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ABSTRACT In the search for novel drug candidates, diverse environmental micro-
biomes have been surveyed for their secondary metabolite biosynthesis potential, yet lit-
tle is known about the biosynthetic diversity encoded by divergent microbiomes from
different ecosystems, and the environmental parameters driving this diversity. Here, we
used targeted amplicon sequencing of adenylation (AD) and ketosynthase (KS) domains
along with 16S sequencing to delineate the unique biosynthetic potential of micro-
biomes from three separate habitats (soil, water, and sediments) exhibiting unique small
spatial scale physicochemical gradients. The estimated richness of AD domains was high-
est in marine sediments with 656 6 58 operational biosynthetic units (OBUs), while the
KS domain richness was highest in soil microbiomes with 388 6 67 OBUs. Microbiomes
with rich and diverse bacterial communities displayed the highest PK potential across all
ecosystems, and on a small spatial scale, pH and salinity were significantly, positively cor-
related to KS domain richness in soil and aquatic systems, respectively. Integrating our
findings, we were able to predict the KS domain richness with a RMSE of 31 OBUs and a
R2 of 0.91, and by the use of publicly available information on bacterial richness and di-
versity, we identified grassland biomes as being particularly promising sites for the dis-
covery of novel polyketides. Furthermore, a focus on acidobacterial taxa is likely to be
fruitful, as these were responsible for most of the variation in biosynthetic diversity.
Overall, our results highlight the importance of sampling diverse environments with high
taxonomic diversity in the pursuit for novel secondary metabolites.

IMPORTANCE To counteract the antibiotic resistance crisis, novel anti-infective agents
need to be discovered and brought to market. Microbial secondary metabolites have
been important sources of inspiration for small-molecule therapeutics. However, the iso-
lation of novel antibiotics is difficult, and the risk of rediscovery is high. With the over-
arching purpose of identifying promising microbiomes for discovery of novel bioactivity,
we mapped out the most significant drivers of biosynthetic diversity across divergent
microbiomes. We found the biosynthetic potential to be unique to individual ecosys-
tems, and to depend on bacterial taxonomic diversity. Within systems, and on small spa-
tial scales, pH and salinity correlated positively to the biosynthetic richness of the micro-
biomes, Acidobacteria representing the taxa most highly associated with biosynthetic
diversity. Ultimately, understanding the key drivers of the biosynthesis potential of envi-
ronmental microbiomes will allow us to focus bioprospecting efforts and facilitate the
discovery of novel therapeutics.

KEYWORDS antibiotics, microbiomes, nonribosomal peptides, polyketides, secondary
metabolites

Microbial secondary metabolites are likely the most important source of inspiration
for the therapeutic small molecules developed over the past 4 decades (1).

Specifically, the discovery of microbial secondary metabolites with antibacterial activity
has, since their discovery in the 1920s, advanced medicine and human health tremen-
dously, saving countless lives over the last century. However, these advances are
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threatened by the increasing occurrence of antimicrobial resistance (AMR) world-
wide. In 2019, around half of the urinary tract infections caused by Escherichia coli or
Klebsiella pneumonia were reported to be resistant to the first-line antibiotic co-tri-
moxazole (2), and collectively bacterial AMR was associated with close to five million
deaths in 2019 (3). To overcome this crisis, action has to be taken including limiting
the administration of antibiotics and securing a continuous supply of novel anti-in-
fective agents (4).

Historically, novel antibiotics were discovered by screening the activity of isolated
environmental strains against pathogens using agar overlay inhibition assays (5). Over
the decades, increasing re-discovery rates turned this approach inefficient, and the
potential of cultured microbes was deemed exhausted (6). However, recent advances
in high-throughput sequencing have revealed an astounding biosynthetic capacity of
natural microbiomes to produce chemical diversity (7–9), paving the way for a deeper
understanding of the distribution and diversity of the biosynthesis potential of natural
microbiomes. Two major classes of secondary metabolites with a range of clinically rel-
evant bioactivities are the nonribosomal peptides (NRPs) and the polyketides (PKs),
and multiple compounds of these classes are currently in use as antibiotics, e.g., the
NRP vancomycin and the PK erythromycin. Both NRPs and PKs are produced by large
multimodular synth(et)ases, where each module adds one building block to the grow-
ing product chain, usually acetyl-coenzyme A or its analogs in the case of PKs, or amino
acids in the case of NRPs. These mega enzymes consist of several conserved domains,
e.g., adenylation domains (AD) of nonribosomal peptide synthetases (NRPSs) and keto-
synthase (KS) domains of polyketide synthases (PKSs), which have been most widely
targeted for amplicon sequencing to approximate the biosynthetic potential, and its
diversity in environmental microbiomes (8). Through AD and KS amplicon sequencing,
thousands of unique operational biosynthetic units (OBUs) have been detected in soil,
underlining the large unexplored potential of the immensely diverse and predomi-
nantly uncultured microbial communities residing in this niche (10–13). Yet, in order
to focus bioprospecting efforts on the most promising microbiomes, a more com-
prehensive understanding of the drivers of this natural product diversity is needed
(8). Dispersal limitation, or geographic distance, soil depth, and ‘biome’ type have
previously been reported as the strongest drivers of biosynthetic diversity in soil on
a continent-wide scale (9, 12, 13), while small spatial scale drivers have not yet been
identified. Similarly, marine surface water and marine sediments have been reported
to be rich reservoirs of PK and NRP biosynthetic genes, displaying significant differ-
ences in composition and degree of novelty compared to soil (7, 14). However, envi-
ronmental drivers of this potential have not been investigated, and general patterns
across diverse systems have hence not yet been identified.

We speculated that the biosynthesis potential, i.e., biosynthetic domain richness, of
environmental microbiomes is dependent on the bacterial and fungal community
composition, which, in turn, may be determined by specific environmental variables.
We therefore set out to investigate the natural product biosynthesis potential of
proximate microbiomes from three separate systems, each of which exhibited physi-
cochemical gradients likely to affect the microbial community composition, i.e., pH
(soil system), salinity (aquatic system), and redox potential (marine sediment system)
(15–18). Additionally, we measured a range of auxiliary variables, and investigated
bacterial and fungal taxonomic diversity, with the ultimate goal of predicting the bio-
synthesis potential in microbiomes using readily quantifiable parameters.

RESULTS

To expose environmental parameters driving the biosynthesis potential of natural
microbiomes, we analyzed microbial community DNA from sampling sites dispersed
across small spatial scales in three contrasting systems exhibiting different physicochem-
ical gradients, i.e., a forest top soil system, a marine coastal sediment system, and an
aquatic surface system (Fig. 1). In forest soil, we observed pH gradients from 5 to 6.7
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across transects (Fig. 2A). pH was highly correlated to carbon content and, to a lesser
degree, to other parameters, including sodium, sulfate, and phosphate (R = 0.8, 20.68,
0.77, 0.75) (Table S1). As expected (19), vertical sediment cores collected at sites S4 and
S5 in Nivå Bay exhibited steep redox gradients within the top 7 cm, ranging from 270
mVH in the oxygenated surface sediments to -175 mVH in the lower layers (Fig. 2C). The
redox potential correlated significantly with the moisture content of the sediment
(R = 0.61). In the aquatic system, a salinity gradient was observed across the sampling
stations ranging from 0 PSU in the Skjern Å river outlet up to almost full salinity (30 PSU)
in the North Sea outside the Ringkøbing Fjord estuary (Fig. 2B). Naturally, specific envi-
ronmental parameters, such as the concentrations of sodium and other ions, were posi-
tively correlated with salinity (R = 0.995) (Table S1). Bacterial abundances ranged from
2.6 � 106 6 1.2 � 106 cells mL21 in surface water, over 7.5 � 106 6 3.8 � 106 cells g21 in
sediments, to 3.4 � 108 6 2.5 � 108 cells g21 in soil. The abundances observed in soil
were significantly correlated with aluminum concentrations (R = 0.59) (Table S1).

Taxonomic and secondarymetabolite biosynthetic diversity across systems. Bacterial
and fungal communities clearly differed across systems (PERMANOVA, P = 0.001; Fig. 3A
and B). The proteobacterial phylum was highly represented (24.7 to 48.3%) across all
three systems and dominated in the two aquatic environments, while the dominating

FIG 1 Geographic location of sampling sites marked with black squares (A). Precise locations of soil sampling site 1 and 2 in Dyrehaven (B, green square
and triangle), of sediment sampling sites 4 and 5 in Nivå bay (C, orange circle and brown diamond), and of aquatic sampling site 3 in Ringkøbing Fjord (D,
blue triangles).

FIG 2 Profile of predominant physicochemical gradients in each ecosystem. (A) The pH of the topsoil at sampling site 1 (green square) and 2 (green
triangle) in Dyrehaven along the sampled transects, with distance given in relation to the center of the closest pine grove. (B) Measured salinity in and
around the Ringkøbing Fjord (sample site 3, blue triangles) versus distance in km from the Skjern Å river outlet. (C) The redox potential of the sediment at
sampling site 4 (orange circle) and site 5 (brown diamond) at Nivå bay at three different depths below the sediment surface.
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phyla in the soil system were Acidobacteria (24.7%) and Actinobacteria (16.2%) (Fig. S1).
In addition to Proteobacteria, the Bacteriodetes (11.9% and 20.8%) and Cyanobacteria
(13.2% and 2.8%) were abundant in sediments and surface waters, respectively. Fungal
soil communities were dominated by the Ascomycota (42%) and Basidiomycota (42.2%),
followed by Zygomycota (8.69%), while the majority of fungal zOTUs in the aquatic sys-
tems could not be assigned to a known phylum (Fig. S2). The soil had the richest and
most diverse bacterial community with an estimated number (Chao1) of 2130 6 557
zOTUs per sample, followed by the aquatic system and the marine sediment with
1354 6 279 zOTUs and 1054 6 73 zOTUs, respectively. Fungal communities exhibited
similar patterns of alpha diversity across all sampled environments with Chao1 richness
estimates of 5206 170 zOTUs per sample (Fig. S3).

For the bacterial fraction of the soil microbiomes, the main drivers of community
structure were sampling site and pH, collectively explaining 39% of the observed

FIG 3 Bacterial and fungal community diversity, and their relation to predominant physicochemical gradients. (A and B) Beta-diversity of the bacterial and
fungal taxonomic community composition depicted by non-metric multi-dimensional scaling plots. Soil samples in green, sediment in orange, and aquatic
in blue. (C) Estimated fungal and bacterial Chao1 richness in the soil microbiome as a function of pH. (D) Estimated fungal and bacterial Chao1 richness in
the sediment microbiome versus the redox potential mVH. (E) Estimated fungal and bacterial Chao1 richness in the aquatic microbiomes versus the salinity
PSU. Linear Pearson correlations are indicated with a solid line.
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variation (PERMANOVA, P = 0.001), and simultaneously a strong and significant positive
correlation between bacterial richness (Chao1) and pH was observed (R = 0.73,
Padj = 6.99 � 1025) (Fig. 3C). Other covariates describing bacterial taxonomic richness
where distance across the transect and concentrations of iron, magnesium, phosphate,
and sulfate (R = 0.78, 20.54, 0.67, 20.72, 0.56). The fungal fraction of the soil micro-
biomes did not exhibit similar pH-dependent patterns (Fig. 3C), though fungal richness
was significantly correlated with iron content (R =20.63, Padj = 0.013).

Sediment microbiomes were most strongly affected by distance as the grouping
based on sampling sites explained 31% of the observed bacterial variation (P = 0.001),
while the redox potential could explain an additional 8% (P = 0.005). Fungal commun-
ities exhibited similar patterns with 42% of the variation being explained by sampling
site. Species richness was not correlated with any of the measured variables for bacte-
ria or fungi (Fig. 3D).

In the aquatic environment, salinity was the main driver of community structure,
explaining 39% and 23% of the variation in the bacterial and fungal communities,
respectively. However, salinity did not affect the overall richness of the bacterial or fun-
gal microbiomes (Fig. 3E).

As for the taxonomic diversity, the composition of functional genes involved in non-ri-
bosomal peptide and polyketide biosynthesis, i.e., AD and KS domains, significantly dif-
fered between all 3 environments (PERMANOVA, AD R2 = 0.32 P = 0.001, KS R2 = 0.38
P = 0.001) (Fig. 4A and B), with sediment microbiomes exhibiting limited variation between
samples compared to the other systems. Overall, we observed a considerable richness of
AD (531 AD OBUs 6 158) and KS (281 KS OBUs 6 116) domains, with soil microbiomes
being the richest in different KS domains (388 6 67), and marine sediments exhibiting
higher richness in AD domains (6566 58) (Fig. 4C and D).

Comparing the OBUs from each of the 3 systems with the curated MiBIG database
of BGCs encoding characterized NPs showed that the vast majority of OBUs did not
represent BGCs for which a known compound has been described in all three systems
(Fig. S4). The highest relative abundance of matching AD OBUs was found in seawater
with 0.8% 6 1%, whereas the highest relative abundance of matching KS OBUs was
observed in soil (17% 6 15%). For sediments, the relative abundance of matching
OBUs were 0.03 6 0.04% and 0.03 6 0.004% for AD and KS OBUs, respectively.

In order to investigate which bacterial strains were associated with changes in bio-
synthetic richness, we fitted a generalized linear model with lasso regularization using
the centered log-transformed 16S zOTU table to either KS or AD domain richness (20).
In the model, 15 bacterial zOTUs were enough to explain 90% of the variation in KS
richness. The identified zOTUs were a good representation of the overall microbial
community with a majority of Proteobacteria and Acidobacteria, followed by zOTUs
from the phylum Verrucomicrobia, Cyanobacteria, Bacteroidetes, and Firmicutes (Table S2).
By contrast, to explain 90% of the variation in AD richness, 47 bacterial zOTUs were needed,
the majority of which were Proteobacteria, followed by Acidobacteria, Bacteroidetes, and
Actinobacteria (Table S2).

Cross-system correlations between metadata variables and biosynthesis poten-
tial. To determine global drivers of the biosynthesis potential of microbiomes across
systems, we looked for simple linear correlations between OBU richness and all meas-
ured metadata variables, including taxonomic diversity measures, and excluding pa-
rameters only determined for certain systems. Of 40 correlations, we focused on those
with a significance of an adjusted P , 0.05 and R . j0.5j. For both the NRP and PK bio-
synthesis potential, we found a significant correlation to moisture content, though
positive for NRPs and negative for PKs (Table 1). The NRP biosynthesis potential was
negatively correlated with organic carbon content (LOI; R = 20.63, Padj = 3.57 � 1026),
while the potential PK biosynthesis was negatively correlated with pH across systems
(R = 20.69, Padj = 3.99 � 10210). Lastly, we found strong correlations between bacterial
taxonomic diversity (Chao1 and Shannon) and KS richness (R = 0.68 Padj = 3.83 � 10211,
R = 0.74 Padj = 8.66 � 10214), suggesting that a more diverse bacterial community results
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in a higher PK biosynthesis potential (Table 1 and Fig. 5A), while fungal diversity does not
seem to influence the biosynthesis potential of neither NRPs nor PKs across systems.

System-specific correlations between metadata variables and biosynthesis poten-
tial. We further investigated system-specific correlations between metadata variables and
OBU richness, applying the same R and p cutoff values as before. In contrast to the cross-
system observations, we observed a significant positive correlation between KS domain
richness and soil pH (KS R = 0.51 Padj = 0.030) (Fig. 5B). Additionally, the phosphate content
and the magnesium concentration in soil were negatively correlated with KS richness (R =
20.62 Padj = 0.0013, R = 20.57 Padj = 0.0065) (Table S4). As observed across systems, the
PK biosynthesis potential of soil microbiomes was positively correlated with bacterial

FIG 4 Diversity of AD and KS domains in different habitats. (A and B) Non-metric multi-dimensional scaling plots of the soil (green), sediment (orange),
and aquatic (blue) samples, based on the Bray-Curtis dissimilarity matrix. (C and D) Box-and-whisker plots of estimated AD and KS domain Chao1 richness
for each ecosystem. Box edges are the first and third quartiles, and whiskers are a maximum 1.5 times the interquartile range from the box edge.

Drivers of Biosynthetic Diversity in Microbiomes mSystems

March/April 2023 Volume 8 Issue 2 10.1128/msystems.00724-22 6

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00724-22


richness and diversity (ChaoV3V4 Padj = 9.1 � 1025, ShannonV3V4 Padj = 5.4 � 1024)
(Fig. 5A and Table S4). While the biosynthesis potential of the sediment microbiomes
were, in general, very similar in their AD and KS composition and richness, these
were affected by fungal diversity, whereas the PK biosynthesis potential in the
aquatic system was significantly influenced by salinity and co-varying factors. (Fig. 5C
to E, and Table S4).

Predicting the biosynthesis potential of environmental microbiomes. With the
ultimate goal of predicting the capacity of a microbiome using readily available, or eas-
ily quantifiable variables, we built a generalized linear model and, after stepwise vari-
able selection, we arrived at a specific model for KS richness estimation drawing upon
system type and alpha diversity measures: log(KS) ; system 1 log(Chao1_V3V4) 1 log
(Shannon_V3V4). Testing the model on a subset of data, we reached a RMSE of 48.1
and a R2 of 0.72. With 280 6 117 OBUs per sample, the error of the model is smaller
than the standard deviation.

Further accuracy of the model could be achieved by separating the water samples
into freshwater and saltwater using a threshold of 1 PSU salinity. The improved model
has a RMSE of 30.9 and a R2 of 0.91. Additionally, we tested if the model could be

TABLE 1 Significant linear correlations of KS or AD OBU Chao1 Richness to taxonomic and
environmental variables across systemsa

Pearson correlations

Variable OBU Chao1 R P value Padj value
Fe KS 0.58 3.8� 1029 4.58� 1028

LOI AD 20.63 9.91� 1028 3.57� 1026

Moisture AD 0.70 8.51� 10210 6.13� 1028

Moisture KS 20.76 7.75� 10213 1.86� 10211

NH3 KS 0.59 3.56� 1025 3.2� 1024

pH KS 20.69 2.77� 10211 3.99� 10210

S KS 0.84 2.33� 10214 8.37� 10213

Shannon V3V4 KS 0.74 1.2� 10215 8.66� 10214

Chao1 V3V4 KS 0.68 2.13� 10212 3.83� 10211

aR and P-values are determined by Pearson correlations.

FIG 5 Linear correlations of AD and KS domain richness to taxonomic diversity and environmental variables. (A) Bacterial Chao1 richness and Shannon
diversity in relation to biosynthetic Chao1 richness, colored according to the ecosystem: soil (green), sediment (orange), aquatic (blue). (B to E) KS domain
or AD domain richness in relation to pH, salinity, fungal Shannon diversity, or fungal Chao1 richness in specific systems. Bold lines indicate the Pearson
linear correlations.
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further generalized by excluding the system as a variable, and instead relying only on
bacterial diversity and cell abundance as predictors for PK biosynthetic richness.
However, this reduced the accuracy of the model resulting in a RMSE on the test data
of 69.1, and a R2 of 0.561. It was not possible to build a model with an RMSE lower
than the standard deviation for AD domains. We further applied our improved PK
model on the Earth Microbiome data set (16), using the available bacterial richness,
bacterial diversity, and the empo_3 classifications to predict the KS richness on a global
scale. In contrast to our sediment samples from Nivå bay, sediment samples on a
global scale (238 6 102) seemed to be almost equally as rich in KS domains as soil
samples (247 6 62). Furthermore, the grassland biome stood out with a high mean PK
biosynthetic richness of 312 6 63 KS OBUs, while the highest individual predictions
were observed in marine biomes (Fig. 6A). To further test the accuracy of our model,
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FIG 6 (A) Predicted KS domain Chao1 richness in different biomes from the Earth Microbiome data set. A generalized linear
model was fit on measured bacterial richness, bacterial diversity, and ecosystem type (soil, sediment, saltwater, or freshwater)
for predicting KS domain richness. (B) Predicted KS domain Chao1 richness using the model compared to actual KS domain
Chao1 richness estimates generated from KS sequencing reads from the same triplicate seawater samples from (7).
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we predicted KS OBU richness based on bacterial diversity estimates from seawater (7),
and compared the richness to the measured Chao1 KS OBU (Fig. 6B).

DISCUSSION

An increasing number of studies using targeted sequencing of biosynthetic
domains have revealed the vast, underexplored potential of the uncultured majority of
microorganisms in the environment (7, 11–14, 21–23). Yet, differences in study design
and the experimental approaches applied make it difficult to extrapolate findings
across systems (8, 11), thus hampering efforts to identify global drivers of secondary
metabolome diversity. Moreover, the environmental drivers of the biosynthetic diver-
sity on a small spatial scale have been largely overlooked. Collectively, this has limited
our ability to predict the biosynthetic diversity of environmental microbiomes. We
found the microbial community composition and the biosynthetic potential to be
highly dependent on the ecosystem at hand. We also discovered a range of correla-
tions between the genetic capacity of a microbiome to produce PK and NRP secondary
metabolites, and specific physicochemical (pH and salinity) and taxonomic diversity
(Chao1 and Shannon) descriptors. Ultimately, we were able to accurately predict the
PK biosynthetic potential of the microbial community at hand based on the system,
the bacterial taxonomic richness, and the bacterial diversity.

Analysis of the microbial community composition revealed a high variability
between the systems, and even between proximate sampling sites, highlighting the
heterogeneity of microbiomes across small spatial scales. Whereas most of the meas-
ured environmental parameters seemed to have only a minor impact on the commu-
nity, a notable exception being the strong correlation between pH and the bacterial
taxonomic richness and community composition in soil. This corroborates previous
findings of lower bacterial diversity in low pH soils (15, 16). By contrast, the fungal com-
munity, which is likely affected by pH to a lesser extend (24, 25) than the bacterial com-
munity due to a wider pH growth optimum (26), showed no significant correlation
between richness and pH. A major driver of shifts in the sediment microbial commun-
ities is the availability of oxygen and, thus, the redox potential (27). Surprisingly, we
observed that sediment microbiomes were largely similar across strong redox gra-
dients and, hence, the distance between proximate sampling sites had a stronger clus-
tering effect on the microbial community. This might be explained by the tide destabi-
lizing microbial stratification in the coastal sediment, or the presence of stronger
driving parameters that we failed to measure, e.g., difference in the macro fauna and
flora. For the aquatic system, we observed a significant shift in bacterial and fungal
community composition along a salinity gradient, corroborating the observation that
salinity is a strong driver of community composition in estuarine waters (28, 29). In
general, bacterial species richness scales with bacterial cell abundances across orders
of magnitude (30), and while we did observe the highest species richness in the most
densely populated system, i.e., soil, the observed abundances, which spanned 2 orders
of magnitude, was not significantly correlated with changes in taxonomic richness.

Cross-system comparisons of biosynthetic diversity using publicly available ampli-
con sequencing data is hampered by the fact that most studies have focused on soil
microbiomes, and, moreover, such comparisons are vulnerable to differences in experi-
mental approaches across studies. Previous attempts at comparing marine and terres-
trial systems have shown that the NRP and PK biosynthesis potential of these systems
differ, and that the richness of KS and AD OBUs in marine microbiomes are likely com-
parable to, or higher than that of, more commonly sampled soil systems (7). Here, we
applied the same PCR reagents and bioinformatic pipelines, regardless of the system
at hand, and found pronounced system-specific differences in KS and AD composition
as well. We found the NRP and PK biosynthesis potential, i.e., the AD and KS richness,
to be in the range of hundreds of unique OBUs (531 AD OBUs 6 158 and 281 KS
OBUs 6 116), with soil being the most rich in different PKs, and the marine sediment
most rich in different NRPs. These richness estimates are, however, significantly lower
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than previously reported estimates (7, 12, 31), which is due to more stringent cutoffs in
the denoising and clustering of AD and KS sequencing reads in the current pipeline.
The combination of highly degenerated primers, multiple amplification cycles, and dif-
ferent stringencies in data processing, is likely responsible for the large variation in
OBU richness often observed using identical primers and similar environmental sam-
ples (from 500 to over 7000 OBUs per sample; [10, 12, 21, 22]). Furthermore, this may
cause an overestimation of diversity as well, which is why we chose to apply a more
conservative approach. Despite this more conservative approach, we found that the
majority of OBUs were absent from the MiBIG database, highlighting the potential for
structural novelty across systems, and in marine sediments in particular.

The interconnection between the biosynthetic potential and the taxonomic compo-
sition of natural microbiomes has been the focus of several culture dependent and cul-
ture independent studies (11, 32, 33). In particular, the Actinobacteria have historically
been recognized for their extensive biosynthetic capacity (34). To determine which
taxa are descriptive of microbiomes with a high KS diversity, we fit a generalized linear
model to the taxonomic data, and found that for KS diversity, relatively few zOTUs
could explain the differences observed, and, hence, few bacterial taxa are potentially
driving the collective KS biosynthesis potential of the microbiomes. Of the highly asso-
ciated taxa, there was a notable underrepresentation of the Actinobacteria compared
to acidobacterial taxa, represented with a positive association in the model (Table S2).
Although such extrapolations should be interpreted with caution, our observations are sub-
stantiated by recent metagenomic analyses of soil microbiomes where the Acidobacteria,
Verrucomicobia, Gammatimonadetes, and the candidate phylum Rokubacteria have been
shown to carry a substantial fraction of the biosynthetic capacity (9, 32). Thus, increasing
the focus on these taxa in bioprospecting efforts could increase chances of revealing novel
bioactive PK compounds. The NRP biosynthesis potential is likely diluted across a wider col-
lection of taxa, as the model included close to 50 bacterial taxa to cover 90% of the AD di-
versity. Again, most of the highly associated bacterial taxa were within the proteobacterial
and acidobacterial phyla, followed by the Bacteroidetes and the Actinobacteria.

By investigating proximate microbiomes, we sought to eliminate major impacts
due to dispersal limitation, yet distance remained an important factor for the diversity
of biosynthetic genes in the microbiomes. Clearly, dispersal limitation and events of a
stochastic nature are important factors involved in diversification of the secondary
metabolome of microbial communities, but still we were able to identify environmen-
tal variables that had a significant influence on their biosynthetic capacity. Across the 3
systems, we found significant correlations between the capacity to produce PKs and
pH, suggesting that within a pH range of 5–8, the richness of PKs increases with
decreasing pH. In contrast, a positive effect of pH on the biosynthetic potential was
observed for the soil system alone, and corroborates previous findings from similar ter-
restrial environments (10, 12, 21), though it has not been consistently observed (11).
Similarly, low moisture content has been associated with increased biosynthetic diver-
sity in different soil microbiomes (10). This association is, however, complex as expres-
sion of diverse BGCs increase in soil systems upon wetting, and consequently increas-
ing available organic carbon content (32). Adding to this complexity, we found that
moisture had significant, yet opposing, interdependencies with the capacity of the
microbiomes to produce NRPs and PKs. Furthermore, the relative influence of moisture
is skewed by the fact that we include moisture across terrestrial and aquatic systems,
and the effect is likely attributed to the differences between these systems. Across sys-
tems, NRPS diversity was also negatively correlated with organic carbon content, and
hence it is possible that heterotrophic bacteria and fungi compete for the available or-
ganic carbon, employing NRPs biochemistry in interference competition (35–37). While
the freshwater biome has recently been deemed the most promising ecosystem in
terms of gene cluster family richness (33), we found that salinity was not only a strong
driver of overall community composition, as it was also significantly and positively cor-
related with the secondary metabolite biosynthesis potential in the aquatic system,
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suggesting that at least PKs may be more diverse in seawater. Previously suggested
correlations between biosynthesis potential and environmental parameters, such as
potassium, calcium, and selenium (10), could not be replicated in this study and are,
hence, likely site-specific.

The variation in secondary metabolite biosynthetic diversity among bacteria is tied
to taxonomy (33) and, hence, a higher taxonomic diversity is likely to result in a higher
biosynthetic diversity. Additionally, a more diverse arsenal of secondary metabolites
might be advantageous in a more diverse, and likely more competitive, community. To
date, only a correlation between AD domain diversity and bacterial diversity in soil has
been observed (21), yet we were able to substantiate this notion as we observed a sig-
nificant correlation between bacterial diversity and PK biosynthetic richness across the
three ecosystems.

Integrating a subset of the variables in a generalized linear model allowed us to pre-
dict the KS richness in different biomes with a high degree of confidence. The best
model was obtained using ‘habitat’, bacterial taxonomic richness, and diversity as vari-
ables, whereas the fungal diversity added little to the predictive power of the model.
The fact that both Chao1 index values and Shannon diversity are strong predictors
underscores the tight coupling of the biosynthetic capacity of a microbiome to the
total number of bacterial taxa, as well as the distribution, or evenness, of said taxa. This
suggests that environmental microbiomes exhibiting a large number of zOTUs are
more likely to have a high PKS biosynthesis potential, given that no single zOTU is
dominating the microbiome. Taxonomic alpha diversity measures, such as Shannon di-
versity and Chao1 richness estimates are available for numerous public data sets, sup-
porting their utility in predictive models, such as the current one. By contrast, few
physicochemical metadata are currently accompanying publicly available data sets,
which highlights the need for standardized operating procedures for metadata collec-
tion and reporting.

Applying the model to the Earth Microbiome data suggests that grasslands are the
most promising biome in terms of PK biosynthesis potential. It is likely that the dense
rhizosphere in such environments foster interactions and competition among microor-
ganisms, and, consequently, hosts microbiomes with elaborate secondary metabo-
lomes. Previous reports have suggested that rhizospheres harbor specifically talented
secondary metabolite producers (38, 39), including members of the Actinobacteria,
which have been shown to be preferentially enriched in grassland biomes compared
to proximate tree-covered soils (9). Marine systems were classified as one biome in the
Earth Microbiome data included here, but is clearly covering a multitude of diverse
niches, which also comes across in the spread of the predicted KS biosynthesis poten-
tial, highlighting that divergent marine microbiomes hold a large hidden potential for
PK production. Furthermore, the secondary metabolite biosynthesis potential was dis-
tinct between terrestrial and aquatic systems, which further supports the notion that
these environments hold great promise for structural novelty. It should be noted that
we used sequencing data from three biomes to make a predictive model apply to a large
collection of biomes in these analyses, and the results are likely most reliable for biomes
similar to the three biomes included here, i.e., temperate forest soils, temperate marine
coastal sediments, and temperate surface waters. To broaden the utility of predictive
models in bioprospecting, future models should extend to more diverse environments,
in order to increase confidence in the output even further.

Conclusion. We determined that different ecosystems harbor microbiomes with
distinct biosynthetic capabilities, and that relatively few taxa are highly associated with
these differences, especially for PK biosynthesis genes. We identified taxonomic rich-
ness and diversity, as well as physicochemical variables, such as pH in soil and salinity
in aquatic systems to be strong drivers of the biosynthetic diversity. Integrating these
drivers in a predictive model allowed us to determine that grassland rhizospheres
are likely promising sites in terms of finding novel PK compounds, and that marine

Drivers of Biosynthetic Diversity in Microbiomes mSystems

March/April 2023 Volume 8 Issue 2 10.1128/msystems.00724-22 11

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00724-22


microbiomes display a large variation in PK richness across the system, which should
be explored in greater detail.

MATERIALS ANDMETHODS
Cross-system sampling. Samples of topsoil (3 cm) were collected in sterile 50 mL Falcon tubes from

2 sites in, and around, the pristine deer park, Dyrehaven (Site 1 [S1]: 55°47'17.19'N 12°32'51.19'E and Site
2 [S2]: 55°48'46.39'N 12°33'33.49'E). S1 and S2 were situated in mixed coniferous and deciduous forests
separated by 2.85 km (Fig. 1B). At each site, triplicates of 6 samples were collected for analysis.
Proximate microbiomes were sampled 2 meters apart along a 10 m transect (S1), and 3 meters apart
along a 15 m transect (S2), respectively. The collected soil samples were frozen and stored at 280° C
within 1 h after sampling.

Marine coastal sediment cores were retrieved using a Hydro-Bios 60 cm sediment corer from two
sites (S4 and S5), separated by 75 m in the shallow estuarine bay area of Nivå Bay Strandenge bird sanc-
tuary, Nivå Bay (S4: 55°55'42.6"N 12°31'23.6"E, S5: 55°55'43.2"N 12°31'27.8"E) (Fig. 1C) At each site, 5 repli-
cate sediment cores were sampled and sediment material from 3 different depths were collected: an
upper layer (0 to 2 cm), a middle layer (3 to 5 cm), and a lower layer (5 to 7 cm). Additionally, samples of
the overlaying water columns were taken in triplicate at each of the 2 sites as described for surface water
sampling below, and processed the following day.

Triplicate water samples were collected at 9 different sampling stations within, and around, the tem-
perate estuary of Ringkøbing Fjord (Fig. 1D). Water was collected and stored in 2 L polycarbonate car-
boys rinsed thrice with sample water. Smaller volumes were collected in 50 mL Falcon tubes for deter-
mining inorganic nutrients and metal ion concentrations, and in 40 mL sterile glass bottles containing
60mL of a 17% H3PO4 solution for the determination of carbon content.

Environmental metadata. For the measurement of pH, 2 g of soil from each sample was mixed
with 15 mL of water (pH 7.7). The pH was then measured under continuous stirring with an ATAGO
DPH-2 digital pH-meter. The pH of the water samples was measured with the same approach on site.
The redox potential was measured in the sediment samples using the GR 175-BNC-L01 Greisinger ORP/
Redox electrode on site. The salinity, oxygen concentration, and temperature of the water were meas-
ured using a YSI Pro 2030 sensor.

Concentrations of phosphate and inorganic nitrogen compounds (nitrogen oxides, ammonium, and
nitrite) were determined using segmented flow analysis (San11 System, Skalar Analytical BV). For the
soil samples, 2 g of soil matrix was leached in 20 mL 2 M KCl solution overnight, shaking at 300 rpm.
Subsequently, the leachate was filtered through 45 mm Minisart sterile filters (Sartorius), before the mea-
surement, while the water samples were measured directly on the Skalar.

Ion chromatography (IC) was performed using an anion-exchange column equipped with a guard
column (IonPac AS22, 4 � 250 mm, Ionpac AS22 Guard column, 4 � 50 mm, Thermo Scientific), and sup-
pressed conductivity detection (suppressor Dionex AERS 500 for Carbonate, 4 mm, ThermoScientific,
ICS-5000 Conductivity detector, ThermoScientific) was used to measure concentrations of fluoride, bro-
mide, sulfate, and chloride. In order to measure concentrations of aluminum, calcium, iron, potassium,
magnesium, sodium, phosphorus, sulfur, and selenium, the samples were analyzed by ICP-MS (7700x,
Agilent Technologies) with Yttrium and Scandium as internal standards added directly in the samples.
The instrument was equipped with Platinum tipped skimmer and sample cones, a double pass Scott
spray chamber operated at 2° C, and a Micromist spray chamber. All elements were analyzed in He colli-
sion mode, with a Helium flow of 5 mL/min. Surface water and extracted sediment pore water were
directly measured, while soil samples were pretreated by drying (60° C for 48 h) and leaching in 5 mL
deionized water for 18 h.

The organic carbon content was estimated in both sediment and soil after initial drying, and subse-
quent measurement of loss on ignition (LOI) at 550° C. For the surface water samples, nonvolatile or-
ganic carbon (NVOC) content was determined by first bubbling nitrogen gas through the sample to
eliminate the inorganic carbon. Then, sodium persulfate was added for oxidation, and the resulting car-
bon dioxide was measured by an infrared detector according with the Shimadzu Total Organic Carbon
Analyzer TOC-Vwp with auto sampler ASI-V instructions.

Bacterial abundances were determined in all samples using SYBR Gold staining and fluorescence mi-
croscopy (Olympus BX51), as previously described (40). Surface water samples were fixed in 1% glutaral-
dehyde (final conc.), filtered, stained, and counted. For soil and sediment samples, 1 g of material was
suspended in 9 mL of phosphate-buffered saline or 2% Sigma Sea Salt, respectively. Subsequently, bac-
terial cells were detached with sonication in a 2 � 50 W sonication bath at 28 kHz 3x30s. The suspen-
sions were prefiltered with 5 mm polycarbonate membrane filters (GVS). Cells were captured on 0.2 mm
Anodisc membrane filters (Whatman), stained, and counted.

The chlorophyll content was analyzed by filtering 250 to 500 mL of water through 5 mm SM mem-
branes (Millipore). The filters were subsequently dissolved in 3 mL aqueous acetone solution, sonicated
for 20 s, and incubated at 4° C in the dark overnight. The extract was then clarified by centrifuging for
20 min at 500 � g. Based on the absorbance at 630, 645, 663, and 720 nm, the chlorophyll a (Chl a) con-
tent was calculated according to established protocols (41). All collected metadata are listed in Table S1.

DNA extractions. Approximately 250 mg of thawed soil was transferred to a bead beating tube, and
the DNA was extracted and purified using the PowerSoil kit from Qiagen according to the instructions
provided by the manufacturer. The DNA was eluted twice in 50 mL elution buffer. Similarly, DNA was
extracted from sediments using the PowerSoil kit, using 1000 mg of starting material, and eluting
only once in 50 mL elution buffer. For surface water samples, biomass was collected by filtration of
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50–250 mL of water onto 0.2 mm polycarbonate track etched filters (Whatman). The filters were sub-
sequently submerged in 1.8 mL sucrose lysis buffer (400 mM NaCl, 750 mM sucrose, 20 mM EDTA,
50 mM Tirs-HCl, pH 8.5), and the DNA was extracted and purified using an established phenol-chloro-
form protocol (42).

PCR amplification and sequencing. To determine the bacterial and fungal taxonomic composition
in the microbiomes, we amplified the V3V4 and the ITS region using established primer pairs (V3V4F_F
59-CCTACGGGNGGCWGCAG, V3V4_R 59-GACTACHVGGGTATCTAATCC, ITS_F 59-GTGARTCATCRARTY
TTTG, ITS_R 59-TCCTSCGCTTATTGATATGC) (28, 43) tagged with an 8 bp sample specific barcode. The
thermocycling conditions were 95° C for 15 min, followed by 30 cycles of 95° C for 30 s, 60° C for 30 s,
72° C for 30 s for V3V4, or 30 cycles of 95° C for 45 s, 50° C for 45 s, and 72° C for 90 s for ITS, and finally
72°C for 10 min for both V3V4 and ITS amplifications. The reaction mixtures contained TEMPase Hot
Start Master Mix (Ampliqon), 0.32 mM each V3V4 primer, or 0.4 mM each ITS primer, and 0.3 mL or 2 mL
template DNA per 25mL reaction mix, respectively.

To assess the biosynthesis potential of the sampled microbiomes, we used an amplicon sequencing
approach targeting conserved AD and KS regions, using the A3F-A7R and DegKS2F-R primer sets, as
these have proven most broadly applicable (8). The AD regions in the samples were amplified using bar-
coded A3F – A7R primers (A3F 59-GCSTACSYSATSTACACSTCSGG, A7R 59-SASGTCVCCSGTSCGGTA) (44)
under the following conditions: 15 min at 95° C, followed by 35 cycles of 94° C for 30 s, 56° C for 40 s,
72° C for 60 s, and finally 72° C for 10 min. For the surface water samples, 40 cycles instead of 35 cycles
were performed in order to obtain sufficiently high DNA concentrations. The reaction mixtures con-
tained HotStarTaq Master Mix (Qiagen), 0.32 mM each primer, 0.5 mL BSA, and 1 mL template per 25 mL
reaction.

The KS region was amplified in a nested PCR. In the first round, amplification was done with the pri-
mers DegKS2F –DegKS2R (degKS2F 59-GCNATGGAYCCNCARCARMGNVT, degKS2R 59-GTNCCNGTNCCR
TGNSCYTCNAC) (45), applying the same conditions as described for the AD PCR, with the exception of a
slightly decreased annealing temperature of 55° C. The reaction mixtures contained HotStarTaq Master
Mix (Qiagen), 1.92 mM each primer, 1 mL BSA, and 1 mL template per 25 mL reaction. The KS amplicons
were subsequently purified with AMPure XP beads with a ratio of 1:1.2, and used as template for the
PCR with barcoded primers: 95° C for 10 min, 15 cycles of 94° C for 30 s, 55° C for 30 s, 72° C for 45 s, and
finally 10 min at 72° C. The reaction mixtures were the same as in the first PCR using 1 to 5 mL template.

All PCR products were cleaned up using AMPure XP beads with a ratio of 1:1.8 for the ITS amplicons,
1:1.4 for the V3V4 amplicons, and 1:1.2 for the KS and AD amplicons. The DNA concentrations were
determined with the Invitrogen Quibit 2.0 fluorometer HS range kit, and the samples were pooled in
equimolar ratios. Sequencing was performed by Novogene using PCR free library preparation and the
NovaSeq PE250 system.

Bioinformatic analysis. The AD and KS reads were demultiplexed and brought into the same orien-
tation using cutadapt v.3.4 (46). The primer sequence was trimmed off using seqtk v.1.3-r106 from the
beginning of the reads (https://github.com/lh3/seqtk). For generating the OBUs, a combination of com-
mands from USEARCH v.11.0.667 and Vsearch v.2.15.1 was used. First, the forward and the reverse reads
were merged with an ‘N’. Subsequently, merged reads were error filtered (-fastq_maxee 5.0 accommo-
dating the unmerged amplicons), dereplicated, and, finally, denoised using USEARCH unoise3 (47, 48).
The resulting zOTUs were additionally clustered at 95% similarity to generate 4435 AD and 3381 KS
OBUs, as has previously been performed (7) Lastly, the merged reads were mapped to the OBUs to gen-
erate the final abundance table. To determine and compare the degree of novelty of the biosynthesis
potential in the 3 systems, the OBUs from each system was blasted against MiBiG v3.1, using a minimum
alignment length of 100 nt, and an E-value cutoff, 10240, as previously described (7).

Similarly, the processing of V3V4 and ITS reads consisted of a demultiplexing step using cutadapt,
followed by merging of the forward and reverse reads. Subsequently, primers were removed, and the
reads were brought into the same orientation with the option –revcomp in cutadapt. The reads were fil-
tered for errors (- fastq_maxee 1.0), dereplicated, and denoised with unoise3, generating the zOTUs. The
merged and clean reads were then mapped to the zOTUs, generating the abundance table. Taxonomy
was assigned using usearch –sintax with rdp_16s_v16.fa and rdp_its_v2.fa as reference databases.
Chloroplasts and zOTUs consistently present in negative control samples were removed from the V3V4
zOTU table. Average number of mapped reads per sample were 69402 6 74736 and 90726 6 100494
for V3V4 and ITS respectively, while they were 60253 6 63865 and 32189 6 41163 for AD and KS.
Samples with less than 3000 mapped reads for AD, V3V4, and ITS or less than 1000 mapped reads for KS
were excluded from the subsequent analysis, resulting in the exclusion of 8,9,3, and 7 samples, respec-
tively. Rarefaction was performed to the same threshold, and the sample coverage estimated at the
given threshold using the coverage function from the R package entropart (Fig. S5).

Statistical analysis. For beta diversity analyses, the Bray-Curtis distance matrix was calculated from
the relative abundances, excluding singletons. NMDS plots were made using the metaMDS function
from the R package vegan. PERMANOVA tests on the distance matrix were used to identify significant
grouping of samples using Adonis. The alpha diversity was assessed using the estimate_richness func-
tion in the R package phyloseq on the rarefied zOTU table, or OBU tables. To average out rarefying
effects, the rarefication and calculation of richness/diversity was performed 500 times, and the final aver-
age taken. For all correlation analyses, the Pearson correlation coefficient was calculated, and the P-value
computed using R and RStudio. Adjusted P-values were calculated using the p.adjust function in R with
the Benjamini & Yekutieli correction for each dependent variable independently (Table S3).

To predict the KS richness based on the bacterial community, a generalized linear model was used.
The V3V4 zOTU table was pre-filtered removing zOTUs, retaining only those which had more than 0.5%
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relative abundance in at least 1 sample (550 V3V4 zOTUs). This meant that on average, 49.8% of the
reads per sample were retained. Subsequently, the abundances were scaled using a centered log-ratio
transformation, as described previously (20). The model was fitted using the glmnet R package with a
lasso penalty term and Gaussian error distribution. The final lambda was selected, so that 90% of the
deviation was explained. Generalized linear models were trained on 75% of the data using the glm func-
tion in R with a Gaussian error distribution and a log link function, followed by stepwise variable selec-
tion from both directions. The remaining 25% of the data was used to evaluate the performance of the
model and compute the RMSE. The final model was applied to the Earth Microbiome data set, using the
variables adiv_chao1, adiv_shannon, and empo_3 with the factors: Soil (non-saline), Water (non-saline),
Water (saline), and Sediment (saline) as input. Additionally, the final model was applied to publicly avail-
able data, i.e., V3V4 reads from 3 seawater samples, for which KS reads were also obtained in a similar
fashion as described in this paper (7), and the observed and predicted numbers of KS OBU were
compared.

Data availability. Sequencing data are available in the Sequencing Read Archive (SRA) under bio-
project PRJNA828401.
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