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Abstract: Among the phospholipase A2 (PLA2) family, the secreted PLA2 (sPLA2) family in mammals
contains 11 members that exhibit unique tissue or cellular distributions and enzymatic properties.
Current studies using knockout and/or transgenic mice for a nearly full set of sPLA2s, in combination
with comprehensive lipidomics, have revealed the diverse pathophysiological roles of sPLA2s in
various biological events. Individual sPLA2s exert specific functions within tissue microenvironments,
likely through the hydrolysis of extracellular phospholipids. Lipids are an essential biological
component for skin homeostasis, and disturbance of lipid metabolism by deletion or overexpression
of lipid-metabolizing enzymes or lipid-sensing receptors often leads to skin abnormalities that are
easily visible on the outside. Over the past decades, our studies using knockout and transgenic mice
for various sPLA2s have uncovered several new aspects of these enzymes as modulators of skin
homeostasis and disease. This article summarizes the roles of several sPLA2s in skin pathophysiology,
providing additional insight into the research fields of sPLA2s, lipids, and skin biology.

Keywords: contact hypersensitivity; dendritic cell; epidermis; gut microbiota; hair follicle; keratinocyte;
lipid metabolism; phospholipase A2; psoriasis; skin

1. Introduction

Phospholipase A2 (PLA2) enzymes hydrolyze the sn-2 position of glycerophospho-
lipids (hereafter phospholipids) to generate free fatty acids (FFAs) and lysophospholipids
(LPLs) (Figure 1). The mammalian genome encodes more than 50 PLA2s or related enzymes,
which are classified into several families based on their structures and functions [1]. The
PLA2 reaction is important for the production of lipid mediators since polyunsaturated
fatty acids (PUFAs) and LPLs released by PLA2s can be converted to a wide variety of bioac-
tive lipids referred to as lipid mediators, such as prostaglandins, leukotrienes, resolvins,
and platelet-activating factors. In addition, PLA2s can also be involved in membrane
remodeling by altering phospholipid composition, energy production by supplying FFAs
as β-oxidation substrates, or regulation of microenvironmental lipid milieu by fine-tuning
the balance between saturated and unsaturated FFAs. Moreover, several PLA2 enzymes cat-
alyze non-PLA2 reactions, such as phospholipase A1, phospholipase B, lysophospholipase,
triglyceride lipase, and transacylase reactions. As such, these hydrolytic actions of PLA2s
on a wide variety of lipids are associated with various pathophysiological events, ranging
from the maintenance of tissue homeostasis to inflammatory, immunological, metabolic,
cardiovascular, reproductive, neurodegenerative, and oncogenic disorders.

In contrast to intracellular PLA2s, secreted PLA2s (sPLA2) are ideally positioned to
cleave phospholipids available on the cell surface or in the extracellular milieu [2]. The
sPLA2 family in mammals contains 11 members, namely IB, IIA, IIC (present in mice
and rats, but pseudogene in humans), IID, IIE, IIF, III, V, X, XIIA, and XIIB (catalytically
inactive), according to their sequence homology as well as the number and position of
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disulfide bonds [2]. Historically, sPLA2-IB and -IIA are two classical sPLA2s originally
identified by protein purification in the late 1980s. While sPLA2-IB is secreted from the
pancreas into the intestinal lumen and acts as a digestive enzyme [3], sPLA2-IIA, initially
identified in the synovial fluid of arthritis patients and in platelets, is the only sPLA2 that
is abundantly detected in the circulation of patients with inflammation or infection and
has been considered to participate in systemic or local inflammation and antibacterial
defense [4]. sPLA2-IIC and -V were identified by genomic sequencing of the locus close
to the sPLA2-IIA (Pla2g2a) gene in 1994 [5–9]. Soon afterward, from 1997 to the early
2000s, sPLA2-IID, -IIE, -IIF, -III, and -X, as well as two sPLA2-XII isoforms, were identified
using EST database searches [10–19]. Group I/II/V/X sPLA2s are structurally related,
low-molecular-mass enzymes with a conserved His-Asp catalytic dyad, a Ca2+-binding
loop, and 6–8 disulfide bonds that ensure strict Ca2+-dependent PLA2 reaction and protein
stability, while group III and XII sPLA2s are each structurally atypical, having homology
with group I/II/V/X sPLA2s only in short stretches of the catalytic and Ca2+-binding
sites. Individual sPLA2s exhibit unique tissue and cellular distributions and exert specific
functions in a lipid mediator-dependent or, possibly, -independent manner. In general,
individual sPLA2s exert their specific functions within tissue microenvironments in which
they are locally expressed. Although the activity of sPLA2s on mammalian cells is relatively
weak, they can act in a paracrine fashion on the plasma membrane of activated, damaged,
or dying cells in preference to resting cells [20–22]. More importantly, non-cellular phos-
pholipid components, such as dietary lipids, lipoproteins, lung surfactants, extracellular
vesicles (EVs), and membranes of invading microorganisms, such as bacteria and pos-
sibly fungi and parasites, act as excellent hydrolytic targets of sPLA2s [23–28]. In some
cases, sPLA2-binding proteins such as PLA2R1 (sPLA2 receptor) modulate the functions of
sPLA2 [29,30]. Various pathophysiological roles of individual sPLA2s, as demonstrated by
studies using sPLA2 gene-manipulated (transgenic or knockout) mice over the past decades,
are summarized in our current reviews [31–36]. Recently, our group has uncovered novel
aspects of sPLA2s in skin homeostasis and diseases. This review summarizes the roles
of sPLA2s spatiotemporally expressed in distinct cells in the context of skin homeostasis,
inflammation, and cancer, thus expanding our understanding of the biological roles of
sPLA2-driven lipid metabolism.
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Figure 1. Phospholipase A2 (PLA2) reaction. PLA2 enzymes hydrolyze the sn-2 position of phospho-
lipids (arrow) to generate free fatty acids (FFAs) and lysophospholipids (LPLs). AA, arachidonic 
acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; LA, linoleic acid; LPA, lysophospha-
tidic acid; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; LPS, lysophospha-
tidylserine; OA, oleic acid; PAF, platelet-activating factor; PC, phosphatidylcholine; PE, phosphati-
dylethanolamine; PS, phosphatidylserine. 
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Figure 1. Phospholipase A2 (PLA2) reaction. PLA2 enzymes hydrolyze the sn-2 position of phospho-
lipids (arrow) to generate free fatty acids (FFAs) and lysophospholipids (LPLs). AA, arachidonic
acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; LA, linoleic acid; LPA, lysophos-
phatidic acid; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; LPS, lysophos-
phatidylserine; OA, oleic acid; PAF, platelet-activating factor; PC, phosphatidylcholine; PE, phos-
phatidylethanolamine; PS, phosphatidylserine.

2. The Roles of Lipids in the Skin

The skin, an organ that interfaces between the host and the external environment,
serves not only as a mechanical barrier to prevent water loss and the entry of harmful
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environmental substances and microorganisms but also as an active barrier that acts as
the first line of immune defense against infection [37–39]. The epidermis is a highly
organized epithelial tissue composed of four distinctive layers: the innermost stratum
basale, stratum spinosum, stratum granulosum, and outermost stratum corneum. The
dermis, a layer of skin between the epidermis and subcutaneous tissues, consists primarily
of dense irregular connective tissue and cushions the body from stress and strain. Dermal
fibroblasts interact with keratinocytes by secreting various growth factors and cytokines,
which contribute to skin homeostasis. The hair follicle, a skin appendage formed by
interactions between epidermal keratinocytes committed to hair follicle differentiation and
dermal fibroblasts committed to the formation of the dermal papilla, undergoes repeated
hair cycles. Additionally, immune cells being resident in normal skin or those infiltrating
into inflamed skin have various effects on epidermal keratinocytes and dermal fibroblasts
via the production of cytokines, chemokines, and likely bioactive lipids.

Lipids represent an essential biological component for skin homeostasis and diseases.
Perturbed lipid metabolism often leads to skin abnormalities that are outwardly visible.
The epidermis acts as a permeability barrier, which prevents the entry of pathogens, aller-
gens, and harmful substances from outside the body and the loss of water and electrolytes
from inside the body. The stratum corneum contains a multilayered lipid structure called
lipid lamellae, whose hydrophobicity prevents the permeation of the hydrophilic materials.
Lipid lamellae consist mainly of ceramides, cholesterol, and FFAs. Epidermal ceramides
are composed of diverse molecular species containingω-O-acylceramides, a unique class
of ceramides specialized for epidermal barrier formation. Unlike normal ceramides that
have a long-chain base and a fatty acyl chain of C16–24,ω-O-acylceramides have a very
long fatty acyl chain (C28–36) that is additionally esterified with a linoleic acid (LA), be-
ing one of the most hydrophobic lipids in mammalian bodies [40–42]. The formation of
ω-O-acylceramides from normal ceramides is catalyzed sequentially with the fatty acid
elongase ELOVL4, the fatty acid ω-hydroxylase CYP4F22 (in humans) or CYP4F39 (in
mice), and the patatin-like phospholipase PNPLA1 [42–44]. A pool ofω-O-acylceramides
is further converted to protein-bound ceramides forming the cornified lipid envelope by
the epidermal lipoxygenases 12R-LOX and eLOX3 followed by SDR9C7, a member of the
dehydrogenase/reductase family [45,46]. The nutritional insufficiency of essential fatty
acids, especially LA, impairsω-O-acylceramide synthesis and ultimately causes skin ab-
normalities [47] and genetic mutations in multiple steps of skin lipid metabolism variably
and often severely affect epidermal barrier function or hair cycling, thereby triggering
or exacerbating skin disorders such as ichthyosis, psoriasis, atopic dermatitis, and alope-
cia [48–51]. FFAs have also been implicated in epidermal acidification for skin barrier
formation [52–54]. Furthermore, dysregulated production of lipid mediators derived from
FFAs or LPLs can be linked to various skin disorders such as hair loss, epidermal hyper-
plasia, dermatitis, and cancer [49,55,56]. For instance, arachidonic acid (AA)-oxygenated
lipid mediators, including prostaglandins and leukotrienes, whose production is in many
cases regulated by cytosolic PLA2α (cPLA2α; PLA2G4A) coupled with cyclooxygenases
and lipoxygenases [57], variably regulate immunological responses in skin diseases [58]; N-
acylethanolamines, a distinct class of lipid mediators having a structure of FFA condensed
with ethanolamine, are produced by cPLA2ε (PLA2G4E) in epidermal keratinocytes and
suppress psoriatic inflammation [59]; and lysophosphatidic acid (LPA), spatiotemporally
generated by phosphatidic acid-specific phospholipase A1 (PA-PLA1α) in hair follicles,
regulates hair growth and quality [55].

It has been proposed that sPLA2 in the skin provides FFAs that maintain the acid-
ity of the stratum corneum [60]. Mice transgenically overexpressing human sPLA2-IIA
(PLA2G2A-TG) or sPLA2-X (PLA2G10-TG) show striking skin abnormalities characterized
by epidermal thickening, sebaceous gland hyperplasia, and alopecia, independently of
inflammation [61,62]. Additionally, skin-specific transgenic mice for mouse sPLA2-IIA
(Pla2g2a-TG) show increased skin carcinogenesis [63]. However, since neither sPLA2-IIA
nor -X is endogenously detectable in mouse skin at a substantial level, the pathophysio-
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logical significance of the skin phenotypes observed in these transgenic mice is unclear,
and it is possible that the overexpressed sPLA2-IIA or -X might mimic the function of other
sPLA2(s) intrinsically expressed in mouse skin. In humans, expression of sPLA2-IIA and
-X are detected in transformed keratinocytes, and PLA2G2A knockdown in human skin
squamous cell carcinoma reduces tumorigenicity in a mouse xenograft model [64], pointing
to the potential contribution of sPLA2-IIA or -X to skin cancer. The major sPLA2s expressed
endogenously in mouse skin are sPLA2-IIF and sPLA2-IIE, the former being expressed in
the epidermis [65] and the latter in hair follicles depending on the hair cycle [66]. This
suggests that these two sPLA2s have distinctive and non-redundant roles at different sites
within the skin. Moreover, sPLA2s expressed in immune cells and even in distal tissues can
also affect skin pathology. In the following sections, the functions of several sPLA2s that
exhibit distinct tissue/cellular localizations in skin homeostasis and disease are discussed.

3. sPLA2 in the Epidermis

The epidermis, as described above, is a highly organized stratified epithelium with
distinctive keratinocyte layers. Notably, sPLA2-IIF is the major sPLA2 expressed in the
suprabasal layers of mouse and human epidermis [65]. Under the basal state, Pla2g2f−/−

mice exhibit only mild skin abnormalities, characterized by a fragile stratum corneum
with modest perturbation of skin barrier function and acidity. These phenotypes are more
pronounced in the abdominal skin of an adult, but not neonatal, Pla2g2f−/− mice, sug-
gesting that although sPLA2-IIF is not a major player in the central program of epidermal
differentiation, it contributes to increasing stratum corneum stability against environmental
stresses such as friction against the floor or prolonged exposure to skin microbiota. After
tape-stripping of the stratum corneum, Pla2g2f−/− mice display delayed recovery from the
skin barrier damage, suggesting that sPLA2-IIF accelerates epidermal repair [60]. The im-
pact of sPLA2-IIF ablation is more dramatic in primary keratinocytes in culture, where the
cells fail to be properly differentiated and activated when sPLA2-IIF is genetically ablated
or pharmacologically inactivated by a pan-sPLA2 inhibitor [65]. Moreover, by employing
an epidermal three-dimensional (3D) culture model with a human epidermal keratinocyte
cell line (NHEK-SVTERT3-5), which had been immortalized by retroviral transfection of
SV40 [67], the expression of PLA2G2F mRNA was markedly increased in accordance with
upward proliferation and differentiation of keratinocyte layers, and its knockdown resulted
in a decrease in the expression of keratinocyte differentiation markers and an increase
in transepidermal water loss, indicative of disturbed skin barrier function (manuscript
in preparation). Thus, loss of sPLA2-IIF impairs proper keratinocyte differentiation and
barrier formation in both mice and humans.

Global or skin-specific transgenic mice overexpressing mouse sPLA2-IIF (Pla2g2f -TG)
spontaneously develop psoriasis-like epidermal hyperplasia and alopecia, with increased
expression of a panel of psoriasis markers, including S100A9 and IL-36α [65]. Moreover,
sPLA2-IIF is induced in mouse skin treated with imiquimod, an inducer of experimental pso-
riasis, and is also highly expressed in the hyperplasic epidermis of patients with psoriasis.
Importantly, genetic deletion of sPLA2-IIF in mice protects against epidermal hyperplasia
and associated inflammation in models of Th17-dependent psoriasis, Th1-dependent con-
tact hypersensitivity (CHS), and skin carcinogenesis. These findings indicate that sPLA2-IIF
is associated with the exacerbation of epidermal-hyperplasic diseases. Mechanistically,
sPLA2-IIF preferentially hydrolyzes plasmalogen (alkenyl-type phosphatidylethanolamine
(PE)) having an sn-2 PUFA (DHA in particular) secreted from keratinocytes to yield lyso-
plasmalogen (P-LPE). This unique LPL facilitates aberrant proliferation and activation of
keratinocytes, leading to the propagation of skin inflammation. Indeed, the levels of P-LPE
in mouse skin are correlated well with the expression levels of sPLA2-IIF in multiple skin
disease models, and topical application of P-LPE to Pla2g2f−/− skin in vivo or supple-
mentation of Pla2g2f−/− keratinocytes with P-LPE ex vivo restores the psoriasis-related
phenotypes [65].
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Thus, the sPLA2-IIF/P-LPE axis has beneficial and detrimental roles in skin barrier
formation and epidermal-hyperplasic inflammation, respectively, thereby regulating the
physiology and pathology of the skin. Since LPLs with an sn-1 alkenyl moiety are struc-
turally unstable and can be readily degraded non-enzymatically under acidic conditions, it
is plausible that P-LPE exists more stably in inflamed skin where epidermal pH becomes
close to neutral. In contrast, in healthy skin where epidermal pH is mildly acidic, P-LPE
might be further converted to a certain stable metabolite that regulates skin homeostasis
and repair, a possibility that is now under investigation.

4. sPLA2 in Hair Follicles

Abnormalities in skin lipid metabolism vary and often severely affect hair cycling,
causing hair loss or alopecia [49,55]. Hair follicles in the skin undergo repeated cycles
of growth (anagen), regression (catagen), and rest (telogen) during life [68]. sPLA2-IIE
is abundantly expressed in hair follicles during the anagen period, being distributed in
companion cells of the outer root sheath and cuticular cells of the inner root sheath [66].
In Pla2g2e−/− mice, hair follicles show a detachment between the follicular epithelium
(cuticle) and hair shaft and altered expression of some hair follicle-related genes, but with
little or no abnormalities in the epidermis. Lipidomics analysis has revealed that sPLA2-
IIE mobilizes various unsaturated FFAs and LPE species in mouse skin, consistent with
the in vitro substrate specificity of sPLA2-IIE. However, it remains unclear which lipid
metabolites mobilized by sPLA2-IIE participate in hair follicle homeostasis and whether
sPLA2-IIE also plays a similar role in hair quality control in human skin.

5. sPLA2 in Lymphoid Tissues That Affects Skin Diseases by Regulating Adaptive
Immune Responses

While sPLA2-IIE and sPLA2-IIF are abundantly expressed in keratinocytes of the
upper epidermis and hair follicles, respectively (see above), sPLA2-IID is barely de-
tectable in mouse skin. Instead, sPLA2-IID is expressed abundantly in dendritic cells
(DCs) and macrophages, especially CD4+CD11b+CD11c+ MHC class IIlo DCs and M2-
like macrophages, in secondary lymphoid organs such as the spleen and lymph nodes
(LNs) of mice and humans [69,70]. Furthermore, sPLA2-IID expression is downregulated,
rather than upregulated, in DCs stimulated with antigen or lipopolysaccharide [69,71].
A lipidomics-based PLA2 enzyme assay using a natural phospholipid mixture extracted
from mouse lymphoid tissue as a substrate [72] indicates that sPLA2-IID preferentially
hydrolyzes PE species with an sn-2 PUFA, including ω6 AA and, more efficiently, ω3
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), rather than those with oleic
acid and LA. This enzymatic preference of sPLA2-IID for PE species with anω3 PUFA as
substrates, along with its distribution in lymphoid immune cells and downregulation by
proinflammatory stimuli, suggests that sPLA2-IID has a resolving, rather than promoting,
role in the adaptive immune response. In fact, despite the low expression of sPLA2-IID
in the skin, Pla2g2d deficiency leads to exacerbation of CHS and psoriasis, likely because
sPLA2-IID attenuates adaptive immunity in the LNs, thereby sequestering pathogenic Th1
and Th17 immune responses [69,70].

In a model of Th1-dependent CHS, topical application of the hapten antigen dinitroflu-
orobenzene to abdominal skin (sensitization), followed by a second application of the same
antigen to ear skin (elicitation), induces ear swelling. In the elicitation phase of CHS, the
resolution of inflammation in the skin and LNs is delayed in Pla2g2d−/− mice [69]. In this
state, expression levels of the Th1 cytokines IFN-γ and IL-12 are greater in the draining LNs
of Pla2g2d−/− mice than in those of littermate wild-type (WT) mice. Likewise, in a model
of psoriasis, Pla2g2d−/− mice display more severe epidermal hyperplasia than do WT mice,
with increased IL-17A+ or IL-22+ T cells in the affected skin and LNs [70]. Furthermore, DCs
isolated from Pla2g2d−/− mice are hyperactivated even without stimulation. Mechanisti-
cally, sPLA2-IID in the LNs constitutively hydrolyzes PUFA-containing PE species (possibly
in EV membranes) to mobilizeω3 PUFA-derived anti-inflammatory lipid mediators that
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put a brake on DC-mediated adaptive immunity. Indeed, steady-state levels ofω3 PUFAs
and their metabolites, such as DHA-derived resolvin D1 (RvD1), are markedly reduced in
LNs from Pla2g2d−/− mice compared to WT mice. Conversely, Pla2g2d-TG mice display
milder inflammation than do WT mice in the CHS and psoriasis models, with increased
levels of ω3 PUFA metabolites [70]. ω3 PUFA-derived resolvins and maresins suppress
acquired immunity by attenuating DC migration, activation, and antigen presentation
to T cells and by preventing IgE class switching in B cells [69,73–75]. Moreover, these
ω3 PUFA-derived lipid mediators can facilitate the polarization of anti-inflammatory M2
macrophages [76,77], consistent with the fact that fewer M2 macrophages are present in the
LNs of Pla2g2d−/− mice [70].

On the other hand, the beneficial role of sPLA2-IID in counteracting pathogenic
Th1/Th17 immune responses can be conversely disadvantageous in some situations, such
as host defense against infection and cancer [70,78]. Indeed, sPLA2-IID promotes, rather
than prevents, the development of skin tumors, likely because it attenuates anti-tumor
Th1 immunity. Accordingly, Pla2g2d−/− mice are protected against skin carcinogenesis,
with increased tumor-suppressing IFN-γ+CD8+ cytotoxic T cells and M1 macrophages [70].
Thus, the immunosuppressive function of sPLA2-IID provides “good” or “bad” outcomes
in distinct disease settings, ameliorating skin inflammation and exacerbating skin cancer.
sPLA2-IID also alleviates anti-viral immunity, possibly through mobilizing anti-inflammatory
PGD2 in the lung, and ultimately exacerbates coronavirus-induced acute lung injury [78–80].
Thus, specific inhibition of sPLA2-IID in patients with certain types of cancer or infection
could be an attractive therapeutic intervention for restoring immunological functions, a
concept reminiscent of “immune checkpoint” therapy.

6. sPLA2 Involved in an Alteration of the Intestinal Microbiota That Secondarily
Affects Skin Diseases

Since sPLA2-IIA is induced in various tissues during inflammation in humans and
rats, its functions have been proposed to be related to the exacerbation of inflammation
through the production of lipid mediators at the local sites of expression and to host
defense against infectious bacteria through the degradation of bacterial membrane phos-
pholipids [4]. However, the Pla2g2a gene is naturally disrupted in C57BL/6 and 129/Sv
strains due to a frameshift mutation [81], which makes it difficult to assess the precise func-
tions of endogenous sPLA2-IIA in vivo using a standard knockout strategy. Other mouse
strains, such as BALB/c, C3H, and DBA/1, have an intact Pla2g2a gene [81], but unlike the
situation in humans and rats, its expression in these mouse strains is highly restricted to
the intestine [82,83]. Despite this biased distribution, genetic deletion of sPLA2-IIA in the
BALB/c strain results in attenuation of the development of carcinogen-induced skin cancer
and aggravation of imiquimod-induced psoriasis [84]. Therefore, it seems a mystery why
these phenotypes are manifested in mouse skin where sPLA2-IIA is minimally expressed.

In the small intestine, sPLA2-IIA is predominantly expressed in Paneth cells that
secrete a variety of antimicrobial peptides, and its expression is significantly reduced by
antibiotic administration [84]. This raises the possibility that sPLA2-IIA may be induced
by intestinal bacterial components and, as an antimicrobial protein, may have a secondary
effect on the skin by degrading intestinal bacterial membranes and thereby altering the
balance of the gut microbiota. A comparative analysis of the gut microbiota has revealed
apparent differences in several bacterial genera (Helicobacter, Ruminococcus, Lachnospira,
etc.) between Pla2g2a−/− and WT mice. Furthermore, when Pla2g2a−/− mice and WT mice
are co-housed from birth, under which gut microbiota in the two groups no longer differ,
the differences in skin phenotypes between the genotypes are lost. The small intestine of
Pla2g2a−/− mice shows notable changes in the expression of a group of genes involved in
the epithelial barrier and immunity, especially that of immunoglobulin genes, reflecting
the differences in the intestinal microbiota. Various plasma metabolites, including those
involved in immune modulation and oncogenesis, are significantly altered in Pla2g2a−/−

mice compared to WT mice. A comprehensive analysis of fecal lipids has revealed a
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significant decrease in unique lipid metabolites that are likely to be derived from the gut
bacteria rather than from the host in Pla2g2a−/− mice. Furthermore, when housed in a
cleaner animal facility, the intestinal microbiota, including Helicobacter and Ruminococcus,
are reduced, the intestinal expression of sPLA2-IIA is decreased, and the skin phenotypes
caused by sPLA2-IIA deficiency are mitigated. These results collectively suggest that
sPLA2-IIA secreted from small intestinal Paneth cells is involved in the shaping of the
intestinal microbiota and that when this pathway is perturbed, the intestinal microbiota
are altered, blood metabolites and immune responses are changed, and the phenotypes
eventually become evident in distal organs such as the skin. In further support of this
conclusion, PLA2G2A-TG mice on the C57BL/6 strain also display an alteration in the gut
microbiota, which leads to the exacerbation of systemic inflammation and arthritis [85].

These findings are the first to elucidate the function of sPLA2-IIA in the intestinal tract,
which has remained unknown for many years. Since several sPLA2 isoforms other than
sPLA2-IIA are also expressed in the intestinal tract, it is possible that they may also affect
the pathophysiology in distant organs via regulation of the intestinal microbiota, although
future work is needed to prove this hypothesis and generalize the theory. Beyond the
difference in the expression profiles of sPLA2-IIA between humans and mice, as mentioned
above, high expression of sPLA2-IIA in the intestine of both species suggests that this
bactericidal sPLA2 is likely to be involved in the regulation of the intestinal microbiota in
humans as well. Therefore, drug discovery targeting sPLA2-IIA in the intestinal tract may
be useful for new diagnoses and treatment of skin diseases.

The roles of sPLA2s in skin homeostasis and disease are summarized in Figure 2.
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Figure 2. The roles of sPLA2s in skin homeostasis and disease. The skin is an organ that interfaces
between the host and the external environment. The major sPLA2s expressed endogenously in
mouse skin are sPLA2-IIF and sPLA2-IIE, the former in the epidermis and the latter in hair follicles,
depending on the hair cycle. Following a psoriatic stimulus, sPLA2-IIF is induced in epidermal
keratinocytes by Th17 cytokines derived from T and Th17 cells and preferentially hydrolyzes plas-
malogen to give rise to P-LPE, which in turn promotes epidermal hyperplasia and inflammation. In
contrast, sPLA2-IID blocks Th17 immunity in the draining LN through the production ofω3 PUFA
metabolites, thereby putting a break on psoriasis. In the case of skin cancer, P-LPE produced by
epidermal sPLA2-IIF promotes hypergrowth of skin cancer without affecting its incidence, while
ω3 PUFA metabolites produced by sPLA2-IID in the LN decrease IFN-g+CD8+ cytotoxic T cells
(CTLs) and increase M2-like tumor-associated macrophages (TAMs). As such, sPLA2-IID reduces
anti-tumor immunity and ultimately facilitates tumor formation and growth. In the intestinal lumen,
sPLA2-IIA secreted from Paneth cells acts as an antimicrobial protein to shape the gut microbiota,
thereby secondarily affecting host responses, including psoriasis and skin cancer.
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7. Summary and Future Prospects

Our current studies using knockout and/or transgenic mice for nearly a full set of
isozymes in the sPLA2 family have enabled us to conduct comparative phenotypic analysis.
Under physiological conditions, sPLA2-IIF, mainly localized in the suprabasal layers of
the epidermis, contributes to facilitating epidermal barrier function [65], while sPLA2-IIE,
spatiotemporally expressed in hair follicles during anagen, contributes to controlling hair
quality [66]. Under pathological conditions, sPLA2-IIF is induced in the epidermis by Th17
cytokines or possibly by other factors and plays an exacerbating role in skin disorders such
as psoriasis, CHS, and skin cancer via the production of P-LPE [65]. sPLA2-IID, highly
expressed in DCs within lymphoid tissues, constitutively mobilizes anti-inflammatory
lipid mediators derived from ω3 PUFAs to counter the acquired immune responses [69,70].
Therefore, in sPLA2-IID-deficient mice, Th1-driven CHS and Th17-driven psoriasis are exac-
erbated, whereas skin cancer is attenuated because of enhanced anti-tumor immunity [84].
sPLA2-IIA, secreted from small intestinal Paneth cells, is involved in the shaping of the
intestinal microbiota, thereby indirectly affecting cancer and psoriasis in distal skin [84].

Current indole-based sPLA2 inhibitors, such as indoxam and varespladib, block group
I/II/V/X sPLA2s potently but broadly, which may limit their clinical application [86–88]. Ap-
parently, the development of sPLA2-IIF-specific inhibitors would be desirable for the treat-
ment of skin diseases because pan-sPLA2 inhibitors can also suppress the anti-inflammatory
function of sPLA2-IID, which is expected to worsen, rather than ameliorate, inflammatory
diseases. In this context, the reduced anti-tumor immunity from sPLA2-IID deficiency
is consistent with the concept of the immune checkpoint, which has recently attracted
attention in the field of cancer therapy, suggesting that sPLA2-IID may be a novel drug
target for skin cancer. Although the oral application of mice with methyl indoxam, a
pan-sPLA2 inhibitor, has been reported to suppress diet-induced obesity and glucose intol-
erance likely by inhibiting dietary phospholipid digestion with sPLA2-IB [89], the effect of
this inhibitor on intestinal sPLA2-mediated regulation of the gut microflora [23,24] should
also be considered. Nevertheless, translation of the results obtained from mouse models to
human pathology is more complex since expression patterns of sPLA2 and tissue profiles
of lipids are not entirely identical across animal species. While epidermal expression of
sPLA2-IIF and DC expression of sPLA2-IID are well conserved between mice and humans,
expression profiles of sPLA2-IIA and -IIE are quite distinct in both species. It should also
be noted that the tissue-intrinsic effects of sPLA2, the extrinsic effects of sPLA2 from distal
tissues, or a combination thereof can be variably affected by environmental factors. With
these limitations in mind, our studies have revealed that multiple sPLA2s participate in
the regulation of skin pathophysiology through different mechanisms, and accumulating
knowledge on the functions of individual sPLA2s will hopefully lead to drug discovery for
sPLA2-driven skin diseases.
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