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ABSTRACT Measuring microbial diversity is traditionally based on microbe taxon-
omy. Here, in contrast, we aimed to quantify heterogeneity in microbial gene con-
tent across 14,183 metagenomic samples spanning 17 ecologies, including 6 human
associated, 7 nonhuman host associated, and 4 in other nonhuman host environ-
ments. In total, we identified 117,629,181 nonredundant genes. The vast majority of
genes (66%) occurred in only one sample (i.e., “singletons”). In contrast, we found
1,864 sequences present in every metagenome, but not necessarily every bacterial
genome. Additionally, we report data sets of other ecology-associated genes (e.g.,
abundant in only gut ecosystems) and simultaneously demonstrated that prior
microbiome gene catalogs are both incomplete and inaccurately cluster microbial
genetic life (e.g., at gene sequence identities that are too restrictive). We provide our
results and the sets of environmentally differentiating genes described above at
http://www.microbial-genes.bio.

IMPORTANCE The amount of shared genetic elements has not been quantified between
the human microbiome and other host- and non-host-associated microbiomes. Here,
we made a gene catalog of 17 different microbial ecosystems and compared them. We
show that most species shared between environment and human gut microbiomes are
pathogens and that prior gene catalogs described as “nearly complete” are far from it.
Additionally, over two-thirds of all genes only appear in a single sample, and only 1,864
genes (0.001%) are found in all types of metagenomes. These results highlight the large
diversity between metagenomes and reveal a new, rare class of genes, those found in
every type of metagenome, but not every microbial genome.
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The human microbiome, with its established role in modulating host health (1–4), is
diverse and arguably a multitude of different ecosystems. Moreover, the microor-

ganisms that inhabit these niches are in no way limited to a single locale across space
and time. Many microbes are transient (5, 6), passing through the gut, for example,
and others, even if colonizing long term, evolved from ancestors that lived in other
hosts or environments altogether (7). The taxonomic, functional, and genetic content
of the human microbiome must be contextualized across ecologies to estimate evolu-
tionary history relative to the universe of microbiological life. Public databases that
include more than one body site or host are critical in understanding the ecology of
microbiomes writ large.

These resources enable answers to basic questions about microbes and their role in
human health. Comparisons between human microbiome content, most frequently
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the human gut, and environmental metagenomes have yielded important findings for
microbiome ecology in the past, both in terms of the overall taxonomic similarity of
ecosystems (at the level of the 16S gene) as well as the development of its role in host
health (8). For example, to the latter point, one group used a combination of micro-
biome data sources to track the evolutionary history of Enterococcus across time, iden-
tifying how it adapted to become virulent (9). Other teams have purported the
“hygiene hypothesis,” which argues that exposure to certain microbes at a young age
can be protective against autoimmune diseases (10). However, testing the hygiene hy-
pothesis requires a thorough understanding of the interactions between environmen-
tal and human microbial ecologies.

There is a need to understand the diversity and distribution of bacterial proteins—as
opposed to taxonomies—across metagenomic life. In this report, we refer to open reading
frames (ORFs) grouped into clusters by sequence identity and represented by a consensus
sequence as “genes.” Some public databases (e.g., UniProt) (11, 12) contain genes meas-
ured across ecologies and environments; however, these databases are not designed to
address higher-resolution comparative biological questions, including enrichment or con-
servation of specific sequences or functions across different environments. Many other
published gene databases focus on single niches, predominantly gut ecosystems (13).

Additional similar resources tend to focus on taxonomies or genome reconstruction,
such as those comprising metagenome-assembled genomes (MAGs) (14–16). Compared
to MAGs, databases of pan-ecological microbial gene content are lacking. Publications fo-
cusing on MAGs have provided insight into the genomic structure of gene content of
metagenomes across environments, but by virtue of building a MAG, one loses potentially
interesting genetic information in genes that are not placeable within a genome. For
example, MAGs have been hypothesized to exclude certain bacterial genes (17). While
there are recent impressive databases that compare across environments, few, if any, have
attempted to explicitly report the “core” genes enriched in different ecosystems (or found
in all of them) (16).

Genes, after all, (i) underpin the functional processes of a microbe, (ii) encode specific
protein products (e.g., antibiotics and other small molecules) of biotechnological impor-
tance (18, 19), and (iii) have been shown, in our prior work, to outperform taxonomy-based
metrics for predicting host phenotypes (4, 20). Finally, a gene-centric view of microbial
ecosystems provides one agnostic to the much-debated “microbial species concept” and
sidesteps the difficult challenge of quantifying genome “completeness” (21).

Contextualizing the gene universe of metagenomics across ecologies allows one to
look into the “conserved” structure of microbial life in terms of genes that are shared
between some or all metagenomic ecosystems. Prior work has revealed sets of con-
served genes across bacteria (22) and all three domains of life with various levels of
success (23, 24). However, these studies search for conserved genes in a relatively small
set of evolutionarily distant organisms. To our knowledge, a search for universally con-
served proteins across thousands of metagenomes in different ecologies has not been
executed. These hypothetical genes, however, could serve an important purpose
through, for example, the “black queen” hypothesis, where functions essential to a
community are found not in every cell, but an isolated number of organisms (25).

Here, we explore the gene universe of metagenomic data, with access to metadata
(e.g., host disease state), various analytic strategies (e.g., genes clustered at different
percent identities), and data sets of ecology-specific genes. Specifically, we aimed to
quantify the global gene-level (as opposed to taxonomic) similarity between human,
other host-associated, and environmental metagenomes, with a focus on (i) measuring
singleton content across environments, (ii) characterizing and building databases of
genes enriched in different metagenome types, and (iii) estimating the number of mi-
crobial genes that are conserved across every metagenome, but not every microbial
genome. We additionally ran our analysis at various clustering parameters in order to
identify the “optimal” clustering identity for gene catalogs.
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RESULTS
A pan-ecological, gene-centric database of metagenomic life. We predicted mi-

crobial genes across 17 different ecologies from 14,183 samples (see Table S1 in the
supplemental material). We used publicly available metagenomic samples and assem-
blies, identifying 1,676,565,730 raw ORFs from assembled contigs. We built a series of
nonredundant (nr) gene catalogs at various amino acid identities (from 100% to 30%).
At the 30% amino acid identity (see Materials and Methods), we identified 117,629,181
nonredundant genes (Fig. 1A), which had a total of 15,712 unique protein annotations,
2,628 unique Cluster of Ortholog Genes (COG) annotations, and 2,820 unique EC num-
bers. Sixty-one percent of these genes were novel, as they were not found in other
databases used for gene annotation (Fig. S1B). We quantified the number of nonredun-
dant genes found in each ecology, noting that larger sample sizes, as expected, yielded
an increase in the number of genes identified. At 50% identity and 90% identity, we
identified a total of 147,534,185 and 254,624,293 nonredundant genes, respectively.

All nonredundant gene catalogs are hosted at http://www.microbial-genes.bio. Further,
in an effort to provide “environmentally contextualized” data for different genes and meta-
genomes, we have made available specific gene sets of interest highlighted by the analysis
that follows along with host sample characteristics (e.g., host subject age, sex, and disease
status). We annotate each gene ID, for example, being conserved across all ecologies or
unique to specific ecological subsets.

We counted the proportion of “singleton” genes (26). Even with a lower percent
identity cutoff (30% compared to 50%) and a more conservative clustering algorithm,
we found that the proportion of singleton to nonsingleton genes increased (66% ver-
sus 50%), with 77,371,367 singletons and 40,257,814 nonsingletons compared to our
previous database (26). This indicates that at lower percent identities, over half of the
resulting gene clusters are still singletons, despite a greater number of samples and
ecosystem types than in prior analyses.

Using microbiome genetic fingerprints to estimate the size of, as well as simi-
larities between and within, microbial pangenomes. Akin to prior efforts working at
the taxonomic level, we aimed to compare the similarity of different ecologies based on
gene content (i.e., the presence or absence of a gene assembled in a given sample) in an
effort to determine, overall, how pangenomically similar different environments are. To
control for bias due to sample size and the sequencing depth of individual samples, we
iteratively computed the Jaccard distance between each pair of ecologies based on the
number of shared genes between four random samples of each ecology (see Materials
and Methods). Ecologies segregated, broadly speaking, according to broader environmen-
tal context, including gut-associated samples, environmental samples, and nonhuman
hosts (Fig. 1B). For example, gut microbiome samples tended to group together (i.e., from
chicken, moose, mouse, human, and cow). Analogously, environmentally sampled, non-
host-associated microbiomes (e.g., aquatic, aquatic sediment, terrestrial soil) had similar
overlapping gene content. Nasal, skin, and vaginal samples also clustered together, while
samples from coral reefs and plants shared limited gene content with other ecologies.
Plant ecologies, on average, are the least like all other ecologies (Fig. 1B). Samples from
human gut, human mouth, and mouse microbiomes were the most similar to other ecolo-
gies on average across all sampling iterations.

We found that the number of unique genes in an ecology did not correlate with the
sample size for that ecology. Further, to confirm that our results were not an artifact of
our method, we performed a permutation test, randomizing sample gene content and
ecology, showing that there was limited similarity between the values in the heatmap
in Fig. 1B and this randomized data set (Fig. S2).

We additionally counted the number of genes that were unique to a given ecology
compared to all others (Fig. 1C). A number of environments contained limited numbers
of unique genes. These included the human nasal cavity (average unique gene count,
8,670; sample size, 189), human vaginal samples (average unique gene count, 7,906;
sample size, 88), human airways (average unique gene count, 15,356; sample size, 137),
human skin (average unique gene count, 60,030; sample size, 418), chicken cecum
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FIG 1 Overview of approach and results and genetic similarity between ecologies. (A) Statistics regarding the gene and sample content of our database
at the 30% clustered sequence identity and the high-level analytical steps we took in the manuscript. (B) Hierarchical clustering on the Jaccard distance
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unique to (found only in) a given ecology.
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(average unique gene count, 59,655; sample size, 27), and moose gut (average unique
gene count, 50,83; sample size, 4). Conversely, the cow gut microbiome had the high-
est number of genes on average that were unique to any given ecology (average gene
count, 470,685; sample size, 24) (Fig. 1C). In other words, the cow microbiome is genet-
ically more “distinct” from all other microbiomes on average, more than the vaginal
microbiome, for example.

To compare samples within ecologies, we also computed the richness of each sam-
ple and difference between samples in the same ecology using both species abun-
dance and gene prevalence (Fig. 2). At the gene level, the nasal microbiome has the
highest beta diversity among all human microbiome ecologies but the lowest alpha

Beta Diversity Alpha Diversity

Genes

Species

10

20

30

na
sa

l

va
gi

na
l

ai
rw

ay
s

sk
in

m
oo

se

ch
ic

ke
n

pl
an

ts

se
di

m
en

t

aq
ua

tic

or
al

so
il

co
ra

l−
re

ef

gl
ac

ie
r

gu
t

m
ou

se

rh
iz

os
ph

er
e

co
w

ch
ao

0.4

0.6

0.8

1.0

va
gi

na
l

ch
ic

ke
n

m
oo

se

m
ou

se gu
t

ai
rw

ay
s

co
w

or
al

sk
in

na
sa

l

gl
ac

ie
r

aq
ua

tic

rh
iz

os
ph

er
e

pl
an

ts

co
ra

l−
re

ef

so
il

se
di

m
en

t

Ja
cc

ar
d 

D
is

ta
nc

e

0.00

0.25

0.50

0.75

1.00

co
ra

l-r
ee

f

m
oo

se so
il

se
di

m
en

t

co
w

rh
iz

os
ph

er
e

m
ic

e

or
al

ch
ic

ke
n

gl
ac

ie
r

aq
ua

tic

sk
in

gu
t

ai
rw

ay
s

va
gi

na
l

pl
an

ts

na
sa

l

Ja
cc

ar
d 

D
is

ta
nc

e

5.0

7.5

10.0

12.5

na
sa

l

va
gi

na
l

sk
in

ai
rw

ay
s

or
al

co
ra

l

gu
t

ph
yl

lo
pl

an
e

ch
ic

ke
n

rh
iz

os
ph

er
e

so
il

m
ic

e

gl
ac

ie
r

se
di

m
en

t

co
w

aq
ua

tic

m
oo

se

ch
ao

FIG 2 Alpha and within-ecology beta diversity of samples in each ecology. (Top left) Jaccard distance between each pair of samples used in Fig. 1B
computed through shared gene content. (Bottom left) Bray-Curtis distance between each pair of samples in each ecology calculated via species
abundance from Table S4 in the supplemental material. (Top right) Chao2 richness estimator of each sample used in Fig. 1B. (Bottom right) The Chao1
richness estimator of 4 samples from each ecology from Table S4 calculated via species abundance.
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diversity among all ecologies. In other words, individual nasal microbiomes have a very
low number of genes, but pairs of nasal samples are highly genetically dissimilar. This
is also reflected at the species level in which the nasal microbiome has the lowest num-
ber of species among all microbiomes, but the highest species diversity. The opposite
is true for the mouse microbiome, which has high species and gene richness, as well as
high numbers of shared genes and species, potentially indicating increased consis-
tency in mouse pangenomes compared to nasal.

Massive-scale dimensionality reduction analysis identifies gene-level ecological
similarities.We next aimed to cluster the 14,183 samples in our database according to
the 117 million nonredundant genes captured within them to identify and compare
underlying genetic structures across ecologies. We used latent semantic indexing (LSI)
to achieve this end (Fig. 3). LSI analysis identified seven “types” of metagenomes,
grouped into separate clusters across our data set (silhouette score, 0.68). We found
that cluster composition was, on average, robust to parameter choice (Fig. S3).

Unsurprisingly, we found that ecology dominated cluster composition, and we thereby
aimed to compare the ecological makeup of samples within our seven identified clusters
(Fig. 3B and C). The majority (99.4%) of the human microbiome samples were contained
within four clusters, including clusters 7, 4, 3, and 2. The remaining clusters contained the ma-
jority of environmental samples (69.3%), though some environmental samples (mostly aquatic
and aquatic sediment) were dispersed among the human ecology-dominated clusters (26.4%
and 45.7%, respectively). It is worth noting that smaller clusters tended to arise from samples
with lower numbers of genes (e.g., cluster 2 has only 172 samples with about 295 genes per
sample) (Fig. S4), indicating that sample size may confound clustering to a certain degree.
That said, some of the gene richness from samples may arise from ecology-specific batch
effects as well (e.g., nasal microbiomes having fewer genes than human gut samples).

Cluster 2 (172 samples) was entirely (100%) human gut microbiome samples, while cluster
3 contained only nongut (vagina, nasal, and oral) human microbiome samples. Most gut
microbiome samples fell in cluster 7 (total, 8,955 samples; human gut, 8,597). The second-larg-
est group of gut microbiome samples lay in cluster 4 (total, 3,773; human gut, 1,137), which
also contained the majority of human nongut ecologies (oral, nasal, vaginal, skin, and airways).
The gut samples from nonhuman hosts were split among the environmental and human-
dominated clusters; however, most of them (73.5%) were also grouped in clusters 7 and 4.

We next compared the phylum- and genus-level taxonomic enrichments within each
cluster. We annotated each ORF in every sample according to taxonomy by alignment
using the lowest common ancestor (LCA) algorithm. We found all seven clusters have dis-
tinct taxonomic and functional signatures (Fig. 3D; Fig. S5). The nongut clusters were
dominated by a variety of environmental and human-associated genera. Notably, cluster
3 was enriched in the Homo genus and several other genera in the Chordata phylum,
indicating contamination (Table S2). The clusters containing samples from the human gut
microbiome fell into three categories. Cluster 2 was dominated by Bacteroidetes and was
notably enriched for Odoribacter, Prevotella, Parabacteroides, and Bacteroides. It was addi-
tionally notably enriched in transposases. Cluster 4 was not dominated by a single taxo-
nomic clade, containing a variety of oral and gut-associated taxa (e.g., Streptococcus and
Fusobacterium). Cluster 7 was dominated by Firmicutes and Bacteroidetes, including a number
of well-studied gut genera, like Faecalibacterium, Alistipes, Lachnospira, and Ruminococcus.

Metagenomes segregate genetically according to age and Westernization, but
not health status. Host disease status, overall, did not contribute to cluster member-
ship. No single cluster contained all of the samples with human diseases, nor was one
cluster exclusively “health associated.” That being said, a subset of the inflammatory
bowel disease (IBD) samples were uniquely relegated to the smallest, Bacteroidetes-
dominated gut cluster (cluster 2), which was otherwise healthy. Cluster two also only
contained (i) Westernized samples, and (ii) nonnewborn samples. This perhaps indi-
cates a link between Westernization status and a subtype of IBD reflected through joint
changes to specific microbes. The other human-gut microbiome-dominated clusters,
conversely, had a range of samples from all ages and a combination of Westernized
and non-Westernized individuals (Fig. 3).
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FIG 3 Results of our unsupervised gene-level clustering analysis. (A) Output of our UMAP analysis displaying all seven clusters we identified. Cluster
composition corresponds to color. (B and C) Using the same color scheme as in panel A for the bars, the proportion of samples in different ecologies and
with different disease states in our identified clusters. (D) Top 10 enriched genera, colored by phyla, in each cluster. (E) Distribution of Westernized versus
non-Westernized samples across clusters. (F) Distribution of age categories across clusters.
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In order to further identify if Westernization and age guided the position of differ-
ent samples within a cluster, we reran our clustering and dimensionality pipeline on
the four gut-dominated clusters (2, 3, 4, and 7) specifically (Fig. S6). We found that sam-
ples consistently segregated according to Westernization and ecology; however, the
degree to which they did for age was cluster dependent. For example, in clusters 2 and
3, metagenomes did not group according to age. They did, however, in clusters 4 and
7. In cluster 7 specifically, we found newborns to have similar genetic compositions to
other, nongut, body sites (e.g., the human oral microbiome).

Ecologically contextualizing the gut ecosystem yields a database of discrete
and shared gene sets.We next aimed to contextualize the gene content of the human
microbiome by identifying ecology-specific (e.g., broadly gut-associated) genetic ele-
ments of metagenomics. We identified sets of genes that, compared to all other ecolo-
gies, were abundant in (i) human gut and environmental samples, (ii) human gut and
nonhuman gut samples, and (iii) environmental samples alone. Specifically, we identi-
fied genes that were prevalent in these categories in our initial gene catalog and then
tested their differential abundances between different environments in an independ-
ent set of 422 samples from our ecologies of interest (see Materials and Methods)
(Table S3). We identified 59,944 enriched genes in the human gut and environmental
samples, 117,443 genes enriched in the human gut and nonhuman gut samples, and
39,623 genes enriched in the environmental samples (Fig. 4A).

We found functionally and taxonomically distinct sets of genes in each of the three
comparisons we tested (Fig. 5, left column). We additionally explored the specific ecologies
in which differential genes overlapped (Fig. 5, right column). For example, the genes over-
lapping between gut samples and environmental samples were generally found in ecolo-
gies containing sediment (e.g., terrestrial soil, aquatic sediment) and nonhuman gut sam-
ples. The human gut stood alone (Fig. 5B), generally speaking. Finally, we found that gene
abundance in the environmental samples tended to be shared between samples contain-
ing sediment, as opposed to purely aquatic samples (Fig. 5C).

We identified the COG categories of each annotated gene, quantifying the propor-
tion of genes in each category (Fig. 4B). Carbohydrate processing was the top category
for both human gut and nonhuman gut genes (;20% of all genes with annotations)
and human gut and environment genes (;15% of all genes with annotations). Genes
abundant in both environmental samples and environmental and gut samples both
contained many annotations to the broad categories of energy production and conver-
sion and signal transduction mechanisms.

We additionally analyzed the most common protein annotations in our differen-
tially abundant gene sets, finding that each set contains functionally distinct proteins
(Fig. 4C to E). Many of the most common proteins in the environmental category
(Fig. 4E) were involved in photosynthesis (e.g., photosystem, cytochrome, and phyto-
chrome proteins) and environmental nutrients (e.g., nitrate reductase, arsenite methyl-
transferase). Genes abundant in both the gut and environmental ecologies (Fig. 4C)
were associated with a variety of nutrient import and export functions (e.g., vitamin B12
import ATP-binding protein, BtuD; C4-dicarboxylate TRAP transporter large permease
protein, DctM). The top two proteins abundant in human and nonhuman gut ecosys-
tems (Fig. 4D) were both associated with horizontal gene transfer (tyrosine recombi-
nase XerC, transposase from transposon Tn916). Other annotations in this category
were associated with sporulation (e.g., stage V sporulation protein AD), antibiotic re-
sistance (e.g., multidrug export protein MepA), and cell wall construction (e.g., peptido-
glycan glycosyltransferase MrdB, peptidoglycan D,D-transpeptidase MrdA).

Ecologically contextualized metagenomic architectures identify the genetic
features underlying the multiecosystem capability of pathogens.We next sought to
identify the taxonomic annotation of genes that spanned environments. We hypothesized
that genes found in specific or multiple environments would be those potentially required
for an organism to survive in said ecosystems, warranting their further investigation in
in vivo studies. We compared the most common taxonomic annotations of genes that were
abundant in any gut or environmental ecology. First, we taxonomically annotated all open
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reading frames in all gut and environmental samples using the LCA algorithm in CAT (27).
Despite the difficulty of annotating genes to taxonomy (e.g., some annotations, like
“Clostridia bacterium” being broad and not informative on their own), visualizing the result-
ing taxonomic bins displayed a clear pattern in phylogeny across human, nonhuman, and
environmental ecologies (Fig. 6). Human gut and nonhuman gut samples overlapped pre-
dominantly in the Firmicutes phylum. Very few Firmicutes annotations were highly abundant
in environmental samples, relatively speaking. On the other hand, organisms of the phyla
Bacteroides tended to straddle gut-associated ecosystems and environmental ecosystems.
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Proteobacteria tended to characterize nonhuman gut and environmental samples, with cer-
tain organisms, like Vibrio cholerae, having representative genes present across all ecologies.
We noted that pathogenic microbes, like V. cholera and Mycobacterium tuberculosis, stood
out in the sense that they spanned ecologies.

Next, we examined the taxonomic distribution of the ORFs in the same clusters as
the consensus genes that were differentially abundant in the 6 human-associated ecol-
ogies in our data set compared to environmental, plant, and coral ecologies (Fig. 7).
The result demonstrated the limited genetic overlap of human microbiome ecologies,
notably the lack of shared microbiota with the vaginal and nasal microbiomes.
However, we also see that Clostridia is shared between the human gut and skin
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microbiome, while Streptococcus is also shared between the skin, oral, and airway
microbiomes, and Veillonella is found in the gut, airway, and oral microbiomes. Species
that were present in all sites and had many (greater than the mean prevalence of the
top 250 species in all ecologies) genes annotated to them, tended, like before, to be
potentially pathogenic. These included Staphylococcus aureus, Acinetobacter bauman-
nii, Klebsiella pneumoniae, and Chlamydia trachomatis.

At least 1,864 genes—not identifiable at high clustering identities—comprise
the ecologically conserved elements of metagenomics. Finally, we sought to identify
sequences that were prevalent and abundant in all 17 ecologies in our database. At 30%
clustering identity, we identified 1,864 genes that were found on contigs in at least 1
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FIG 7 Taxonomically contextualizing the genetic content of the global human microbiome. Each ring corresponds to a different ecology. Each “row” corresponds
to a different taxonomic annotation for an ORF in the same cluster as a consensus gene that was abundant in at least two human microbiome body sites. The
colors correspond to the fractions of all genes with a given annotation that were indicated as abundant in a given ecology. Text color corresponds to phyla.
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sample for all ecologies, and we quantified the abundance of the 1,864 genes in the same
422 independent samples from the prior analysis (Fig. 8A, Table S3, and Table S4), finding
that both prevalence (median, 0.84) and abundance varied substantially as a function of
ecology. We additionally compared their prevalence to that of the bac120 genes used to
taxonomically classify bacteria in the Genome Taxonomy Database (GTDB), which are
derived from specifically single-copy genes present in at least 95% of a database of micro-
bial genomes (not metagenomes) (28). We hypothesized that searching for globally con-
served genes with our approach would be sufficient to recover these genes. We found this
to be the case. The bac120 genes had a slightly higher overall prevalence (median, 0.96);
however, we were able to identify (via alignment) 114/120 (95%) in our 1,864 genes
(Fig. 8B). Notably, the 10 most prevalent genes did not align to the bac120 set (Table S4).

We additionally compared the number of conserved genes found at 30% to those found
at the 90% and 50% amino acid clustering identities (Fig. 8C). We found, at 90% identity,
that there were no genes found in every ecology, indicating that 90% is too strict a

FIG 8 The pan-ecologically conserved genes of metagenomics. (A) The prevalence and abundance (in the 422 external samples used in prior figures), by
ecology, of all 1,864 genes found to be assembled at least once in all 17 ecologies. (B) The prevalence of all 1,864 ecologically conserved genes, with
colors corresponding to whether or not they aligned to a GTDB bac120 gene. (C) For different percent identities, the number of pan-ecological sequences,
the number that align to GTDB bac120 genes, and the average number of bac120 genes aligning to a given identified conserved gene. (D) The most
common COG category annotations for the 30% identity ecologically conserved genes.
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clustering cutoff, as at least the bac120 genes should be identified in the majority of sam-
ples. Similarly, we only identified 289 ecologically conserved genes in our 50% gene catalog;
however, these aligned uniquely to only 58 of the bac120 genes (48%), and each bac120
gene aligned to an average of 3.05 sequences (compared to 2.03 at 30% identity), indicating
that genes clustered at 50% are, on average, “underclustered” for this particular use-case.

We next examined the function of these “ecologically conserved” genes (Table S4). We
hypothesized that perhaps they contained functional redundancy and that we were, in
fact, referring to genes as “different” when, in fact, they did the same thing. We found this
not to be the case. While we did find that the bac120 genes aligned to 180 of out 1,864,
indicating mild functional redundancy, we found that, after removing 600 hypothetical
proteins, the remaining 1,264 genes were annotated as coding for 1,165 unique proteins.

While, overall, the 1,864 proteins we identified were conserved across microbial life
(Fig. 8A), we sought to identify if, specifically, these genes reflected functions not
found in the bac120. We found (Fig. 8D) that while the GTDB genes tended to reflect
what one would hypothesize to be highly conserved metabolic processes (e.g., ribo-
some-associated genes), the broader set of ecologically conserved genes did not reveal
any consistent set of functions, including a variety of processes from nutrient transport
to cell-to-cell signaling. We hypothesize that these may comprise “ecologically core”
functions, those not found in every microbial cell but, rather, in all metagenomes.

DISCUSSION

The genomes of microorganisms that colonize the human ecosystem contain a long
evolutionary history spanning many hosts and environments. As a result, to understand
the evolutionary and functional dynamics that drive the human microbiome—an ecosys-
tem that modulates so many aspects of human health—we must consider the full ecologi-
cal spectrum in which microorganisms are found. Our approach here specifically relies on
attempting this goal by comparing open reading frame presence or absence in order to
genetically contextualize and compare metagenomic life.

We incorporate metagenomes from 17 different ecologies, comparing their genetic con-
tent and providing sets of genes that we found to be prevalent and abundant in different
ecological contexts, with a specific focus on the gut microbiome. This data set, with its
focus on the differential distribution of genes, instead of genomes, complements existing
published resources. Further, given that many of its samples are shared between our
resource and others, these data sets could feasibly be linked into one metadatabase, where
genes can be linked to genomes effectively. For example, our identification of pathogen-
associated genes that span environments could be identified in pathogen MAGs and fur-
ther explored as potential mechanisms of pathogen adaptability to varied environments.

Outside challenges raised with all gene catalog analyses (e.g., suboptimal clustering
algorithms) (29), one potential drawback of this analysis is the variation in sample sizes, as-
sembly quality across environments (e.g., corals versus human gut samples), and sequenc-
ing depth across environments, which could bias our results in terms of the unsupervised
Uniform Manifold Approximation and Projection (UMAP) clustering and the differential
abundance analysis. Future work should aim to increase sampling from all metagenomic
ecologies in order to fully explore the gene universe of microbiome writ large. We addi-
tionally note that there is no known “biologically correct” percent identity cutoff for gene
catalog analysis, and certainly, some genes likely diverge more than others. Therefore,
there is a need for additional algorithmic development that builds functionally motivated
gene clusters using different or additional metrics to percent identity alone.

On this note, however, another finding of our report is the utility of clustering at
30% amino acid identity as opposed to the higher levels reported in the literature (30).
Clustering based on sequence identity has been contentious in the literature, and clus-
tering at lower percent identities has been computationally infeasible until the devel-
opment of recent algorithms (29). The inability to identify functionally discrete genes
at other clustering identities indicates that prior gene catalog analyses could be
improved, or at least better understood, but applying slightly different algorithmic
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approaches. While we do provide 90% and 50% amino acid identity gene catalogs in
our online results, we chose to report the majority of the analysis in this paper using
our 30% identity data set. This is because (i) homologous proteins are known to
diverge up to 30% identity, and (ii) at least one other database additionally clusters at
30% and reports high-quality clusters with homogeneous functions (11, 31). However,
despite the increased stringency of our clustering analysis over past work, we were still
able to reproduce a striking prior result, the dominance of singleton genes in metage-
nomes. When clustering at 30% identity with a more conservative (less greedy) algo-
rithm than before, we still found that singletons, genes assembling in only one sample,
comprised .50% of our gene catalog. Given our prior efforts demonstrating that sin-
gletons are unlikely to be false-positive genes (26), this implies once more that the
gene universe of bacteria writ large exceeds what we possibly could have imagined.

Clustering at 30% identity enabled us to identify and characterize 1,864 microbial
genes that were ecologically pervasive. We hypothesize, specifically, that these genes rep-
resent a class of genetic elements with functions present not in every microbial genome
but, rather, in every metagenome, implying perhaps that they carry out functions poten-
tially fundamental to community structure. Further, the fact that these ;1,800 genes did
not overlap substantially in function increased our confidence in our choice of a 30% clus-
tering identity. We also showed that these genes would not be detectable using other
clustering identities deployed in the literature, 95% nucleotide-level identity (11, 13, 30),
compared to a more aggressive threshold, 30% amino acid identity.

Further, the identification of both singletons as well as conserved genes at 30% amino
acid clustering identity indicates that prior gene catalog analyses do not even approach
capturing the entire genetic diversity of metagenomic systems. We identified 48 million
(Fig. 1) genes in the gut microbiome alone, many more than previously observed, and we
do expect this number to continue to increase significantly as more humans are
sequenced. This calls into question the claims made by prior work that previous sets of mi-
crobial gene catalogs of the human gut microbiomes were “close to complete.”(13)
Notably, these claims were made using 95% nucleotide identity first with a 3.3-million-
gene catalog (30), then again with a 9.9-million-gene catalog (13). It may be that “com-
plete” databases of microbial life, whether they be at the gene or strain level, are infeasible.
That said, each of these studies has provided a different window into metagenomic eco-
systems, and their expansion, as we attempt to do here, will hopefully continue to do so,
whether or not we are able to “completely” sequence the gene content of microbial life.

MATERIALS ANDMETHODS
Overview of approach. We aimed to compare the gene content of metagenomes across different

ecological contexts and provide a database where genes specific to and shared across environments
can be queried. We built a nonredundant (nr) gene catalog of 14,183 samples from 462 studies across
17 different ecological contexts. We compared the gene content of each of these ecologies, identifying
which are most similar to and different from each other. We then used a dimensionality reduction
approach to cluster samples on the genetic level, identifying distinct ecological, taxonomic, functional,
and phenotypic features of each cluster. Based on prevalence, we identified the ecologically core ele-
ments of metagenomes. We compared these to a database of known conserved genes in bacteria
(bac120 from the Genome Taxonomy Database). We additionally used differential abundance analysis
on 422 separate samples to identify genes that were abundant in different ecological sets (e.g., in gut-
associated biomes). We provide a database of our results at http://www.microbial-genes.bio.

Data aggregation. We aggregated publicly available data from a variety of sources, including al-
ready published, assembled metagenomes as well as raw shotgun sequencing read data. A full list of
data used and summary statistics (e.g., number of genes per sample) are presented in Table S1 in the
supplemental material In total, after filtering for samples with low numbers of genes (see next section),
we aggregated 14,183 samples from 462 different data sets/studies.

For the human-associated samples, we aggregated assembled samples from our prior work (26) and
also one published database that contained assembled contigs (but not predicted genes) (15). This
ended up yielding 12,697 samples from 6 different human body sites and 65 studies.

For the environmental and nonhuman host samples, we aggregated data from the MGnify database
(https://www.ebi.ac.uk/metagenomics/). We selected all nonhuman host-associated and environmental-
assembled metagenomes and accessed their download links. We then manually curated the ;2,200
samples (accessed in winter 2020), removing (i) duplicated assemblies, and (ii) samples where we could
not clearly confirm the source of the metagenome by identifying the publication or raw upload data.
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We found a substantial number of duplicated and/or misannotated samples, so our final sample tally
came to 1,486 samples from 397 data sets from 11 ecologies.

Gene catalog construction. For the 1,694 samples that we assembled ourselves (i.e., were not al-
ready assembled by others), we removed adapter contamination using bbduk, from bbtools v37.62,
removed contamination from the human genome with bmtagger v3.101, and carried out de novo as-
sembly with MetaSPAdes (32) v3.13.1 using the default parameters. When MetaSPAdes failed due to a
currently unresolved bug, we used MEGAHIT v1.2.9 (parameters, –mem-flag 2) (33). We measured N50s
with assemblies using MetaQUAST v5.0.2 (parameters, –max-ref-number 0 -t 15 –fast -m 0). Note that
there were 6 samples that, after we downloaded them and included them in our database, became inac-
cessible (e.g., https://www.ebi.ac.uk/ena/browser/view/ERZ781377), and as a result, we were unable to
compute N50s for them. However, all of these samples had high gene counts (.1,000) and originated
from ecologies for which we had many samples (aquatic, cow, mouse), and as a result, we are not con-
cerned about assembly quality or their effect on our results.

To predict open reading frames (ORFs) from assembled contigs, we used Prokka (34) v1.14.6 (param-
eters, –force, –addgenes, –metagenome, –mincontiglen 1). The functional annotations (e.g., protein
names, COGs) in the manuscript are those automatically generated by Prokka. We removed samples
that contained fewer than 100 genes. In our prior database, we removed genes ,100 bp long; however,
given recent work by other teams indicating the physiological import of such short sequences, we chose
to leave them in our study (35).

We then clustered all open reading frames predicted by Prokka using the linclust (36) and cluster
functions from the MMseqs2 (37) package. As in previous work (26), we initially iteratively clustered
(using linclust) our open reading frames, starting at 100% amino acid identity and decreasing, in incre-
ments of 5%, down to 30% identity (other parameters, -c [alignment coverage] 0.9). In order to further
increase the clustering of the gene catalog we used for the majority of analysis in this paper, we used
the more conservative cluster function (same parameters as before at 30% identity) in order to reduce
the total number of genes in our 30%, 50%, and 90% catalogs. We chose to use the 30% gene catalog
for our analysis due to (i) the use of a 30% cutoff in the literature, and (ii) the fact that many genes, even
those involved in core processes, contain homology at near the 30% level (11, 31). We provide these
50%, 90%, and 30% gene catalogs in our resource.

Gene-level taxonomic annotation.We assigned best-possible taxonomic annotations to each gene
of interest using the built-in least common ancestor computation tool of the Diamond aligner accessed
through the CAT software (27, 38). In doing so, we aligned our 30% gene catalog back to the nr refer-
ence database and NCBI taxonomy data, annotating, where possible, the NCBI taxonomy of each gene.

Comparative subsampling of metagenomic ecologies. In Fig. 1B and C, we used a subsampling
strategy to estimate the overall genetic similarity between different ecologies. This was to control for
variation in sample size and sequencing depth, as the ecologies we sampled had radically different num-
bers of observations (e.g., a minimum of 4 moose samples to a maximum of 10,002 human gut micro-
biome samples). Over 50 iterations, we took 4 samples from each ecology. We made a presence-absence
matrix of each gene in each ecology and calculated the Jaccard distance between each ecology. We
repeated this process 50 times and averaged the Jaccard distance between each pairwise set of ecolo-
gies, as well as the average number of genes that were unique to each ecology. We additionally took
this approach for our permutation test (Fig. S2), which we did as a point of comparison, randomizing the
gene sample ecology mapping.

In Fig. 2 to calculate the gene-level Jaccard distance within ecologies, we took the same 4 samples
from each ecology as described above. We created a presence-absence matrix of each gene in each sam-
ple and calculated the Jaccard distance between each sample. We repeated this process 50 times and
created a boxplot of the Jaccard distances between each pair of samples in the same ecology. To calcu-
late alpha diversity, we took the same presence-absence matrices and calculated the richness of each
sample using the Chao2 estimator.

To calculate species-level beta diversity, we used our previous set of 422 samples to estimate gene
abundance (Table S3). Over 50 iterations, we took 4 samples from each ecology and calculated the
abundance of each species in each sample using Kracken2 and Bracken (39, 40). For each abundance
matrix, we then calculated the Bray-Curtis distance between each pair of samples from the same ecology
as well as the richness of each sample using the Chao1 estimator. All alpha and beta diversity measure-
ments were made using the fossil package in R v0.4.0.

Gene-level dimensionality reduction and clustering of samples. We aimed to cluster samples
based on gene presence-absence using a series of dimensionality reduction approaches. This is a computa-
tionally challenging problem due to the massive dimensionality, as it is a sparse matrix with 15 million genes
and 14,183 samples. To address this, we performed latent semantic indexing (LSI), a dimensionality reduction
method used in other fields like single-cell transcriptome sequencing (RNA-Seq) (41). In this approach, we
first performed term frequency-inverse document frequency (TF-IDF) normalization on a binary presence-ab-
sence matrix. This is a two-step process where we first divide the presence or absence of a gene (1 or 0) by
the total number of genes in each sample. This is called the term frequency and normalizes by the number
of genes per sample to make each sample comparable with each other. Next, we calculate the inverse docu-
ment frequency, which is the log of the number of samples (plus 1) divided by the total occurrences of each
gene in all samples. This effectively increases the weight of rarer genes that may distinguish a sample from
others. Last, we use matrix multiplication to multiply TF by IDF. This procedure normalizes across samples to
correct for differences in gene number and across genes to give higher values to more rare genes.

In the second step of LSI, we input this matrix into a singular value decomposition (SVD) to reduce
the dimensionality of our data set into 10, 50, or 100 principal components. We then used UMAP (42) to
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further reduce our output to two plottable vectors. UMAP was run on each data set 12 times with a com-
bination of different parameters specified below. Reducing the output to two vectors with UMAP facili-
tates clustering by making the density of samples in a data set more evident. This allows density-based
clustering algorithms such as DBSCAN to more easily cluster data. Next, we ran DBSCAN on each UMAP
output four times, varying the parameter that specifies the minimum number of samples in a cluster.
The clustering results that maximized silhouette score while minimizing the number of unclustered sam-
ples were used for downstream analysis and interpretation (Fig. S3).

As described above, we tried a number of different parameters for the SVD, UMAP, and DBSCAN
components of our clustering pipeline in order to test the robustness of our clusters as well as select the
“best” parameters (SVD, 10, 50, and 100 single values [SV]; UMAP, n_neighbors = 10, 15, 20, and 30, and
min_dist = 0.1, 0.25, and 0.5; and HDBSCAN, minPts = 25, 50, 75, and 100). We used the silhouette score
and number of unclustered samples to optimize the parameters. We found that the following parame-
ters optimized silhouette score and number of clustered samples (SVD, singular values = 50, UMAP,
n_neighbors = 10 and min_dist = 0.1; HDBSCAN, minPts = 50 and n_components = 2) and that the clus-
ters were robust to variation in parameters (Fig. S3). R v4.0.3, package RSpectra v0.16, was used to per-
form SVD. R version 4.0.2 was used to do the UMAP and clustering. R packages umap v0.2.7.0 and
dbscan v1.1-6 were used to do the clustering.

Dimensional reduction of UMAP gut-associated clusters. After clustering all samples, we performed
additional latent semantic indexing solely on the samples in the clusters containing human gut microbiome
metagenomes (clusters 2, 3, 4, and 7). As described above, we first used TF-IDF followed by SVD on the gene
presence-absence matrices. Then, we used UMAP to reduce our output into a two-dimensional plane. The
parameters used for reclustering all subclusters were SVD, SV = 50; UMAP, n_neighbors = 10 and min_
dist = 0.1; and HDBSCAN, minPts = 50 and n_components = 2.

Cluster-based functional enrichment analysis.We used the functional annotations of the consensus
genes in our 30% amino acid identity catalog to identify those that were enriched in samples present in
each of the 7 clusters identified by our prior clustering analysis. To achieve this end, we used the chi-square
test, populating a contingency table with the number of genes that have the protein name of interest within
a cluster and outside a cluster as well as the overall number of taxonomic and functional annotations within
and outside a given cluster. Enriched samples were those with a BY-adjusted P value of ,0.05 (43). Fisher’s
exact tests were used when an element of the contingency table had less than 6 observations.

Cluster-based taxonomical enrichment analysis. We used the taxonomical annotations of the open
reading frames in our 30% amino acid identity catalog to identify taxa that were enriched in samples present
in each of the 7 clusters identified by our prior clustering analysis. To achieve this, we computed the number
of genes with a specific taxonomic annotation in each sample. Then, we used a one-sided t test to compare
the average number of genes annotated to a taxon in one cluster to the average number of genes anno-
tated to a taxon in all other clusters.

Identification of ecologically conserved genes and differentially abundant genes. We identified
ecologically core genes by finding those that were present at least once in each of our 17 ecologies.

We used both prevalence and abundance to also find genes that were (i) shared between the gut micro-
biome and other nonhuman gut microbiomes, (ii) shared between the gut microbiome and terrestrial/
aquatic microbiomes, and (iii) shared between terrestrial and aquatic microbiomes only. We took (i) genes
prevalent in at least one sample of the ecologies of interest but (ii) not present in any other samples, and (iii)
those that had statistically significantly higher abundance than all other samples (BY-adjusted P, 0.05).

Comparison of ecologically conserved genes to the GTDB bac120.We gathered the human Markov
models (HMMs) corresponding to the 120 GTDB bac120 genes in Parks et al. (14) from Pfam (v33.1) and
TIGRFAM (v15.0). We used hmmsearch (HMMER v3.3.1) to query the 120 HMMs against genes present in all ecol-
ogies (1,864 and 289 genes from the 30% and 50% gene catalogs, respectively). Then, we counted the number
of HMMs that significantly aligned to the consensus genes (E value , 0.001 and domain E value , 0.001).
Hmmsearch parameters are –noali, –tblout,out_file., –domtblout,out_file., -E 0.001, –domE 0.001.

Identification of the taxonomic annotation of genes that span environments. To identify the tax-
onomic annotation of genes that spanned the environment, we annotated every raw open reading
frame using the LCA algorithm built into CAT v5.2.3 (27). Next, we calculated the frequency of each spe-
cies-level annotation in each sample.

For species in gut and environmental samples (Fig. 6), we only analyzed species present in at least
one gut or one environmental sample and calculated the total number of genes annotated to each spe-
cies in each environment. To ensure a species was not overrepresented due to increased sample size or
sequencing depth of a specific environment, we divided the frequency of each taxon in each ecology by
the total number of genes found in the ecology.

For species with greater abundance in the human microbiomes (Fig. 7), we retrieved the open read-
ing frames within the clusters of genes that were enriched in the human microbiome ecologies. We
annotated each open reading frame using the LCA algorithm as done above and calculated the number
of genes annotated to every species. As above, we then normalized the frequency of species by the total
number of open reading frames in each ecology.

To create the actual heatmaps in Fig. 6 and 7, we used ETE3 to create the phylogenetic trees, as well
as ggtree and gheatmap functions from the ggtree package v3.2.0 (44).

Software availability. The figure generation code is located in our GitHub repository, located at
https://github.com/kosticlab/pan_ecological_gene_universe.

Data availability. Data generated in this study is hosted by figshare and accessible at http://www
.microbial-genes.bio. This resource additionally includes files to ensure the reproducibility of our results,
specifically the data needed to run the figure generation code in our GitHub repository (see “Software
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availability”). A Strengthening The Organizing and Reporting of Microbiome Studies (STORMS) checklist
(45) is available at https://figshare.com/articles/dataset/STORM_checklist/20293746.
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