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Abstract: Studies have demonstrated that the α-amino-3-hydroxy-5-methylisoxazole-4-propionic
acid (AMPA) receptor is essential to drug addiction. In this study, we explored the influence of
GluR2-3Y, an interfering peptide to prevent the endocytosis of AMPA receptors containing the GluR2
subunit, on morphine-seeking behavior in the rat self-administration model. After self-administration
was established, the rats received intravenous injections of GluR2-3Y during the extinction sessions.
There were no significant differences in both active and inactive pokes compared to the control
group of rats that received GluR2-3S, indicating that GluR2-3Y has no significant influences on the
extinction of morphine self-administration. The other two groups of rats were trained, extinguished,
and reinstated by repeated morphine priming (respectively, called Prime 1, Prime 2, and Prime 3).
Only one intravenous injection of GluR2-3Y was performed before Prime 1. Compared to the control
group, GluR2-3Y did not affect Prime 1, but significantly attenuated the morphine-seeking behavior
during repeated morphine-primed reinstatement, indicating an inhibitory after effect of GluR2-3Y
on morphine-seeking behavior in rats. The long-term depression (LTD) in the nucleus accumbens
(NAc) shell was also assessed. Pretreatment with GluR2-3Y altered the ability of LTD induction to the
level of that in the naive group, while pretreatment with GluR2-3S had no effects on LTD. Our results
demonstrated that the intravenous injection of GluR2-3Y, to block the endocytosis of AMPA receptors,
inhibited the reinstatement of morphine-seeking behavior, which may be induced by modulating the
neuronal plasticity in the NAc shell of rats.

Keywords: addiction; GluR2-3Y; long-term depression; morphine; relapse; self-administration

1. Introduction

Addiction is thought to be a chronically relapsing disease/disorder. The process of
drug addiction exploits the reward-related learning and memory systems [1] and involves
mechanisms of synaptic plasticity [2–4]. For instance, exposure to different drugs of abuse
induces changes in long-term potentiation (LTP) or long-term depression (LTD), two main
forms of Hebbian synaptic plasticity, in the neural circuits underlying reward-related learning
such as the nucleus accumbens (NAc) [5,6] and hippocampus [7]. Meanwhile, altering the
synaptic plasticity in these brain regions also influences addiction behavior [8–10].

It is well known that different types of glutamate receptors play important and specific
roles in synaptic transmission and plasticity [11–21]. The AMPA receptor, one of the three
types of ionotropic glutamate receptors (iGluRs), is integral to synaptic plasticity [22–24]
and is involved in opioid addiction [25–29]. For example, after a single morphine injection,
the mRNA levels of AMPA receptor subunits were significantly reduced three days later
but enhanced three weeks later in the NAc core [30]. The AMPA receptor GluR1 subunit
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on the dendrite membrane in the basolateral amygdala (BLA) increased in morphine self-
administering rats [31]. The surface expression of the AMPA receptors changed in the
medial prefrontal cortex (mPFC) upon repeated morphine administration [32]. Acute or
chronic morphine administration produced region-specific changes in the subcellular dis-
tribution of the GluR1 subunit in the rat ventral tegmental area (VTA) [33]. Overexpression
of the GluR1 subunits or knockdown of the GluR2 subunits in the central amygdala (CeA)
facilitated the acquisition of morphine-induced conditioned place preference (CPP) [34].

Among the subunits of the AMPA receptor, GluR2 regulates synaptic plasticity by
controlling Ca2+ influx [35,36]. The presence of the GluR2 subunit in the heteromeric AMPA
receptor is Ca2+-impermeable. An early study by Van den Oever and colleagues found
that preventing GluR2 endocytosis decreased cue-induced heroin-seeking behavior [37].
However, its specific role in relapse to opioids is still not clear, especially the synaptic
changes that take place after morphine priming, which may lead to the resumption of drug
seeking, have not yet been studied.

GluR2-3Y is a GluR2-derived interfering peptide that contains tyrosine residues and
acts as a competitive inhibitor of tyrosine phosphorylation. The accumulated evidence
shows that GluR2-3Y blocks the endocytosis of the AMPA receptors containing GluR2 and
the induction of LTD [38–41]. Besides, many studies have demonstrated that GluR2-3Y
influences the process of learning and memory and addictive behavior induced by different
drugs of abuse. For example, both the systemic and intra-NAc infusion of GluR2-3Y
prevented the expression of amphetamine-induced behavioral sensitization in the rat [39].
Pretreatment of GluR2-3Y inhibited the acquisition and reinstatement of morphine CPP in
rats [42], indicating the AMPA receptor endocytosis is a target for the treatment of opioid
addiction and GluR2-3Y is of great value in the treatment.

Therefore, in the present study, using GluR2-3Y, we explored the effect of inhibiting
AMPA receptor endocytosis on the reinstatement of drug-seeking behavior induced by
morphine priming in a repeated priming model. We also studied the involvement of LTD
induced in the NAc shell in the process.

2. Materials and Methods
2.1. Animals

Male Sprague–Dawley rats (220–250 g) were afforded one week of acclimation before
use. The rats were housed under a reverse cycle (12 h light/dark) with food and water ad
libitum, except for the morphine self-administration (SA) training when they received a
20 g ration of rat chow daily.

2.2. Drugs

Morphine hydrochloride injection (Shenyang First Pharmaceutical Factory, Shenyang,
China) was diluted with sterile saline to obtain a 1 mg/mL dose. GluR2-3Y (YGRKKRRQRRR-
YKEGYNVYG) and scrambled control peptide GluR2-3S (YGRKKRRQRRR-VYKYGGYNE)
(GL Biochem, Shanghai, China) were dissolved in sterile saline.

2.3. Surgery

Under sodium pentobarbital anesthesia (75 mg/kg, i.p.), a silastic catheter was implanted
in the right jugular vein. After surgery, the catheter was flushed with heparinized saline
(100 IU/mL, 0.4 mL) daily. The rats were allowed to recover for 7 to 10 days after surgery.

2.4. Morphine SA, Extinction, and Relapse Tests
2.4.1. Apparatus

The SA setup consisted of 16 operant chambers (29 × 29 × 26 cm; AniLab, Ningbo,
China). Each chamber was located in a sound-proof opaque box equipped with exhaust
fans and which had a white house light for illumination. There were two holes, and a blue
cue light was placed inside each hole. A speaker was used to provide audio cues. Each rat
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was placed in a chamber daily, and the catheter was connected to a pump-driven syringe.
The data were collected with AniLab software (AniLab, Ningbo, China).

2.4.2. Acquisition

The rats were trained to perform morphine self-administration (0.3 mg/kg/100-µL
injection) on a fixed ratio 1 (FR1) schedule in daily 3 h sessions during their dark cycle. The
house light was turned on at the beginning of each session and indicated the availability of
morphine. Poking the nose into the active hole caused an infusion of morphine (5 s) and
simultaneously caused a 5 s compound audiovisual cue, which meant that the blue light
placed inside the hole lit up and the speaker sounded. Poking the nose into the inactive
hole had no consequences. The injection of morphine was followed by a 15 s time out,
during which time the house light was turned off, and the nose pokes were ineffective.

2.4.3. Extinction

Extinction sessions were conducted for three hours once daily. The procedures for
the extinction sessions were identical to the training sessions, except that morphine was
not available.

2.4.4. Relapse

On the test day, the rats were injected with 5 mg/kg of morphine intraperitoneally
and immediately placed in the operant cages. The procedures for the relapse session were
the same as the extinction session.

2.4.5. Behavior Experiment 1: Effect of Intravenous Pretreatment with GluR2-3Y on the
Extinction of Morphine SA

The rats were trained to self-administer morphine for 14 days, followed by 21 consecutive
extinction sessions. The 14 rats were administered with GluR2-3Y (n = 7) or GluR2-3S (n = 7)
(1.5 nmol/g body weight, i.v.) 60 min before the extinction sessions for the first 19 days.

2.4.6. Behavior Experiment 2: Effect of Intravenous Pretreatment with GluR2-3Y on the
Morphine-Primed Reinstatement of Drug Seeking

Another two groups of rats were used. The rats remained in morphine SA training until
they met an acquisition criterion that required the average infusion over three consecutive
training days to vary by less than 15%. Once the rats met this criterion, the extinction
procedures were instituted on the following day. The rats remained in extinction until
the active pokes and inactive pokes were both less than 10 for three consecutive days.
Twenty-four hours after meeting this criterion, 17 rats were reinstated with morphine
(5 mg/kg, i.p.) for Prime 1. GluR2-3Y (n = 8) or GluR2-3S (n = 9) (1.5 nmol/g body weight)
was intravenously injected 60 min before morphine Prime 1 (a three-hour session). The
extinction procedures were instituted for at least three days, and after meeting the extinction
criterion, Prime 2 (a three-hour session) was performed 24 h later. Then, the extinction
procedures were instituted for at least another three days, and Prime 3 (a three-hour session)
was performed after meeting the extinction criterion.

2.5. Electrophysiological Studies
2.5.1. Slice Preparation

Twenty rats were used. The number of rats in the naive group, GluR2-3Y, and GluR2-3S
was eight, six, and six, respectively. Slices were prepared as described previously with minor
modifications [43]. One day after meeting the extinction criterion, the rats were anesthetized
with sodium pentobarbital (75 mg/kg, i.p.) and decapitated. The brain was quickly removed
into an ice-cold cutting solution containing (mM) 87 NaCl, 2.5 KCl, 7 MgCl2, 0.5 CaCl2,
1.25 NaH2PO4, 25 NaHCO3, 15 glucose, and 90 sucrose and cooled for 3–5 min. Then, 300-µm
sagittal slices were cut on a vibratome (Leica VT 1000 S, Heidelberg, Germany) in the ice-cold
cutting solution. Immediately after cutting, the slices were stored for 45 min at 33 ◦C in
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artificial cerebrospinal fluid (ACSF) containing (mM) 125 NaCl, 2.5 KCl, 1 MgCl2, 2 CaCl2,
1.25 NaH2PO4, 25 NaHCO3, and 10 glucose, and were equilibrated with 95% O2/5% CO2.
The slices were then stored at room temperature until recording.

2.5.2. Patch Clamp

Recordings were conducted in a chamber superfused continuously with carbonated
ACSF. The superfusion medium contained bicuculline (Sigma, St. Louis, MO, USA, ten µM)
to block the GABAA receptors. Whole-cell recordings were performed from visualized
neurons in the NAc shell. Glass microelectrodes (resistance 4–6 MΩ) were filled with a
solution containing (mM) 122.5 Cs-gluconate, 17.5 CsCl, 2 MgCl2, 10 HEPES, 0.5 EGTA,
4 ATP, and osmolarity 300–310 mOsm. The pH was adjusted to 7.2–7.4 with CsOH. The
data were recorded with a Heka EPC10 amplifier (Heka, Reutlingen, Germany).

2.5.3. LTD Recordings

Synaptic currents were evoked by stimulating the prelimbic cortical synaptic inputs
via a constant-voltage pulse (1 ms) delivered through a concentric bipolar electrode (FHC,
Bowdoinham, ME, USA). Synaptic responses were evoked at 0.067 Hz, except during the
induction of LTD. After 10 min of stable baseline recording, LTD was triggered by pairing
low-frequency stimulation (1 Hz, 480 pulses) while holding the cells at −40 mV.

2.6. Data Analysis

We analyzed the data with Prism GraphPad (version 8). Data from the SA and electro-
physiological recordings were analyzed with one-way or repeated measures analysis of
variance (ANOVA) with a Bonferroni post-test. The critical value for statistical significance
was set at p < 0.05. Data are presented as mean ± SEM.

3. Results
3.1. Effects of Intravenous GluR2-3Y Injection on the Extinction of Morphine SA

After 14 days of training, the rats that acquired morphine SA were divided into two groups
for extinction. One group received intravenous injections of GluR2-3Y (1.5 nmol/g body
weight, n = 7), and the other group received intravenous injections of GluR2-3S (1.5 nmol/g
body weight, n = 7) as a control. For the 14 days of SA training, a three-way analysis of
variance revealed a significant session effect (F 13, 156 = 2.616; p < 0.01) and nose poke
effect (F 1, 12 = 31.80; p < 0.001), with no significant group effect (F 1, 12 = 3.177; p = 0.100)
or group × nose poke × session interaction (F 13, 156 = 0.877; p = 0.579). No significant
difference was found for the nose pokes in the two groups (Figure 1b).

The effects of GluR2-3Y given just before 19 daily extinction sessions are shown in
Figure 1c, d. The rats that received the GluR2-3Y treatment showed no significant difference
in both active pokes (F 1, 240 = 0.003; p > 0.05; Figure 1c) and inactive pokes (F 1, 240 = 1.32;
p > 0.05; Figure 1d) compared to the rats that received the GluR2-3S injection, indicating
that GluR2-3Y had no significant influences on extinction.

3.2. Effects of Injection of GluR2-3Y on Morphine-Seeking Behavior during Repeated
Morphine-Primed Reinstatement

The rats that met the extinction criterion were divided into two groups with no
significant differences for the nose pokes (F 1, 15 = 0.40, p > 0.05 for the last training day,
F 1, 15 = 1.11, p > 0.05 for the last extinction day; Figure 2b). The rats received intravenous
injections of GluR2-3Y (n = 8) or GluR2-3S (n = 9), then were reinstated with morphine. As
shown in Figure 2c, GluR2-3Y did not affect Prime 1 (F 1, 15 = 0.09, p > 0.05). To determine
whether there were after effects of GluR2-3Y or not, Prime 2 and Prime 3 progressed, and
interestingly, significant attenuation effects were found in both Prime 2 and Prime 3 (F 1,
15 = 5.91, p < 0.05 for Prime 2, F 1, 15 = 8.98, p < 0.01 for Prime 3; Figure 2d, e). The
Bonferroni post-test showed GluR2-3Y significantly attenuated the active pokes (t 15 = 3.14,
p < 0.01 for Prime 2, t 15 = 3.84, p < 0.01 for Prime 3), but not the inactive pokes (t 15 = 0.36,
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p > 0.05 for Prime 2, t 15 = 0.50, p > 0.05 for Prime 3). Combining the data from the three
reinstatement tests, we found GluR2-3Y attenuated morphine-primed morphine-seeking
behavior during repeated morphine-primed reinstatement (F 1, 15 = 4.71, p < 0.05).
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Figure 1. Intravenous injection of GluR2-3Y has no effect on the extinction of morphine SA.
(a) Experimental protocol. (b) Active and inactive pokes during morphine SA training. (c) Active
pokes during extinction sessions. (d) Inactive pokes during extinction sessions. Data are expressed as
mean ± s.e.m. (n = 7 per group).
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Figure 2. Intravenous injection of GluR2-3Y attenuates morphine-induced morphine-seeking.
(a) Experimental protocol. (b) Active and inactive pokes during morphine SA training and extinction,
showing the last day of training and extinction. (c–e) Nose pokes during the morphine Prime 1,
Prime 2, and Prime 3 sessions. (f) Active pokes during the three reinstatement sessions. # indicates a
significant difference between the GluR2-3Y and GluR2-3S groups, and ** p < 0.01 indicates significant
differences in the Bonferroni post-test pairwise comparison vs. the active pokes of the GluR2-3S
group. Data are expressed as mean ± s.e.m. (n = 8–9 per group).
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3.3. Influences of GluR2-3Y on the LTD in NAc Shell Neurons before Morphine-Primed Reinstatement

To determine the involvement of synaptic plasticity underlying the attenuating effect
of GluR2-3Y on repeated morphine-primed reinstatement, we explored the changes in LTD
induced in the NAc shell. Another group of rats was used, and GluR2-3Y and GluR2-3S
were injected as before. After reaching the extinction criterion, the rats were anesthetized
and decapitated for brain slice preparation (Figure 3a).
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(b) Expression of LTD in the NAc of naive rats. (c) Expression of LTD in the NAc of animals treated
with GluR2-3S. (d) Expression of LTD in the NAc of animals treated with GluR2-3Y. (e) Bar graphs
summarizing the data for the last 5 min of LTD induction from experiments such as those shown in
(b–d). ## p < 0.01 versus the GluR2-3S group, * p < 0.05 versus the naive group (Bonferroni post-test).
Data are expressed as mean ± s.e.m. (n = 6–8 per group).

LTD induction was recorded in the NAc shell of naive rats (Figure 3b), as well as
those pretreated with GluR2-3S (Figure 3c) or GluR2-3Y (Figure 3d). All the data were
normalized to the average value of the evoked EPSCs before LTD induction. The last
5 min of LTD induction showed significant differences between the 3 groups (F 2, 99 = 7.31,
p < 0.01; Figure 3e); there were significant differences between the naive and GluR2-3S-
pretreated rats (t99 = 2.86, p < 0.05) and between the GluR2-3Y- and GluR2-3S-pretreated
rats (t99 = 3.68, p < 0.01; Figure 3e). The amplitude of the normalized evoked EPSCs was
57.44 ± 7.09% in the naive rats (n = 8), 47.53 ± 2.17% in the GluR2-3Y-treated rats (n = 6),
and 83.88 ± 8.29% in the GluR2-3S-treated rats (n = 6). The data indicated that GluR2-3Y
attenuated the morphine-primed morphine-seeking behavior. This inhibitory effect may be



Brain Sci. 2023, 13, 590 7 of 11

associated with its influence on the synaptic plasticity in the NAc shell, but GluR2-3S did
not have the same effect.

4. Discussion

Morphine and other opioid drugs are widely used to treat pain, but their clinical
usefulness is limited by tolerance and dependence [44]. To develop effective therapies
for morphine addiction, it is crucial to prevent relapse. The drug, the cue associated with
the drug of abuse, and stress all induce relapse [45–47]. Here, we showed that inhibiting
the endocytosis of AMPA receptors with the interfering peptide GluR2-3Y attenuated the
reinstatement of morphine-seeking behavior induced by repeated morphine-priming in
rats trained to morphine SA, but had no effect on extinction. Furthermore, we found that
the LTD induction in the NAc shell of rats returns to the normal level as the naive rats
as a result of pretreatment with GluR2-3Y. So, the rescue of LTD in the NAc shell might
contribute to the reduction in morphine-seeking behavior. The data demonstrated that
GluR2-3Y is a potential candidate for treating opioid addiction, especially the prevention
of relapse.

Previous studies have shown that drugs of abuse influence the glutamate system
and synaptic plasticity [22,23,48]. For instance, cocaine changes the release of glutamate
in several brain areas [49,50], and exposure to cocaine or morphine alters the expres-
sion of the AMPA receptors in the prefrontal cortex (PFC) [32], the VTA [33], and the
NAc [51–53]. For opioid addiction, reinstatement by either heroin or cue increases extra-
cellular glutamate in the NAc core in the self-administration rats [54]. Moreover, chronic
morphine administration induces a decrease in the surface AMPA receptor GluR1 subunit
in particular types of neurons in rats’ NAc shell and NAc core [55]. However, our results
suggested that the endocytosis of GluR2 was not involved in the extinction of morphine
self-administration, consistent with the previous finding on morphine-conditioned place
preference (mCPP) [25].

Besides, an earlier study showed that GluR2-3Y decreases cue-induced heroin rein-
statement [37]. Here, we showed that the infusion of GluR2-3Y reduced the reinstatement
in a delayed and persistent manner in our repeated priming model, which suggests the
possible effect of GluR2 endocytosis on morphine-induced relapse. However, inconsistent
with the effect of GluR2-3Y on cue-induced heroin reinstatement, morphine Prime 1 was
not affected. These differences may be due to differences in the ways of induction. One
previous study demonstrated that low-dose risperidone can attenuate cue-induced but not
heroin-induced reinstatement [56]. Similarly, another study showed that ketanserin can
attenuate cue-induced but not cocaine-induced reinstatement [57]. These studies suggested
that cue-induced and drug-induced reinstatement have different mechanisms, which need
to continue to be explored.

The reasons why Prime 2 and Prime 3 were affected by intravenous injections of GluR2-
3Y may be explained by the widely accepted hypothesis that addiction is a pathological
process that involves plasticity mechanisms related to the glutamate system, similar to
those implicated in neuronal models of learning and memory [58–61]. When exposed to
the drug use-related cue/context or the drug itself, the memories of the drug experience
are retrieved, leading to drug seeking. During the reinstatement induced by morphine
priming, a small dose of morphine triggers the drug-seeking behavior, which might be due
to the activation of the association between drug-use experience and drug-seeking behavior.
While established memory will be labile and, then, sensitive to disruption [62]. Milekic et al.
found that established morphine-conditioned place preference was persistently disrupted
if protein synthesis was blocked after the re-presentation of a conditioning session, and this
effect required the re-experience of both the conditioning context and the drug [63]. Rao-
Ruiz et al. found that contextual fear memory recall induced acute hippocampal AMPAR
endocytosis [64], suggesting that GluR2 plays a crucial role in memory reconsolidation. So,
the finding that GluR2-3Y injection attenuated morphine-seeking behavior during repeated
morphine-primed reinstatement sessions may be due to GluR2-3Y interfering with the
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memory reconsolidation after the first morphine-primed reinstatement. The effects of
intravenous GluR2-3Y injection on the extinction after Prime 1 and Prime 2 also support
this supposition (Figure S1). The time course and the relationship between reinstatement
and memory reconsolidation need more research.

Previous studies on drug addiction underscore the importance of the NAc in the
development of drug seeking, extinction, and relapse [65–67]. The NAc shell, an area that
processes reward-related incentives [55], is critically involved in the reward effect [68,69].
Moreover, the enhancement of control over behavior by psychostimulants depends on the
shell [70,71]. Although LaLumiere and colleagues indicated that the glutamate receptors in
the NAc core play an essential role in heroin reinstatement [54], Peters and colleagues also
identified that inhibition of the shell induced cocaine-seeking in extinguished rats [72]. Here,
we demonstrated the critical function of the NAc shell in morphine-induced reinstatement.
In addition, memory reconsolidation seems to be involved in neuroplasticity [73]. Other evi-
dence indicates the role of AMPARs endocytosis and LTD in behavioral sensitization [39,74].
Therefore, we hypothesized that the plasticity of the NAc shell was related to the activation
of an association between morphine-use experience and morphine-seeking behavior, and
our observations fit within this conceptual framework.

There are several limitations to this study. Firstly, we only tested male rats; thus,
how GluR2-3Y may be involved in the priming of morphine SA in female animals is not
known. Secondly, we did not record the other behavioral parameters, such as the latency to
poke, and the timeline of poking among the length of the session; if GluR2-3Y affects these
parameters needs to be further investigated.

5. Conclusions

Our results showed that relapse induced by morphine priming can be persistently dis-
rupted by the intravenous injection of GluR2-3Y. This effect may be due to a change of LTD in
the NAc shell. This finding suggests that GluR2-3Y influenced the synaptic plasticity in the
NAc shell and interfered with the morphine-induced reconsolidation of memories related to
morphine SA, therefore inhibiting the late reinstatement of morphine-seeking behavior.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/brainsci13040590/s1, Figure S1: Effects of intravenous GluR2-3Y
injection on extinction after Prime.
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