

spot. While the number of genes sequenced by HST platforms can exceed 30,000, most 

analyses focus on a small subset of spatially variable genes (SVGs) that are identified either 

by pre-existing feature selection methods (Edsgärd et al., 2018) or by focusing on known 

marker genes for certain tissue settings.

To avoid confounding from technical artifacts such as heterogeneous sequencing depth 

(i.e., the number of unique genes sequenced at each spot), count data are converted into 

continuous normalized features using approaches such as sctransform (Hafemeister and 

Satija, 2019). This normalization method adopts a negative binomial regression model-based 

approach with sequencing depth as a covariate to remove this technical artifact while 

avoiding overfitting. While an additional layer of error is introduced through analyzing these 

model-derived normalized features instead of raw counts, the added error is outweighed 

by the correction for technical artifacts that would likely confound our inferred cell spot 

sub-populations.

As shown in Figure 1, after standard pre-processing steps, including normalization, we 

obtain two primary data structures: (1) a 2-dimensional coordinate matrix locating the 

centroid of each cell spot, and (2) a g–dimensional matrix of gene expression profiles for 

each cell spot. As an example, in Figure 1 we plot the spatial expression patterns and 

densities of a set of SVGs within a human brain tissue sample (Maynard et al., 2021). In 

Section 5.1, we explore this particular data set in more detail using the expert annotations 

of brain layers by Maynard et al. (2021) as reference to benchmark our proposed statistical 

model relative to existing tools. To quantify the spatial autocorrelation of gene expression 

throughout the human brain tissue sample, we computed Moran’s I statistic (Gittleman and 
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Kot, 1990; Paradis and Schliep, 2019) and associated p-value for three SVGs identified 

using standard approaches (Edsgärd et al., 2018), namely PCP4, MBP, and MTCO1. 

Moran’s I statistic values near zero are suggestive of little to no spatial correlation in 

gene expression between neighboring tissue samples, while positive values indicate stronger 

spatial dependence.

As seen in Figure 1, the expression of certain genes across a tissue sample can exhibit 

high spatial variability, hence the need for robust statistical models that account for spatial 

correlation in gene expression.

In addition to spatial correlation, skewness of normalized gene expression features is 

a characteristic of HST data. In fact, skewness occurs in almost all normalized gene 

expression features as an artifact of converting overdispersed count data to normalized data. 

To illustrate this, we collected a corpus of 32 publicly available HST data sets spanning a 

range of species (human, mouse, chicken) and organs (brain, breast, kidney). In each sample, 

we normalized gene expression features using standard approaches (Hafemeister and Satija, 

2019) and calculated sample skewness (Joanes and Gill, 1998) for the top 3000 SVGs. The 

results, shown in Figure S1 of Web Appendix C, demonstrate clear and systematic positive 

skewness of SVGs. As discussed in Section 4, ignoring skewness in our model development 

may degrade the quality of our tissue architecture identification. Thus, a robust statistical 

model for HST data analysis should allow for non-symmetric gene expression distributions.

3. Model

In Section 3, we present a Bayesian spatial mixture model capable of addressing the 

challenges presented by HST data described in Section 2. Our approach extends existing 

spatial Bayesian finite mixture models, in particular Allen et al. (2021) and Neelon et 

al. (2014) to this challenging setting. In Section 3.1, we develop the general multivariate 

mixture model framework that is capable of clustering cells while accounting for spatial 

correlation, gene-gene correlation, and skewness of gene expression features. While Allen et 

al. (2021) and others have dealt with skewed within-component densities; and while Neelon 

et al. (2014) and others have utilized random effects to accomodate spatial dependence 

among observations within mixture components, these approaches have yet to be combined 

to account for both spatial correlation and skewness in multivariate outcomes within mixture 

components. In Section 3.2 we improve upon previous approaches for analyzing HST data 

by implementing a novel sub-population membership model that combines Pólya–Gamma 

data augmentation with spatially-correlated CAR priors to induce spatial dependence among 

neighboring cells and allow for robust interpretation of mixture components. Neither Allen 

et al. (2021) nor Neelon et al. (2014) utilized Pólya–Gamma data augmentation to explain 

mixture component membership in the presence spatially-correlated random effects that 

directly induce spatial dependence into mixture component assignments.

3.1. General Mixture Model

Our proposed model is relevant for sequencing-based HST platforms such as 10X Visium, 

which divide the tissue sample into a regular lattice of cell spots. We let yi = yi1, …, yig
T
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be the length g vector of gene expression features for spot i i = 1, …, n . To identify sub-

populations within a tissue sample, we adopt a finite mixture model of the form

f yi ∣ θ1, …, θK, πi1, …, πiK =
k = 1

K
πikf yi ∣ θk , (1)

where θk is the set of parameters specific to component k k = 1, …, K  and πik is a cell 

spot-specific mixing weight that measures the probability of spot i belonging to cell sub-

population k. In Section 3.2, we develop a model to allow for spatial locations to inform πik. 

The number of cell sub-populations K may be specified based on biological knowledge, or 

may be identified entirely from the data, as described in Section 3.3.2.

To facilitate Bayesian inference, we introduce latent sub-population indicator variables 

z1, …, zn, where zi ∈ 1, …, K  indicates the mixture component assignment for cell spot i. 
Given zi = k, we assume that the gene expression features for spot i follow a g −dimensional 

multivariate skew normal (MSN) distribution (Azzalini and Valle, 1996)

yi ∣ zi = k MSNg ηik, αk, Ωk ,  with density 
f yi ∣ zi = k = 2fg yi; ηik, Ωk F αk

T yi − ηik ,
(2)

where, given zi = k, ηik is the length g mean vector for spot i, αk is a length g vector 

of feature-specific skewness parameters for mixture component k, Ωk is a g × g scale 

matrix that captures association among the gene expression features in mixture component 

k,  fg yi; ηik, Ωk  is the density function of a g-dimensional normal distribution with mean ηik

and variance-covariance matrix Ωk evaluated at yi, and F  is the CDF of a scalar standard 

normal random variable.

We may represent the MSN distribution using a convenient conditional representation in 

terms of the MVN distribution and a spot-level standard normal random variable truncated 

below by zero ti N 0, ∞ 0,1  (Frühwirth-Schnatter and Pyne, 2010). To implement this 

conditional MSN representation and incorporate spatial variability across the tissue sample 

into the gene expression model, we let

yi ∣ zi = k, ti, ϕi = μk + ϕi + tiξk + ϵi, (3)

where μk is the length g gene expression mean vector for mixture component k, ϕi is a length 

g spatial effect that allows for spatially-correlated departure from μk in spot i, ξk controls 

the mixture component-specific skewness of each gene expression feature in the conditional 

MSN representation, and ϵi Ng 0, Σk . In Web Appendix B, we describe how the original 

MSN parameters ηik, αk, and Ωk can be obtained through back-transformations as functions of 

the parameters in equation (3).

To accommodate spatial dependence among cell spots in the tissue sample, we adopt a 

multivariate intrinsic conditionally autoregressive (CAR) prior (Besag, 1974) for ϕi :
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ϕi ∣ ϕ−i, Λ Ng
1
mi l ∈ δi

ϕl,
1
mi

Λ , (4)

where ϕ−i denotes the spatial random effects for all spots except spot i, Λ is a g × g variance-

covariance matrix for the elements of ϕi, mi is the number of neighbors of spot i, and δi is 

the set of all neighboring spots to cell spot i. To aid in separability between Λ and Σk, we 

assume the variance-covariance of the spatial random effects Λ is shared across mixture 

components, while Σk, the conditional variance-covariance of yi, is mixture component-

specific. We further discuss separability and the competing variance problem in Section 6. 

As described in Banerjee et al. (2014), we ensure a proper posterior distribution for each ϕi

by enforcing a sum-to-zero constraint on the elements of each ϕi for i = 1, …, n. In Section 

3.3.1, we complete the fully Bayesian model specification by assigning conjugate priors to 

all remaining model parameters, thus leading to closed-form full conditional distributions for 

all model parameters and allowing for an efficient Gibbs sampling algorithm detailed in Web 

Appendix B.

3.2. Spatial Pólya–Gamma Multinomial Logit Regression Component Membership Models

Thusfar, we have assumed that spatial dependence enters only into the model for gene 

expression distributions, where each spot is allowed to vary with respect to its mixture 

component-specific mean through the use of spatially correlated multivariate random effects. 

However, in many cases we may wish to allow the mixture weights to vary spatially as 

well. In doing so, we ensure that the cellular sub-populations identified by the model are 

informed by the spatial variability across tissue samples, where neighboring tissue spots 

have increased probability of belonging to the same mixture component relative to models 

that do not feature spatially correlated random effects in the mixture weight model. First, we 

extend model (1) by letting

πik = exp wi
Tρk + ψik

ℎ = 1
K exp wi

Tρℎ + ψiℎ
 for k = 1, …, K, (5)

where wi is a length p vector of covariates relevant to cluster membership, ρk is an associated 

length p vector of fixed-effects, and ψik is a spatial random effect allowing spatially-

correlated variation with respect to wi
Tρk. For identifiability purposes, we choose mixture 

component 1 as the reference category and set ρ1 = 0p × 1 and ψi1 = 0 for all i = 1, …, n. To 

introduce spatial association into the component membership model, we assume univariate 

intrinsic CAR priors for ψik :

ψik ∣ ψ−ik, νk
2 N 1

mi l ∈ δi

ψlk,
νk

2

mi
,  for k = 2, …, K, (6)

where νk
2 is a mixture component-specific variance for ψik.

We ensure closed-form full conditional distributions of the multinomial logit regression 

parameters by adopting a Pólya–Gamma data-augmentation approach as introduced by 
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Polson et al. (2013). A random variable w is said to follow a Pólya–Gamma distribution with 

parameters b > 0 and c ∈ ℝ if

f w ∣ b, c = 1
2π2 s = 1

∞ gs

s − 1/2 2 + c2/ 4π2
, (7)

where gs
iidGamma b, 1  for s = 1, …, ∞. In the context of Bayesian logistic regression, Polson 

et al. demonstrate that the inverse-logit function can be expressed as a scale-normal mixture 

of Pólya–Gamma densities:

eη a

1 + eη b

Inverse logit form 

= 2−beκη
0

∞

e−ωη2/2
Normal kernel 

p ω ∣ b, 0
Pólya–Gamma 

dω, (8)

where ω PG b, 0  and PG b, 0  denotes the Pólya–Gamma distribution with shape parameter 

b and tilting parameter c = 0. As a result, the likelihood of the logistic model can in turn 

be written as a scale-mixture of normal densities, allowing for closed-form conditional 

distributions of all model parameters. These results imply that if we can write the likelihood 

model for πik in the inverse logit form shown in equation (8), then using conjugate priors 

for all other model parameters we can conduct exact inference (i.e., Gibbs sampling) using 

only Normal and Pólya–Gamma distributions. While previous models (Allen et al., 2021) 

have applied these results for use in multinomial logit mixture weight regression models, 

the Pólya–Gamma data augmentation approach has yet to be used in conjunction with 

CAR priors in the context of modeling mixing weights in spatial finite mixture models. In 

Proposition 1 below, we state the result that Pólya–Gamma data augmentation allows for 

closed-form full conditional distributions of ψik in this novel setting.

PROPOSITION 1: Let πik follow the multinomial logit model defined in equation (6), and let ψik

have a univariate intrinsic CAR prior as defined in equation (7). Under Pólya–Gamma data 

augmentation, the full conditional distribution of ψik is N mik, V ik , where

mik =
1
mi l ∈ δi ψlk + Uik

*

mi
2

νk
2 + 1

ωik
2

,  and V ik = 1
mi

2

νk
2 + 1

ωik
2

, (9)

where Uik
* = Uik − 1/2

ωik
+ cik − wi

Tρk, Uik is an indicator equal to 1 if zi = k and 0 otherwise, 

cik = log ∑ℎ ≠ k
K exp wi

Tρℎ + ψiℎ , and ωik PG 1,0 .

The proof is provided in Web Appendix A and the resultant Gibbs sampler is detailed in 

Web Appendix B.

3.3. Bayesian Inference

3.3.1. Priors and Posterior Computation.—We complete a fully Bayesian 

specification of the SPRUCE model by assigning prior distributions to all 
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remaining model parameters. For k = 1, …, K, we assign sub-population-specific priors 

μk Ng μ0k, V0k , ξk Ng ξ0k, X0k , and Σk IW ν0k, S0k . By default, we opt for weakly-informative 

priors (Gelman et al., 2013) by choosing μ0k = ξ0k = 0g × 1, V0k = X0k = S0k = Ig × g, and ν0k = g + 2, 

which gives E Σk = Ig × g. In Web Appendix E, we provide a sensitivity analysis to 

choices of inverse-Wishart prior parameters S0k and ν0k. We found that estimated cell spot 

labels were highly robust to specification of S0k and ν0k. We further assume Λ IW λ0, D0 . 

Weakly-informative priors result from setting λ0 = λ0k = g + 2 and D0 = D0k = Ig × g. Finally, for 

k = 2, …, K, we assume ρk Np ρ0k, R0k  and νk
2 IG u1k, u2k , where we obtain weakly-informative 

priors by choosing ρ0k = 0p × 1, R0k = Ip × p, and u1k = u2k = 0.001. Posterior inference is conducted 

via Gibbs sampling for all model parameters. We provide a detailed description of our 

proposed Gibbs sampling algorithm in Web Appendix B, which is implemented in the freely 

available R package spruce. In Table S2 of Web Appendix D, we provide benchmark run 

times for analysis of the sagittal mouse brain data discussed in Section 4.

3.3.2 Model Selection.—The choice of K, i.e., the number of mixture components 

used in the SPRUCE model, is a critical step in the analysis of HST data. In some 

situations, it may be appropriate to specify K based on strong biological knowledge of 

the cell sub-populations that will be present in a tissue sample, or the desire to investigate 

a known number of “cell states” within a more homogeneous tissue sample. In other cases, 

however, such prior information might be unavailable and the choice of K can be made 

entirely based on the data. Indeed, one distinct advantage of statistical models for identifying 

sub-populations in HST data is the availability of numerous model fit criteria that may be 

used to compare models of different dimension. Celeux et al. (2019) define the concept of 

entropy for Bayesian mixture models. Entropy ranges between 0 and nlog K , with lower 

values indicating more highly separated mixture components. Zhao et al. (2021) use the 

negative log-likelihood of the model to identify best fitting model variants, despite this 

criterion not featuring any terms to penalize model complexity. The Akaike information 

criterion (AIC) (Akaike, 1974) and Bayesian information criterion (BIC) (Schwarz, 1978) 

are two well-known criteria that penalize model complexity, where the penalization is more 

severe in the latter (Stoica and Selen, 2004). The deviance information criterion (DIC) 

(Spiegelhalter et al., 2002) and its related variant DIC3 proposed by Celeux et al. (2006) 

for use with finite mixture models is instead based on the posterior predictive density of 

y1, …, yn. To identify the optimal value of K in our applications, we make use of the widely 

applicable information criterion (WAIC) (Watanabe, 2010) defined as

WAIC = − 2
i = 1

n
log 1

S s = 1

S
p yi ∣ θ s −

i = 1

n
Vars = 1, …, S log p yi ∣ θ s , (10)

where s = 1, …, S indexes the post-burn-in iterations of the Gibbs sampler detailed in Web 

Appendix B, and θ s  represents the current values of all parameters at iteration s. Models 

with smaller WAIC values are preferred. We provide a comparison of the above model fit 

criteria across three simulated data sets in Web Appendix F, and found generally reliable 

performance of each criterion across simulation settings. Thus, while we utilize WAIC in our 

real data analyses, we do not rule out use of other model fit criteria for HST data analysis.
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4. Simulation Studies

To investigate the performance of SPRUCE and validate our proposed Gibbs sampling 

estimation algorithm, we generated simulated HST data mimicking a publicly available 

sagittal mouse brain data set sequenced with the 10X Visium platform and made available 

by 10X Genomics (10X Genomics, 2019a). To ensure our simulation study is reflective of 

real HST data sets, we first allocated the n = 2696 cell spots in the original sagittal mouse 

brain data set into one of K = 4 simulated ground truth tissue segments that resemble distinct 

mouse brain layers (Figure 2A). We then simulated spatially variable multivariate gene 

expression features of dimension p = 16 according to model (3). Parameters were chosen to 

result in weakly separated mixture components, as is shown by the overlapping between 

mixture components in the Uniform Manifold Approximation and Projection (UMAP) 

(McInnes et al., 2018) dimension reduction in Figure 2B. Next, we fit three model variants: 

(i) an MVN mixture model without spatial random effects; (ii) an MSN mixture model 

without spatial random effects; and (iii) an MSN mixture model with spot-level multivariate 

CAR spatial random intercepts in the gene expression model. This set of models allows 

us to demonstrate how accounting for skewness and spatial correlation in gene expression 

outcomes may lead to improved parameter estimates relative to ground truth. Each model 

was run for 10000 MCMC iterations, with the first 1000 iterations discarded as burn-in, and 

priors were chosen to be weakly informative as described in Section 3.3.1. Convergence for 

a selection of mean and variance parameters for the full spatial MSN model are provided in 

Figure S2 of Web Appendix C.

In Figures 2C–2E, we show the estimated mixture component labels for each of the three 

model variants. We quantified the ability of each model to recover ground truth simulated 

sub-population labels using the adjusted Rand index (ARI) (Hubert and Arabie, 1985), 

where higher values of ARI imply more accurate recovery of ground truth labels. Finally, in 

Figures 2F–2H we plot model fit as measured by WAIC for each of the three model variants 

fit across a range of K = 2, …, 6 to assess the ability of each model variant to recover the true 

sub-population labels.

In Figures 2C trough 2E, we see that accounting for skewness and spatial correlation among 

spots allows for more accurate recovery of true mixture component labels in terms of ARI. 

In Figures 2F trough 2H, we see that the minimum WAIC value occurs at the correct value 

K = 4 for the two MSN models, but occurs at the incorrect value of K = 3 for the MVN 

non-spatial model attributing to the relatively poor ARI of the MVN non-spatial model. 

Relative to the MSN non-spatial model, the MSN spatial model more accurately classified 

sub-populations 1 and 2, accounting for the increased ARI of 0.92 in the MSN spatial model 

compared to 0.75 in the MSN non-spatial model. In short, the MSN spatial model featured 

the lowest misclassification rate of spots, suggesting the need for accounting for both 

non-normality and spatial correlation when analyzing HST data. Finally, Table S1 of Web 

Appendix D displays posterior means and 95% CrIs for a selection of model parameters in 

mixture component 1 for each model. The MSN spatial model was able to most accurately 

estimate the true model parameters, while the MVN and MSN non-spatial models suffered 

from decreased accuracy in parameter estimates.
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5. Applications

5.1. Analysis of 10X Visium Human Brain Data

To assess the performance of SPRUCE relative to expert annotations and existing methods 

for clustering HST data, we analyzed the human dorsolateral prefrontal cortex brain data 

recently published by Maynard et al. (2021), which consist of 33538 genes sequenced in 

3085 spots across the tissue sample. We compared SPRUCE to four existing methods, 

namely BayesSpace (Zhao et al., 2021), stLearn (Pham et al., 2020), Seurat (Hao et al., 

2021), and Giotto (Dries et al., 2021). Due to the highly-organized spatial structure of 

human brain tissue samples and the presence of known marker genes that can be used to 

delineate distinct layers of the brain, these data can serve as an important benchmark for 

SPRUCE and existing methods. In this application, we treat the expert annotations from 

Maynard et al. (2021) as ground truth and use ARI to quantify the agreement between these 

gold standard annotation and those obtained by SPRUCE and existing tools.

We first implemented the standard Seurat pre-processing pipeline for 10X Visium data 

(Hao et al., 2021), which includes discarding low quality features, normalizing and scaling 

gene expression, and computing dimension reductions. For the normalization step, we 

adopted sctransform, a model-based variance stabilization transformation approach proposed 

by Hafemeister and Satija (2019). For the dimension reduction step, we used principal 

component analysis to find the first 128 principal components, then implemented the UMAP 

dimension reduction algorithm on this set of principal components to facilitate visualization. 

We used the top 16 SVGs as features for SPRUCE, many of which were found to be layer 

characterizing genes by Maynard et al. (2021). The number of SVGs was chosen to result in 

a parsimonious subset of genes, whose expression collectively spanned the spatial domain of 

the tissue sample. We ran the SPRUCE model MCMC estimation for 10000 iterations with a 

burn-in of 1000. The estimated sub-population labels from SPRUCE were taken as the MAP 

estimate across all saved MCMC samples. Finally, we used default parameter settings for 

each of the four existing tools.

Figure 3 shows the estimated tissue layer labels from SPRUCE and the four existing HST 

tools relative to expert annotations. SPRUCE achieved the highest ARI of 0.75 relative 

to manual annotations, followed by BayesSpace (ARI = 0.55) which struggled discerning 

layers 4 and 5. The explicit use of layer-specific spatially variable features with SPRUCE 

as opposed to BayesSpace’s use of principal components computed from all genes may 

explain the improved performance, as principal components can be affected by low-quality/

noise genes. Additionally, BayesSpace’s use of a constant and user-specified smoothing rate 

across the entire tissue sample is not as flexible as the MCAR and CAR models in SPRUCE, 

which allow for estimation of smoothing parameters Λ and νk
2 from the data. The three 

network-based approaches stLearn, Seurat, and Giotto each performed poorly relative to the 

manually annotated ground truth labels (ARI = 0.33, 0.29, and 0.24, respectively).

5.2. Analysis of 10X Visium Breast Cancer Data

To demonstrate the application of our proposed method to the case of unlabeled data, 

we analyzed a publicly available human Invasive Ductal Carcinoma breast tissue (10X 
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Genomics, 2020a) sequenced with the 10X Visium platform. We applied the standard pre-

processing pipeline and sctransform normalization approach as in Section 5.1. In Figure 

4A, we plot the expression of the top 16 most spatially variable features across the tissue 

sample. These features display substantial spatial heterogeneity in gene expression, with 

clear sub-regions existing within the tissue sample. We fit model (3), where the 16 top SVGs 

in Figure 4A were used as features. We identified a subset of best fitting models using WAIC 

and DIC, as shown in Figure S5 of Web Appendix C. In Figure 4, we display results from 

the model fit using K = 5, and additional results for the K = 6 model are provided in Figure 

S6 of Web Appendix C. We ran 10000 MCMC iterations with a burn-in of 1000 for each 

model. Convergence for a selection of mean and variance parameters are provided in Figure 

S3 of Web Appendix C.

Figure 4B shows the MAP estimate of the mixture component labels across the tissue 

space, which we use to infer distinct sub-populations within the breast tissue sample. To 

characterize each sub-population biologically, we show the posterior mean expression of 

each gene in each sub-population via the heatmap in Figure 4C. This plot shows clearly 

distinct expression patterns between sub-populations. Sub-population 1 spanned a large 

portion of the tissue sample and was characterized by medium to low expression of all 

markers except MALAT1. Sub-population 2 was more localized in the bottom right region 

of the tissue sample and was marked by very high expression of 9 of the 16 genes. This 

set of 9 genes, as shown in the gene-gene correlation heatmap in Figure 4D, demonstrated 

highly correlated expression, suggesting a possible pathway function of these genes. Sub-

population 3 featured high expression of CRISP3 and SLITRK6, but low to moderate 

expression of all other genes. Similarly, sub-populations 4 and 5 were characterized by high 

expression of a single pair of genes, namely COX6C and CPB1 in sub-population 4, and 

ALB and MGP in sub-population 5. In Figure S4 of Web Appendix C, we extended this 

analysis by computing the top 5 most differentially expressed marker genes for each sub-

populations across the 3000 most spatially variable genes using the Wilcoxon Rank-Sum 

test. We find a clear block structure in the expression heatmap of these markers genes, 

indicating transcriptionally distinct sub-populations.

These results generated by the SPRUCE model may be suggestive of important biological 

functions related to breast cancer. For instance, expression of MALAT1 has been associated 

with suppression of breast cancer metastasis (Kim et al., 2018), suggesting sub-population 

1 may be a region of relatively low tumor expansion within the tissue sample. Meanwhile, 

sub-population 2 expresses tumor-associated antigens (TAAs), i.e., substances produced by 

tumor cells, such as GFRA1 (Bosco et al., 2018) suggesting sub-population 2 as a highly 

tumor invasive region of the tissue sample. Relatedly, sub-population 2 expresses high levels 

of AGR2, which has been associated with poor breast cancer survival (Ann et al., 2018). 

Taken together, these results point to an interesting interaction taking place in this breast 

tissue sample between tumor resistant cells in sub-population 1 and cancerous cells in 

sub-population 2. Such findings are illustrative of how SPRUCE may elucidate promising 

targets for future study across a wide range of disease domains.
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6. Discussion

We have developed SPRUCE, a fully Bayesian modeling framework for analysis of HST 

data, which accounts for important features such as skewness and spatial correlation across 

the tissue sample. Our model improves upon existing approaches including Allen et al. 

(2021) and Neelon et al. (2014) by allowing for a wide range of spatial gene expression 

patterns via the use of spatially correlated random effects and additional parameters that 

induce skewness into the model. We showed how Pólya–Gamma data augmentation can 

be used to allow for Gibbs sampling of random intercepts modeled with CAR priors in 

the context of mixing weights – something that has yet to be done by previous works. We 

also established a robust Gibbs sampling algorithm that protects against label switching by 

re-mapping mixture component labels to a canonical sub-space, improving on both existing 

HST methods (Zhao et al., 2021) and other relevant Bayesian models (Allen et al., 2021; 

Neelon et al., 2014).

Through a simulation study based on publicly available 10X Genomics Visium data, we 

showed how ignoring gene expression features like skewness and spatial correlation can 

result in poor recovery of true mixture component labels, and bias mixture component-

specific parameter estimates. Conversely, when tissue spots are not clearly separated in 

standard dimension reductions of gene expression features like UMAP, spatial information 

can be used to help separate distinct sub-populations within the tissue sample. We also 

showed how model fit criteria such as WAIC may be used to identify the best fitting number 

of mixture components, which improves upon many existing clustering tools.

We applied SPRUCE to two publicly available 10X Genomics Visium data sets. The 

first application was concerned with assessing the ability of SPRUCE to recover expert 

annotations of human brain layers. We found that SPRUCE was best able to discern human 

brain layers compared to existing methods. Notably, the Bayesian mixture model-based 

methods (SPRUCE and BayesSpace) performed considerably better than the network-based 

methods (stLearn, Seurat, and Giotto). We attribute the improved performance of SPRUCE 

over BayesSpace to the fact that (i) SPRUCE allows for non-symmetry in gene expression 

features, (ii) SPRUCE models the most spatially variable gene expression features instead 

of principal components of all genes, and (iii) SPRUCE allows for more flexible mixture 

component-specific spatial correlation patterns compared to the global smoothing approach 

implemented by BayesSpace.

Finally, we applied SPRUCE to an un-annotated breast cancer sample sequenced with 

the 10X Visium platform. Using a set of the 16 top SVGs across the tissue sample, we 

discovered 5 unique cell sub-populations within the tissue sample. These sub-populations 

were marked by unique gene expression profiles which allowed us to characterize 

the biological function of each sub-population using existing literature. We discovered 

an interesting interactions between a sub-population of tumor resistant cells and a sub-

population of highly cancerous cells – an interplay which may have important implications 

for understanding the dynamics of the tumor microenvironment in the context of breast 

cancer.
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While SPRUCE has demonstrated state of the art performance in identifying tissue 

architecture in HST data, the methodology still features certain limitations. First, as with 

many fully Bayesian methods, computational demand is high relative to heuristic-based 

clustering methods. However, for all real HST data analyzed in this paper, models were 

able to be run well past the point of suitable convergence on a personal computer in 

under 10 minutes. Detailed run time benchmark data is provided in Table S2. Another 

limitation is the competing variance problem, e.g., the possibility of the model being unable 

to separate the variability attributed to the spatial random effects ψ1, …ψn (i.e., Λ) and the 

variability attributed to the residual error terms ϵ1, …, ϵn (i.e., Σ1, …, ΣK). To protect against 

this, we structured the model so that Λ is shared across all cell spots, while Σ1, …, ΣK are 

mixture component-specific. In the future, as HST technologies advance to higher resolution 

platforms, we may additionally protect against this by having several observations yi at each 

cell spot. A related limitation introduced by the resolution issue is the detection of rare cell 

types. Given the current state of HST platforms, we focus SPRUCE on the identification of 

major features of tissue architecture. To detect rare cell types, we suggest incorporation of 

higher resolution data sources such as scRNA-seq. Finally, SPRUCE is designed for direct 

modeling of a small subset of SVGs. This means that sub-populations identified by SPRUCE 

will be sensitive to the choice of SVGs, and interpretations of sub-populations should be 

relative to the choice of SVGs. To discover more global structure in the data, one may wish 

to derive a low-dimensional embedding (e.g., PCA) based on a large set of genes, and then 

use the embedding dimensions as input to SPRUCE.

This work may be extended in a number of promising ways. While we presented a general 

framework for accommodating a variety of spatial patterns using spatially correlated random 

effects, one might encode more specific biological hypotheses into the spatial component of 

the model through alternative prior distributions on the mixture component labels. Finally, 

while we developed SPRUCE for the quickly developing field of spatial transcriptomics, the 

model is generally applicable to multivariate data that feature spatial correlation across areal 

units.

Data Availability Statement

All high throughput spatial transcriptomics (HST) data analyzed in this paper were adopted 

from previously published sources or publicly available repositories. Figure S1 considered a 

corpus of 32 publicly available HST data sets, including mouse kidney (10X Genomics, 

2020b), mouse brain anterior (10X Genomics, 2019a,c), mouse brain posterior (10X 

Genomics, 2019b,d), human brain (Maynard et al., 2021), chicken heart (Mantri et al., 

2021), invasive ductal carcinoma (10X Genomics, 2020a), triple negative breast cancer 

(TNBC) (Wu et al., 2021), and estrogen receptor (ER) positive breast cancer (Wu et al., 

2021). The spatial coordinates for simulated data considered in Section 4 and Web Appendix 

E were adopted from 10X Genomics (2019a). The human dorsolateral prefrontal cortex 

brain data analyzed in Section 5.1 are published in Maynard et al. (2021). The invasive 

ductal carcinoma data analyzed in Section 5.2 were obtained from 10X Genomics (2020a).
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Figure 1. 
Graphical illustration of the key data structures obtained by HST data. Tissue samples are 

processed to derive (1) an n × 2 cell spot coordinate matrix and (2) an n × g expression matrix 

where columns are spatially variable genes (SVGs) and rows are cell spots.
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Figure 2. 
Sagittal mouse brain tissue sample manually segmented into four regions. (A) True 

simulated sub-population labels. (B) UMAP dimension reduction of simulated gene 

expression matrix. Points correspond to tissue spots in the sagittal mouse brain. Points 

are colored according to ground truth sub-population labels and are positioned in the 

2-dimensional UMAP space according to their similarity in gene expression. (C) - (E) Model 

estimated sub-population labels with classification accuracy measured by the adjusted Rand 

index (ARI), where values closest to 1 indicate more optimal performance. (F) - (H) WAIC 

model selection curves.
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Figure 3. 
Human brain tissue sample sequenced with the 10X Genomics Visium platform. Expert 

annotations of brain layers (cell spot sub-populations) are shown as ground truth labels. ARI 

measures performance of HST data analysis methods relative to ground truth labels. Color 

labels are to be interpreted within each set of results and are not meant to be compared 

across results.
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Figure 4. 
Human Invasive Ductal Carcinoma breast tissue sample sequenced with the 10X Genomics 

Visium platform. (A) Expression intensity of the top 16 top SVGs is shown across the 

tissue (brighter color implies higher expression). (B) Inferred sub-population labels from 

SPRUCE. (C) Heatmap of mean gene expression profiles within sub-populations. (D) 

Heatmap of gene-gene correlations.
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