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Abstract: Thioredoxin and thioredoxin reductase are evolutionarily conserved antioxidant enzymes
that protect organisms from oxidative stress. These proteins also play roles in redox signaling and
can act as a redox-independent cellular chaperone. In most organisms, there is a cytoplasmic and
mitochondrial thioredoxin system. A number of studies have examined the role of thioredoxin and
thioredoxin reductase in determining longevity. Disruption of either thioredoxin or thioredoxin
reductase is sufficient to shorten lifespan in model organisms including yeast, worms, flies and mice,
thereby indicating conservation across species. Similarly, increasing the expression of thioredoxin
or thioredoxin reductase can extend longevity in multiple model organisms. In humans, there is an
association between a specific genetic variant of thioredoxin reductase and lifespan. Overall, the
cytoplasmic and mitochondrial thioredoxin systems are both important for longevity.

Keywords: aging; lifespan; thioredoxin; reactive oxygen species; redox signaling; animal models;
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1. Introduction

Aging is an intrinsic process that causes a progressive loss of function over time
that increases the probability of death. While the aging process remains incompletely
understood, research in multiple model organisms has begun to unravel the molecular
mechanisms involved. In yeast, worms, flies and mice, modulating the expression of a
single gene out of thousands of genes is sufficient to affect lifespan, thereby providing
insight into the genetic pathways that determine longevity.

The Free Radical Theory of Aging proposes that aging results primarily from the
accumulation of oxidative damage caused by reactive oxygen species (ROS) [1]. ROS
are highly reactive oxygen-containing molecules that can damage cellular components,
including DNA, proteins, and lipids. ROS are generated during normal cellular metabolism,
but their levels can be increased through exposure to environmental stressors or internal
stressors such as inflammation or metabolic dysfunction. In order to detoxify ROS and
repair ROS-mediated damage, organisms have evolved to express antioxidant enzymes,
including thioredoxin (TRX/TXN) and thioredoxin reductase (TRXR/TXNRD).

Thioredoxin and thioredoxin reductase combine to form thioredoxin systems in differ-
ent compartments of the cell and play a crucial role in regulating cellular redox homeosta-
sis [2]. The thioredoxin system acts to reduce proteins, both to repair oxidative stress and
modulate their activity. Thioredoxin also plays an important role in intracellular signaling.
In this review, we discuss the different roles of thioredoxin and thioredoxin reductase in
the cell and how these proteins affect longevity in different model organisms.
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2. Antioxidant Roles of Thioredoxin and Thioredoxin Reductase

The thioredoxin system is a crucial redox regulatory system consisting of thiore-
doxin and its reducing partner thioredoxin reductase, which uses nicotinamide adenine
dinucleotide phosphate (NADPH) as an electron donor to reduce thioredoxin (Figure 1).
Thioredoxin possesses a unique tertiary structure composed of five β-strands forming the
internal core of the protein, four α-helices and a short stretch of helix surrounding the
central β-sheets [3] (Figure 2). The active site disulfide is located after the β2-sheet and
forms the N-terminal portion of α2. A cis-proline located in a loop preceding β-strand 4
is crucial for the stability and function of thioredoxin. Thioredoxins are the main protein
disulfide reductases in the cell and act as electron donors for enzymes via the reversible
oxidation of two cysteine thiol groups (-CGPC-, also called CXXC motif, thioredoxin motif
and thioredoxin fold) to a disulfide, which is crucial in the thiol-dependent antioxidant
system [4]. The thioredoxin fold structure of thioredoxin is shared among a group of
proteins that serve as key players in redox signaling and control, all of which can act to
reduce disulfides. These proteins include glutaredoxin (GRX), glutathione peroxidase
(GPX), glutathione transferase (GST), thioredoxin peroxidase (also known as peroxiredoxin
or PRX) and protein disulfide isomerase (PDI) [5,6].
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and two protons, resulting in the covalent interconversion of a disulfide and a dithiol. 
During this reaction, cysteines located at positions 32 and 35 of thioredoxin execute a bi-
molecular nucleophilic substitution mechanism to transfer electrons from thioredoxin to 
the substrate protein [5]. Firstly, the N-terminal cysteine of thioredoxin initiates a nucleo-
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Figure 1. Role of thioredoxin system in antioxidant defense. Thioredoxin (TXN) catalyzes the
reduction of disulfides (S-S) within oxidized cellular proteins, which can act to restore protein
function. An important target of thioredoxin is the antioxidant peroxiredoxin (PRX), which can
detoxify hydrogen peroxide. In reducing target proteins, thioredoxin becomes oxidized. In order
to reactivate thioredoxin, thioredoxin reductase (TXNRD) reduces TXN using reducing equivalents
obtained from NADPH. S-S = oxidized form. SH = reduced form.

The main antioxidant function of thioredoxin involves the transfer of two electrons and
two protons, resulting in the covalent interconversion of a disulfide and a dithiol. During
this reaction, cysteines located at positions 32 and 35 of thioredoxin execute a bimolecular
nucleophilic substitution mechanism to transfer electrons from thioredoxin to the substrate
protein [5]. Firstly, the N-terminal cysteine of thioredoxin initiates a nucleophilic attack on
the substrate protein’s disulfide bond, leading to the formation of a mixed disulfide bond
between thioredoxin and the substrate protein (Figure 3). Subsequently, the C-terminal
cysteine of thioredoxin initiates a nucleophilic attack on the intermediate intermolecular
disulfide bond, forming a disulfide bond in the oxidized thioredoxin and breaking the
disulfide bond in the reduced substrate protein.
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Thioredoxin is maintained in its active and reduced form primarily by thioredoxin 
reductase but can also be reactivated by glutaredoxin in the glutathione (GSH) system 
[9,10]. Thioredoxin can act as an antioxidant either directly by quenching singlet oxygen 
and scavenging of hydroxyl radicals or indirectly by reducing proteins oxidized by ROS 
[11]. One of the most important targets of thioredoxin is peroxiredoxin, which acts to di-
rectly reduce peroxides such as H2O2 and various alkyl hydroperoxides [12,13]. Once 
peroxiredoxin reduces its target, thioredoxin restores peroxiredoxin activity by recycling 
the oxidized form of peroxiredoxin back to its reduced state. 

Figure 2. Three-dimensional structure of human thioredoxins. The 3D structure of human cytoplas-
mic thioredoxin (TXN) (left) and mitochondrial thioredoxin 2 (TXN2) (right), in their oxidized forms,
are shown (UniProt accession P10599 and Q99757, respectively). The 3D representation includes
labeled N- and C-termini and highlights the active site thioredoxin fold in blue and the disulfide bond
in red. The structures were generated using PyMOL (http://www.pymol.org/pymol, accessed on
31 March 2023) after retrieving TXN1 and TXN2 protein data bank (PDB) formats from Al-
phaFold [7,8].
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Figure 3. Mechanism of thioredoxin reaction to reduce oxidized proteins. The reduced (red) form
of thioredoxin (TXN) can transfer two electrons and two protons to convert an oxidized protein’s
disulfide to a dithiol. This reaction involves cysteines at positions 32 (N-terminus) and 35 (C-
terminus) of thioredoxin that execute a bimolecular nucleophilic substitution to transfer electrons
to the substrate protein. The process ends with an oxidized (oxi) thioredoxin. Inter = intermediate
reactant. S-S = oxidized form. SH = reduced form.

Thioredoxin is maintained in its active and reduced form primarily by thioredoxin
reductase but can also be reactivated by glutaredoxin in the glutathione (GSH) system [9,10].
Thioredoxin can act as an antioxidant either directly by quenching singlet oxygen and scav-
enging of hydroxyl radicals or indirectly by reducing proteins oxidized by ROS [11]. One
of the most important targets of thioredoxin is peroxiredoxin, which acts to directly reduce
peroxides such as H2O2 and various alkyl hydroperoxides [12,13]. Once peroxiredoxin
reduces its target, thioredoxin restores peroxiredoxin activity by recycling the oxidized
form of peroxiredoxin back to its reduced state.

Thioredoxin reductase is an oxidoreductase that uses NADPH to reduce the active-site
disulfide of thioredoxin, thereby restoring thioredoxin’s activity [14]. Thioredoxin reductase

http://www.pymol.org/pymol
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contains flavin adenine dinucleotide (FAD) and pyridine nucleotide disulfide. Thioredoxin
reductase exists as an antiparallel homodimer with both subunits playing a crucial role
in the normal redox reaction during the catalytic cycle. Unlike bacteria and archaea, the
active site of thioredoxin reductase in mammalian and multicellular eukaryotes comprises
a conserved selenocysteine (Sec) that replaces the Cys2 residue located at the penultimate
C-terminal position in its X-Cys1-Cys2-X motif (X is usually Gly or Ser), which is essential
for its catalytic function [15]. This substitution confers several advantages including
the superior nucleophilicity of Sec, which arises from its ionization under physiological
conditions compared to the protonated Cys [16]. Additionally, the position of Sec in the
C-terminus provides conformational flexibility that enables it to function as a cellular redox
sensor [17].

The first step of the reductive half-reaction of the enzyme involves reduction of the
enzyme-bound flavine adenine dinucleotide by NADPH in one subunit [14,18]. From there,
the reducing equivalents are transferred to the Cys-Val-Asn-Val-Gly-Cys active site motif
of the same subunit, forming a dithiol motif. This dithiol motif reduces the C-terminal
selenenyl sulfide motif of the other subunit of the dimer, forming a dithiol or selenolthiol
motif [14]. This reduced motif can then reduce the substrates of thioredoxin reductase,
including the active site disulfide between positions 32 and 35 of thioredoxin, glutaredoxin
2 (GRX2), PDI, thioredoxin-like-1, granulysin [19,20] and some small molecule substrates
such as selenite [21], dehydroascorbate [22], lipoic acid [23], ubiquinone [24], cytochrome
C [25] or the cancer drugs motexafin gadolinium [26] and alloxan [27]. Thioredoxin reduc-
tase can function as an antioxidant given that it provides electrons to small molecules that
can react directly with H2O2 [20,28]. Thus, the thioredoxin system is an essential redox
regulatory system that interacts and collaborates with the glutathione system to maintain
the redox balance and protect against oxidative stress in the organism.

3. Additional Roles of Thioredoxin and Thioredoxin Reductase: Redox Signaling

In addition to its roles in antioxidant defense, thioredoxin also affects metabolism and
intracellular signaling by regulating protein activity (Figure 4). In transferring reducing
equivalents from NADPH to target proteins, thioredoxin can modulate their function,
structure or stability [29]. The modulation of enzyme activity can result in the binding of
substrates or allosteric effectors, leading to metabolic changes. In addition, thioredoxin
can activate several transcription factors through redox regulation by modulating their
DNA-binding activities.

Under basal conditions, the redox-regulated apoptosis-signal kinase (ASK1), a member
of the MAPKKK family, is directly bound to TXN and TXN2 to maintain low levels of
ROS while the thioredoxin-interacting protein TXNIP resides in the nucleus. However, in
response to oxidative stress, TXNIP translocates to the cytoplasm and mitochondria and
disrupts the binding of TXN-ASK1 and TXN2-ASK1, respectively [30,31]. The disruption
can also occur through increased ROS and lead to an overall ROS buildup, mitochondrial
distress signaling and eventually an apoptotic signaling cascade. The cascade begins with
the phosphorylation of unbound ASK1, leading to the release of cytochrome C and cleavage
of caspase-3, initiating downstream apoptotic signaling.

Additionally, TXNIP inhibits TXN2 protection of mitochondria against ROS [32],
leading to mtDNA oxidation and binding of the NOD-like receptor protein 3 (NLRP3)
inflammasome [33], ultimately activating the inflammasome [34]. In addition, TXNIP ex-
pression is induced by the endoplasmic reticulum unfolded protein response (ERUPR) under
the IRE1α and PERK-eIF2α pathways [35]. This activation results in the cleavage of pro-
interleukin-1β to its active, mature form by caspase-1 and its subsequent production and
secretion. Overall, the interaction between TXNIP and thioredoxin plays a crucial role in
regulating cellular responses to oxidative stress, including apoptosis and inflammation [36].
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Figure 4. Role of thioredoxin in redox signaling. Thioredoxin (TXN) negatively regulates apoptosis
via redox regulation of ASK-1 and inhibition of Iκβ degradation by scavenging ROS in the cytoplasm.
In the nucleus, TXN increases the DNA-binding activity of NF-κβ and can enhance the binding of
Nrf2 to the antioxidant response element (ARE) through small Maf proteins (sMaf) via reduction
of their cysteine residues. TXN also increases the DNA-binding activity of other transcription
factors, such as AP-1 and HIF-1, indirectly via the reduction of intermediate Ref-1 cysteine residues.
Thioredoxin-interacting protein (TXNIP) can inhibit TXN function by forming a mixed disulfide
bond with its reduced form. Note that although thioredoxin reductase is not depicted in this figure,
it is important for the reduction of thioredoxin into its reduced, active form. It is the reduced,
active form of thioredoxin that contributes to redox signaling. Red lines indicate an inhibitory effect.
S-S = oxidized form. SH = reduced form.

Thioredoxin can directly reduce some transcription factors to negatively regulate apop-
tosis. For example, thioredoxin can activate the nuclear factor (NF)-κB, which regulates the
expression of genes that antagonize cell death [37]. Under normal conditions, thioredoxin
scavenges ROS in the cytoplasm and inhibits the degradation of IκB. However, increased
ROS mediates the degradation of IκB and the nuclear translocation of NF-κB [38]. Nuclear
thioredoxin then directly reduces a cysteine of NF-κB and allows NF-κB-dependent gene
expression [39]. The role of thioredoxin in inhibiting the ASK-1 and NF-κB pathways
suggests that ROS-induced apoptosis may serve as a protective mechanism against chronic
oxidative stress.

Thioredoxin can indirectly activate transcription factors responsible for promoting cell
viability in response to adverse conditions such as oxidative stress and hypoxia [6]. The
DNA-binding activity of these transcription factors is regulated by specific Cys residues,
which are reduced by reducing redox factor-1 (Ref-1) as an intermediate in the nucleus.
In order for Ref-1 to catalyze this reduction, it needs to be in its reduced form, which
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is catalyzed by thioredoxin [40]. In addition, Ref-1 is a DNA-repair endonuclease that
is involved in the base excision repair (BER) pathway, which is responsible for repair of
apurinic/apyrimidinic sites in DNA caused by ROS [41]. Notably, expression of Ref-1 is
upregulated in response to oxidative stress [42]. One example of a transcription complex
dependent on thioredoxin/Ref-1 interaction is Activator protein-1 (AP-1), the basic region-
leucine zipper (bZIP) family of Jun and Fos [43]. Thioredoxin reduces AP-1 cysteines
indirectly via Ref-1 and thereby increases the DNA-binding activity of AP-1 to regulate cell
growth, differentiation and apoptosis. Another example of thioredoxin’s role in regulating
cellular responses is the reduction of a single cysteine residue of the hypoxia-inducible factor
1α (HIF-1α) subunit by thioredoxin/Ref-1 during hypoxia [44,45]. This redox modification
is essential for HIF-1 binding with CBP/p300 co-activator to initiate the hypoxic response
element (HRE) target genes expression [45]. Like in the previous example, thioredoxin and
thioredoxin reductase inhibitors have been shown to downregulate expression of HIF-1α
and its subsequent activity [46]. Moreover, studies have demonstrated that thioredoxin
and related redox proteins are upregulated in response to hypoxia [47,48], which further
emphasizes thioredoxin’s role in HIF-1α regulation. Therefore, thioredoxin possesses
multiple important functions in protecting cells from both oxidative stress and the hypoxic-
stress response via Ref-1.

Overall, thioredoxin plays an important role in redox signaling in diverse cellu-
lar processes, including cell proliferation, differentiation, apoptosis and responses to
oxidative stress.

4. Regulation of the Thioredoxin System

The activity of the thioredoxin system is regulated at multiple levels, including gene
expression, post-translational modifications, and protein–protein interactions (Figure 5).
These regulatory mechanisms allow the system to respond to changes in the cellular redox
environment and adapt to different physiological or pathological conditions.

The thioredoxin system is regulated at the gene expression level by transcription fac-
tors, including the nuclear factor erythroid 2–related factor 2 (Nrf2), TATA-binding protein
(TBP) and cAMP response element-binding protein (CREB) [49,50]. These transcription
factors bind to specific cis-regulatory elements located in the promoter regions of the genes
that encode thioredoxin and thioredoxin reductase and are activated in response to various
stressors, including oxidative stress and inflammation. This activation induces the expres-
sion of the thioredoxin system components, which form part of the cellular stress response.
For instance, oxidative stress triggers Nrf2 binding to the antioxidant response element
(ARE) present in the thioredoxin promoter [51]. Similarly, the thioredoxin reductase and
peroxiredoxin promoters also contain ARE elements that mediate upregulation of their
expression in response to oxidative stress [50]. Notably, the reduced form of thioredoxin
enhances the binding of Nrf2 to ARE by reducing conserved cysteine residues in the DNA-
binding domains of small Maf proteins (sMaf), thereby activating Nrf2-transcription [51,52].
As a result, oxidative stress leads to an increase in thioredoxin levels, which in turn activates
the transcription factors responsible for inducing even higher levels of thioredoxin and
other antioxidants.

Post-translational modifications, such as phosphorylation, acetylation or S-nitrosylation,
can also modulate the activity of the thioredoxin system. For example, phosphorylation of
thioredoxin at specific residues has been shown to increase its activity or alter its substrate
specificity [53], while S-nitrosylation [54] and glutathionylation [55] can impair its function
by interfering with the formation of disulfide bonds.
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Figure 5. Regulation of the thioredoxin system. The regulation of the thioredoxin system occurs at
multiple levels, including gene expression, post-translational modifications, protein–protein inter-
actions and extrinsic factors. The thioredoxin system is regulated at the gene expression level by
transcription factors, including Nrf2, TBP and CREB, which bind to specific cis-regulatory elements
located in the promoter regions of the genes that encode thioredoxin and thioredoxin reductase.
Post-translational modifications, such as phosphorylation, acetylation or S-nitrosylation, can also
modulate the activity of the thioredoxin system. Protein–protein interactions are also important for
the regulation of the thioredoxin system, with TXNIP being an important endogenous molecule that
negatively regulates the function of thioredoxin. In addition to these intrinsic regulatory mechanisms,
the thioredoxin system can also be modulated by extrinsic factors such as dietary interventions, drugs
or environmental stressors. The figure shows the different regulatory mechanisms that control the
activity of the thioredoxin system and their effects on its function.

Protein–protein interactions are also important for the regulation of the thioredoxin
system. For instance, TXNIP, also known as thioredoxin binding protein-2 (TBP-2), is an im-
portant endogenous molecule that negatively regulates the function of thioredoxin [56,57].
There are two mechanisms through which TXNIP inhibits thioredoxin function and activity.
Firstly, TXNIP competes with thioredoxin for binding sites, which removes thioredoxin
from proteins that are inhibited by the steric effect of TXN1 binding, such as redox-regulated
apoptosis-signal kinase 1 (ASK1) [30]. TXNIP inhibits thioredoxin activity in a redox-
dependent manner by forming a mixed disulfide bond with reduced thioredoxin active
site thiols through thioredoxin active site Cys32 and TXNIP Cys247 [57]. Secondly, the
increased and overexpressed TXNIP, as seen in response to factors such as disturbed flow
and high glucose [58,59], results in a reduction in the thioredoxin system activity. Thus, the
increased formation of TXNIP-TXN complexes leads to a higher concentration of oxidized
proteins when exposed to oxidative stress.



Antioxidants 2023, 12, 944 8 of 18

In addition to these intrinsic regulatory mechanisms, the thioredoxin system can
also be modulated by extrinsic factors such as dietary interventions, drugs or environ-
mental stressors. For example, several dietary compounds, such as resveratrol [60],
curcumin [61,62] or sulforaphane [63], have been shown to modulate the expression and
the activity of thioredoxin and other antioxidant enzymes. Similarly, some drugs, such as
statins [64,65] or angiotensin receptor blockers [66,67], have been reported to enhance the
activity of the thioredoxin system and reduce oxidative stress.

5. Cytoplasmic Thioredoxin System Contributes to Lifespan in Yeast

The thioredoxin system is evolutionarily conserved with multiple forms distributed in
different compartments of the cell [68]. Yeast possesses a cytoplasmic thioredoxin system
consisting of the thioredoxin TRX1 and thioredoxin reductase TRR1 and a mitochondrial
thioredoxin system that includes the thioredoxin TRX3 and thioredoxin reductase TRR2
(Table S1). In yeast, replicative lifespan is measured as the number of cell divisions that a
mother cell can undertake to produce daughter cells. Chronologic lifespan is the length
of time that a yeast cell maintains the ability to generate new colonies in a non-dividing
state, for example, when a specific cell density is reached in liquid culture. Disruption of
the cytoplasmic thioredoxin gene TRX1 results in decreased chronologic lifespan [69,70],
while disruption of the mitochondrial thioredoxin gene TRX3 has no effect on chronologic
or replicative lifespan [71,72] (Table 1). Similarly, disruption of the cytoplasmic thioredoxin
reductase gene TRR1 reduces chronologic lifespan [73], while loss of the mitochondrial
thioredoxin reductase gene TRR2 does not affect chronologic or replicative lifespan [71,72].
Together, this indicates that the cytoplasmic thioredoxin system is required for normal
longevity in yeast, while the mitochondrial thioredoxin system is dispensable.

6. Cytoplasmic Thioredoxin Is Important for Longevity in Caenorhabditis elegans

In C. elegans, there are at least five different thioredoxins (TRX-1, TRX-2, TRX-3, TRX-4
and TRX-5) and two thioredoxin reductases (TRXR-1 and TRXR-2). TRX-1 and TRXR-1
make up the cytoplasmic thioredoxin system, while TRX-2 and TRXR-2 form the mitochon-
drial thioredoxin system (Table S1). In C. elegans, disruption of the cytoplasmic thioredoxin
gene trx-1 results in a clear decrease in lifespan in wild-type worms and multiple long-lived
mutant strains [74–77] (Table 1). Deletion of trx-1 also results in decreased resistance to
exogenous stressors and elevated levels of reactive oxygen species [74,75]. The large effect
of trx-1 disruption on lifespan is perhaps surprising given that its expression is primarily
limited to a small number of neurons (ASI and ASJ) and part of the intestine [75,76] and
accounts for less than 1% of the total thioredoxin mRNA [74]. A role for trx-1 in determining
lifespan is supported by the observation that overexpression of trx-1 is sufficient to extend
longevity [77]. In contrast to trx-1, disruption of the cytoplasmic thioredoxin reductase
gene trxr-1 does not affect lifespan [74,78,79], and trxr-1 mutants do not exhibit decreased
survival after exposure to oxidative stress or other exogenous stressors [74,78,79]. Together,
this suggests that trx-1 performs functions in the cell that are independent of trxr-1 and are
important for lifespan and cellular resilience. It is possible that trx-1 can be re-activated
by another enzyme or that redox-independent functions of trx-1 are important for stress
resistance and longevity.

As in yeast, deletion of the mitochondrial thioredoxin gene trx-2 does not affect lifes-
pan in wild-type worms [74,80], though it is required for lifespan extension in the long-lived
mitochondrial mutants nuo-6 and isp-1 [74]. Disruption of trx-2 also has little or no detri-
mental effect on resistance to oxidative or other stresses in wild-type animals [74,80]. The
lifespan of trxr-2 mitochondrial thioredoxin reductase mutants is equivalent to or slightly
decreased compared to wild-type worms, depending on the precise experimental condi-
tions [74,79,80]. Similar to trx-2, trxr-2 is specifically required for the extended longevity of
nuo-6 and isp-1 mutants [74] but not long-lived daf-2 insulin/IGF-1 receptor mutants [80].
The loss of trxr-2 does not decrease resistance to oxidative or other stresses [74,80], despite
resulting in increased levels of ROS [74,79].
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Deletion of trx-3 does not affect lifespan or resistance to stress, while trx-3 overex-
pression provides modest protection against exposure to bacterial pathogens [81]. Overall,
cytoplasmic thioredoxin is required for both lifespan and resistance to stress in C. elegans,
while cytoplasmic thioredoxin reductase and both components of the mitochondrial thiore-
doxin system are dispensable. Although trx-1 is required to achieve a normal lifespan
in C. elegans, this gene is not essential, as trx-1 mutants are viable, fertile and develop
to adulthood.

7. Contribution of Thioredoxin Systems to Lifespan in Drosophila

Drosophila melanogaster possess a male-specific thioredoxin, thioredoxinT (TrxT), and a
female specific thioredoxin, Deadhead (Dhd) and both of these are present in the nucleus in
the germline. Drosophila also possess thioredoxin 2 (Trx-2), which is present in the nucleus.
There are two thioredoxin reductases in Drosophila: Trxr-1 possess isoforms present in
both the cytoplasm and mitochondria, while Trxr-2 is expressed in the mitochondria
(Table S1). Disruption of either the male-specific thioredoxinT (TrxT) or female-specific
deadhead (dhd) thioredoxin genes does not affect longevity in Drosophila [82] (Table 1).
Overexpression of TrxT in all neurons results in increased lifespan and enhanced resistance
to oxidative stress [83]. Disruption of the thioredoxin gene Trx-2 decreases lifespan [82,84],
while overexpression of this gene extends longevity [82]. Trx-2 mutants have been shown
to possess increased resistance to hydrogen-peroxide-mediated oxidative stress [82] but
decreased resistance to paraquat-mediated oxidative stress [84]. Trx-2 overexpression
flies show increased resistance to both types of oxidative stress [82,84], while flies lacking
all three thioredoxin genes (TrxT, dhd and Trx-2) show decreased resistance to hydrogen-
peroxide-mediated oxidative stress compared to wild-type flies [82].

A null mutation in the cytoplasmic thioredoxin reductase gene Trxr-1 results in larval
lethality, while mutations that decrease Trxr-1 activity markedly reduce adult lifespan [85].
The lifespan deficit in Trxr-1 mutants is partially rescued by overexpression of catalase, sug-
gesting that diminished oxidative stress defense contributes to the decrease in longevity [85].
Interestingly, Trxr-1 encodes a cytoplasmic and mitochondrial isoform, both of which af-
fect longevity independently of the other isoform [86]. While overexpression of Trxr-1 is
not sufficient to extend longevity [87], overexpression of the mitochondrial thioredoxin
reductase gene Trxr-2 increases lifespan [87].

The thioredoxin-interacting protein TXNIP is a negative regulator of thioredoxin.
Knockdown of Vdup1, the Drosophila homolog of TXNIP, with RNAi increases thioredoxin
activity and results in an increase in mean lifespan and a slight increase in resistance to
oxidative stress [88]. Overexpression of Vdup1 results in the opposite effect, decreasing
thioredoxin activity, decreasing lifespan and decreasing oxidative stress resistance [88].

Overall, Drosophila lifespan is highly dependent on TRXR-1 activity, while TRX-2
modestly contributes to longevity.
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Table 1. Effect of thioredoxin systems on lifespan in model organisms.

Organism Gene Location Modulation Effect on Lifespan References

Yeast

TRX1 Cytoplasm Disruption ↓ [69,70]

TRR1 Cytoplasm Disruption ↓ [73]

TRX3 Mitochondria Disruption = [71,72]

TRR2 Mitochondria Disruption = [71,72]

C. elegans

trx-1 Cytoplasm Disruption ↓ [74–77]

trx-1::GFP Cytoplasm Overexpression ↑ [77]

trxr-1 Cytoplasm Disruption = [74,78,79]

trx-2 Mitochondria Disruption = [74,80]

trxr-2 Mitochondria Disruption =/↓ [74,79,80]

trx-3 Cytoplasm/Nucleus
Intestine Disruption = [81]

Drosophila

TrxT Nucleus, male specific Disruption = [82]

TrxT Nucleus, male specific Overexpression in all
neurons ↑ [83]

dhd Nucleus, female specific Disruption = [82]

Trx-2 Nucleus Disruption ↓ [82,84]

Trx-2 Nucleus Overexpression ↑ [82]

TrxT-dhd-Trx-2 Nucleus Disruption =/↓ [82]

Trxr-1 Cytoplasm and
Mitochondria Disruption Larval lethality [85,86]

Trxr-1 Cytoplasm and
Mitochondria Overexpression = [87]

Trxr-2 Mitochondria Overexpression ↑ [87]

Vdup1 Cytoplasm/Nucleus Downregulation ↑ [88]

Vdup1 Cytoplasm/Nucleus Overexpression ↓ [88]

Mice

Txn1/Trx1 Cytoplasmic Disruption Embryonic lethal [89]

Txn1+/− Cytoplasmic Heterozygous disruption = [90,91]

Human TXN Cytoplasmic Overexpression ↑ [92]

Human TXN Cytoplasmic Overexpression ↑ early lifespanin
males [93]

Human TXN Cytoplasmic Overexpression = [94]

Txnrd1 Cytoplasmic Disruption Embryonic lethal [95]

Txn2/Trx2 Mitochondria Disruption Embryonic lethal [96]

Txn2+/− Mitochondria Heterozygous disruption = [97]

Human TXN2 Mitochondria Overexpression ↑ early lifespan [98]

Human TXN1 +
human TXN2

Cytoplasmic and
Mitochondria Overexpression ↓ [99]

Txn+/−; Txn2+/− Cytoplasmic and
Mitochondria Heterozygous disruption ↑ [91]

Txnrd2 Mitochondria Disruption Embryonic lethal [100]

Rats Human TXN Cytoplasmic Overexpression = [91]

“↓” lifespan decreased compared to WT. “↑” lifespan increased compared to WT. “=” lifespan equivalent to WT.

8. Cytoplasmic and Mitochondrial Thioredoxin Systems Are Required for Survival in Mice

In mice, there is a cytoplasmic thioredoxin system consisting of the thioredoxin TXN1
and the thioredoxin reductase TXNRD1 and mitochondrial thioredoxin system consisting
of the thioredoxin TXN2 and the thioredoxin reductase TXNRD2. Mice also have a third
thioredoxin reductase TXNRD3, which is present in the cytoplasm and nucleus (Table S1).
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Mice that are homozygous for the targeted inactivation of the cytoplasmic thioredoxin gene
Txn1/Trx1 are embryonic lethal [89], while heterozygous Txn1+/−mice have a wild-type
lifespan [90,91] (Table 1). The targeted inactivation of the cytoplasmic thioredoxin reductase
gene Txnrd1/TrxR1 also results in embryonic lethality [95]. Although one study reported
that overexpression of human TXN under the human β-actin promoter significantly extends
longevity in mice [92], a subsequent study using the same mice found that only early life
survival in male mice was significantly increased via TXN overexpression [93]. This
difference may have arisen due to a relatively short wild-type mouse lifespan in the
earlier study. Nonetheless, both studies reported beneficial effects of TXN overexpression,
including protection against focal ischemia [101], increased survival of isolated cells after
UV stress [92], decreased oxidative damage [93] and increased resistance to oxidative
stress [93]. A third study examined the effect of overexpressing human TXN under the
endogenous TXN promoter, as expression from the β-actin promoter decreases with age,
which may have accounted for the lack of effect on maximum lifespan in the second study.
While there appeared to be a mild increase in survival at early time points, there was overall
no statistically significant difference between TXN overexpressing mice and wild-type
animals [94].As with the cytoplasmic thioredoxin system, the mitochondrial thioredoxin
system is also essential for embryonic development in mice. Targeted inactivation of the
mitochondrial thioredoxin gene Txn2/Trx2 [96] or the mitochondrial thioredoxin reductase
gene Txnrd2/TrxR2 [100] results in embryonic lethality. Mice heterozygous for the Txn2 gene
(Txn2+/−mice) possess a wild-type lifespan [102], despite exhibiting elevated levels of ROS
and increased oxidative damage to DNA, protein and lipids [97]. Similar to overexpression
of TXN, transgenic mice expressing increased levels of human TXN2 under the human
endogenous promoter show a small increase in lifespan early in life but no change in
maximum lifespan [98].

Interestingly, simultaneous overexpression of human TXN and TXN2 decreases lifes-
pan in mice, despite the overexpression of each gene individually mildly increasing early
lifespan [99]. The detrimental effect on longevity was attributed to an increased incidence
of cancer. Consistent with this result, mice that are heterozygous for the inactivation of both
Txn1 and Txn2 exhibit a significant increase in lifespan, which may be due to a decrease in
cancer incidence [91]. Txnrd2-transgenic mice have recently been generated but their lifes-
pan has yet to be determined [103]. Cells derived from the Txnrd2-transgenic mice exhibit
increased resistance to oxidative stress. It will be interesting to determine the lifespan of
these animals and the extent to which overexpression of Txnrd1 will affect longevity.

In summary, all components of the cytoplasmic and mitochondrial thioredoxin sys-
tems are essential for embryonic development in mouse models. It is unclear whether
the lack of survival during embryonic development results from a severe shortening of
lifespan or whether functional thioredoxin systems are required for important processes
in embryonic development. To examine the effect of thioredoxin-system disruption on
lifespan independent of embryonic development, one could generate adult-only knock-
out animals using a Cre/lox system or use an inducible expression system to express
thioredoxin during development in a thioredoxin-knockout background. Results from
the overexpression studies indicate that modulation of thioredoxin genes affects longevity
in mice.

9. Thioredoxin Reductase Variant Is Associated with Longevity in Humans

Similar to mice, humans possess TXN and TXNRD1 in the cytoplasm and TXN2 and
TXNRD2 in the mitochondria with a third thioredoxin reductase TXNRD3 present in the
cytoplasm and nucleus (Table S1). While it is not possible to genetically manipulate the
expression levels of thioredoxin system genes in humans, multiple studies have identi-
fied genetic variants that are associated with extended longevity. In a study comparing
oldest–old individuals (age 92–93) with middle-aged Danes, an allele of the cytoplasmic
thioredoxin reductase gene TXNRD1 was found to be associated with longevity [104]. A
subsequent study found that genetic variation in TXNRD1 is associated with physical and
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cognitive performance in very old individuals [105]. The association of TXNRD1 with
physical performance in old age was confirmed in a cohort from Southern Italy [106], while
the association of TXNRD1 with longevity was supported by results from a Dutch cohort,
which showed the same relationship but failed to reach significance [104]. Taken together,
these results suggest that the thioredoxin system may also contribute to longevity in hu-
mans. As the number of studies examining the role of the thioredoxin system in longevity
in humans is currently limited, additional evidence would strengthen this conclusion.

10. Discussion
10.1. Relative Importance of Cytoplasmic and Mitochondrial Thioredoxin Systems Differs
between Species

The role of the cytoplasmic and mitochondrial thioredoxin systems in determining
lifespan has been examined in multiple genetic model organisms through increasing or
decreasing the expression of thioredoxin or thioredoxin reductase. While there is evi-
dence for a contribution of the thioredoxin systems to longevity in yeast, worms, flies,
mice and humans, the relative importance of each component of these systems varies
between species. In yeast and C. elegans, disruption of the cytoplasmic thioredoxin system
results in the largest detrimental effect on longevity, while disruption of the mitochondrial
thioredoxin system has minimal impact on lifespan. In Drosophila, both the cytoplasmic
and mitochondrial thioredoxin systems affect lifespan, with the largest effect observed
with the cytoplasmic thioredoxin reductase. In mice, both the cytoplasmic and mitochon-
drial thioredoxin systems are essential for life as disruption of any of the components
results in embryonic lethality. Thus, it appears that in more-complex organisms, there is a
greater reliance on thioredoxin systems for survival and an increased importance of the
mitochondrial thioredoxin system compared to less-complex organisms.

10.2. Cytoplasmic and Mitochondrial Thioredoxin Systems Act Independently to Affect Longevity

In reviewing the literature, we found that disrupting the cytoplasmic or mitochondrial
thioredoxin systems often resulted in different effects on longevity, especially in yeast and
C. elegans. This clearly indicates that the cytoplasmic and mitochondrial thioredoxin systems
do not perform redundant functions. It is important to possess a functioning thioredoxin
system in both of these compartments of the cell. As one of thioredoxin’s main functions is
to reduce disulfide bonds in oxidized proteins, thioredoxin is required to reduce proteins in
all parts of the cell. Precise subcellular localization is likely also important for thioredoxin’s
roles in intracellular signaling and as a molecular chaperone.

10.3. Thioredoxin and Thioredoxin Reductase can Affect Lifespan Independently

Although in some cases modulating the expression of the thioredoxin gene resulted in
the same effect as modulating the expression of the corresponding thioredoxin reductase
gene on lifespan, there were also examples in which different effects were observed. For
example, in C. elegans, deletion of the cytoplasmic thioredoxin gene trx-1 decreases lifespan
and stress resistance, while loss of the cytoplasmic thioredoxin reductase gene trxr-1 does
not reduce longevity or resistance to stress. In Drosophila, disruption of TrxT or dhd does not
affect lifespan, while loss of Trxr-1 results in larval lethality. In cases where thioredoxin dis-
ruption produces a phenotype while disruption of the corresponding thioredoxin reductase
does not, this suggests that the thioredoxin possesses a thioredoxin-reductase-independent
function or that multiple enzymes can restore thioredoxin activity. As thioredoxins have
been shown to possess redox-independent functions [107–111], disruption of thioredoxin
and thioredoxin reductase would produce different results if it is a redox-independent
function of thioredoxin that is contributing to its effect on lifespan. In cases where the phe-
notype resulting from disruption of thioredoxin reductase is more severe than disruption
of the corresponding thioredoxin, it is possible that the thioredoxin reductase is also acting
on other targets, leading to a broader effect than just disrupting the thioredoxin.
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10.4. The Effect of Thioredoxin and Thioredoxin Reductase on Lifespan Is Correlated with Effect on
Resistance to Oxidative Stress

As thioredoxin performs multiple functions within the cell as an antioxidant, signaling
molecule and molecular chaperone, it is important to determine the relative contributions
of each of these functions to longevity. In general, it has been observed that resistance to
oxidative stress is modulated in the same direction as lifespan. Disruption of TRR1 in yeast,
deletion trx-1 in C. elegans, disruption of Trx-2 in Drosophila and overexpression of Vdup1
in Drosophila all result in decreased lifespan and decreased resistance to oxidative stress.
Deletion of trxr-1, trx-2, trxr-2 or trx-3 in C. elegans does not decrease lifespan or oxidative
stress resistance. Overexpression of TrxT or Trx-2 or downregulation of Vdup1 in Drosophila
increases lifespan and resistance to oxidative stress. Taken together, these results indicate a
correlation between resistance to oxidative stress and lifespan and are consistent with the
conclusion that one of the mechanisms by which the thioredoxin systems affect longevity is
through modulation of resistance to oxidative stress.

11. Conclusions

Overall, this review highlights the importance of both the cytoplasmic and mito-
chondrial thioredoxin systems in determining lifespan, which is conserved across species.
Disruption of thioredoxin or thioredoxin reductase can have detrimental effects on lifespan
in yeast, worms, flies and mice. In addition, overexpression of individual thioredoxin or
thioredoxin reductase genes is sufficient to extend longevity in worms, flies and mice. In
future studies, it will be important to define the precise molecular mechanisms by which
each thioredoxin system affects lifespan.

Supplementary Materials: The following supporting information can be downloaded at: https:
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