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Simple Summary: In recent years, the prostate cancer histopathological description proposed by
Gleason has emerged as a universal standard used for disease diagnosis and progression. Recently, a
grading scheme on a point scale is based on Gleason patterns. Current scores are highly dependent
on the expert urinary histopathologist and show a high level of variability among experts. To aid
the clinician, we have developed deep learning models that provide a decision aid in identifying the
primary cancer grade (dominant Gleason pattern).

Abstract: Histopathological classification in prostate cancer remains a challenge with high depen-
dence on the expert practitioner. We develop a deep learning (DL) model to identify the most
prominent Gleason pattern in a highly curated data cohort and validate it on an independent dataset.
The histology images are partitioned in tiles (14,509) and are curated by an expert to identify individ-
ual glandular structures with assigned primary Gleason pattern grades. We use transfer learning and
fine-tuning approaches to compare several deep neural network architectures that are trained on a
corpus of camera images (ImageNet) and tuned with histology examples to be context appropriate
for histopathological discrimination with small samples. In our study, the best DL network is able to
discriminate cancer grade (GS3/4) from benign with an accuracy of 91%, F1-score of 0.91 and AUC
0.96 in a baseline test (52 patients), while the cancer grade discrimination of the GS3 from GS4 had an
accuracy of 68% and AUC of 0.71 (40 patients).

Keywords: prostate; Gleason cancer grading; pathology; uropathology; whole-slide image; ISUP
grade; Gleason score; deep learning; convolutional neural network; transfer learning

1. Introduction

Prostate cancer is a neoplasm in the prostate gland, most often epithelial in origin,
with over 95% of adenocarcinoma subtype. The neoplasms are classified from different
grades of aggressiveness using Gleason patterns 1–5, then combined into a Gleason score
(dominant + subdominant Gleason patterns) detailed below [1,2]. Standard diagnosis
requires a fine needle biopsy of the gland where the histology is assessed from hematoxylin
and eosin (H&E)-stained tissue sections by an expert genitourinary pathologist [1]. The
prostate adenocarcinomas histopathology displays an abnormal architectural glandular
pattern with a very high degree of benign epithelial–stromal relationships. Most widely
used Gleason scoring patterns were adopted by the International Society for Urological
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Pathology (ISUP) proposed in 2014, later adopted by the World Health Organization (WHO)
in 2016 [3]. The patterns are described by a modified Gleason grading that shows five
distinct patterns with direct relationships to cancer invasiveness, which were conceived
purely based on clinical outcomes [4]. The pattern spans from single, separated well-formed
glands in Gleason pattern 1, ISUP grade group 1 (GS 3 + 3), to stromal infiltration in Gleason
patterns 4 to 5 (ISUP grade groups 2 to 5) [4]. The cancer types have relied more on the
epithelial–stromal architecture than any other clinical grade based classification to describe
disease aggressiveness with direct relation to the clinical outcome [5]. Use of the ISUP
scoring scheme has helped to reduce the scoring range, but this expert-based standard has
significant intra- and inter-variability among genitourinary pathologists and clinical centers
and results in care differences among patients [6–8]. In a recent report, concordance rates
between two observers for primary and secondary Gleason patterns were 63.96% (κ = 0.34)
and 63.45% (κ = 0.37), respectively, while Gleason grades was at 57.9% (κ = 0.39) [9]. This
does not get better with diagnoses around the globe; concordance ranged from 0.44 to 0.49,
while urological pathologists showed moderate improvement to 0.68 [10].

Development in the last decade has seen promise in using machine learning (ML) and
deep learning (DL) tools to improve diagnostic variability and provide a decision support
system (DSS) to aid the pathologist and improve quality of care or treatment response [11–16].
A potential implementation of a DSS is shown in Figure 1; this study concentrates on the
decision classifier. A complete implementation of a DSS will include many preprocessing steps
such as region extraction, which were supported through preprocessing tiles as detailed in
Section 2. Feature extraction and composition through explicit means (not implicitly derived
through CNN layers) such as radiomic features and feature composition is a fertile area for
improvement [17,18] but not a focus of this study. Our minimalist approach is covered in the
proceeding. Recent deep learning techniques with convolutional neural networks (CNN) have
shown tremendous promise in extracting non-human visible salient features from diagnostic
pathological images [19–24]. Our results demonstrate that these diagnostic clues are available
in local glandular structures or small patches of prostate biopsy whole-slide images (WSI).
Due to the subtle nature of the features in histopathological images coupled with limited
sample sizes, generalization of the model continues to be a challenge across medical centers
and sources [25].
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Figure 1. Prostate Cancer Decision Support System. Figure 1. Prostate Cancer Decision Support System.

Recently, others have shown use of deep network’s ability to identify cancer grades,
progression and outcome using medical imaging (CT/MRI) utilizing various data augmen-
tation methods and transfer learning (TL) approaches [14,15,26–29]. Improving classifica-
tion by transfer learning from large data sources such as ImageNet has been a standard
approach for many years for many medical imaging modalities [30]. However, more recent
studies have shown that TL may be limited to learning patterns in small sample sets [31,32].



Cancers 2023, 15, 2335 3 of 19

Our research goal is to develop a deep learning model to discriminate Gleason grades
in whole-slide H&E images. In this study, our focus is to accurately identify aggressive
primary Gleason patterns in annotated image patches. To enable proper network model
training, the WSIs of prostate needle biopsies were manually annotated following the
pathologist-assigned Gleason pattern scored at the gland level. We focused on evaluating
several deep learning model architectures based on CNNs (EfficientNet [33], ResNet [34]),
and the Visual Geometry Group (VGG-16 and VGG-19 [35]) networks. Each has advantages,
but in this domain, VGGs showed the best performance by a significant margin. Each of
these networks were trained using transfer learning, with a degree of fine tuning on feature
weights to adapt the network to the histopathological classification as previously used in
other studies [36].

There have been few attempts in the past to discern the gland patterns. This study,
to our knowledge, is one of the first to create a large cohort of manual gland level scoring
(over 14k glands, see Table 1) and use deep learning (DL)-based models to discriminate
the Gleason patterns. We believe these results form a baseline comparison for the primary
patterns at this level of granularity. In comparison, most other studies have used DL-based
classification algorithms to discern Gleason grades or scores (primary + secondary) at
the whole-slide level, containing multiple glands that represent primary and secondary
patterns, most often in an unbalanced proportion [16,21]. Ström et al. created an ensemble
of 30 Inception V3 nets to score individual patches as benign or a Gleason pattern and pass
the results through a boosted decision tree to inform an overall Gleason (ISUP) grade [22].
Pinckaers et al. demonstrated a novel streaming CNN (based on ResNet-34) to process
entire biopsy scans’ centered, cropped patches to detect malignancy status (cancer from
benign) at the whole-slide level [21]; this method was compared against two baseline
approaches from Companella et al. and Bulten et al. Companella et al. applied multi-
instance learning (MIL) with a recurrent neural network (RNN) to predict a combined score
from patches classified with a ResNet-34 [37]. Bulten et al. used an extended U-Net to
predict Gleason patterns at the pixel level and to determine the proportions of malignancy
to inform an overall grade decision [19]. It is to be noted that most prior work has focused
on cancer status discrimination at the slide level assessing multiple pattern (primary and
secondary) scores. In contrast, our proposed work focuses on a discriminating Gleason
pattern (primary) at the patch level, limiting the reader variability. Hence, our performance
can be qualitatively compared with prior research. In this work, we demonstrate the use of
a VGG CNN model for classifying small patches (or individual, variably sized glands) in
a WSI obtained from a core needle prostate biopsy. Additionally, we contrast the model
performance on two diverse datasets independently obtained.

Table 1. University of Miami/Moffitt Cancer Center Cohort.

Total Benign GS3 GS4

Subjects 52 23 38 32

Whole-Slide Images 150 72 72 60

Labeled Glands 14509 6882 5143 2484

In the following Section 2, the studied datasets are discussed, as well as the techniques
used in this study, details on the models (DL architectures), training and tuning techniques
and data processing. In Section 3, we show the results for our findings on Gleason pattern
discrimination (benign versus cancer (all grades); GS3 versus GS4) at the prostate gland
level. Section 4 provides further discussion of the results and use of a decision support
system to improve clinical diagnosis. Finally, in Section 5, we summarize our findings.
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2. Materials and Methods
2.1. Data Cohorts

Our study used two retrospectively curated data cohorts of prostate cancer patients’
biopsies obtained at two different cancer centers. Patients’ data were retrospectively obtained
using the respective clinical centers’ research protocols. The data were de-identified for
research use, obtained after an Institutional Review Board (IRB) review of our research project,
and the patients waived their informed consent rights for retrospective research usage. The
first cohort is a dataset obtained from the University of Miami (UM) and curated at the H
Lee Moffitt Cancer Center (MCC) and will be referred to as the UM/MCC data cohort. The
second cohort was derived from the Kaggle PANDA histopathology open challenge; the de-
identified patient data with Gleason grades were provided by Radboud University, Nijmegen,
the Netherlands as part of their effort to promote open science—available on the National
Institute of Health’s Cancer Imaging Archive website (https://www.cancerimagingarchive.
net/ (accessed 24 February 2023). The patient data from both sources were completely
anonymized with no treatment details or outcomes provided.

2.1.1. Gland Level Patient Data Cohort

We obtained digitized whole-slide histopathology with 20×magnification scanned
on an Olympus VS120 scanner (Olympus Life Sciences, Inc., Tokyo, Japan). These images
were imported into the Visiopharm® digital pathology software, and gland regions were
manually delineated and annotated by our research urinary pathologists (AL and MG)
with over 15 years and 9 years of clinical experience in prostate histopathology scoring,
respectively. The glands were scored on benign, GS3, GS4 or GS5 levels.

The study used 52 patients, 150 WSIs and 14,509 glands; the data will be refer-
enced as UM/MCC data (see Table 1). An independent cohort was assembled from the
Kaggle PANDA’s challenge used as a training/validation cohort (at a 90/10 ratio), with
24,800 patches with glands having the same primary pattern (see Table 2).

Table 2. Kaggle PANDA Radboud Synthesized Cohort.

Total Benign GS3 GS4 GS5

Biopsy scans 1240 310 310 310 310

Patches 24,800 6200 6200 6200 6200

To train or test on WSIs, (relatively) small image patches were created for each of
the labeled glands (dominant Gleason pattern). These specific glands were identified and
converted from vector files in the Visiopharm® MLD format into segmentation masks.
These masks were then used to extract individual image patches using several bounding
box techniques from the WSIs, including fixed-size bounding boxes, squared bounding
boxes and tight bounding boxes. The latter two techniques resulted in image patches of
various sizes, which required subsequent resizing or resampling techniques to be used by
the CNN ML (details deferred to Section 2.2.1).

Figure 2 shows several patches with tight bounding boxes for the classification levels
benign, GS3, or GS4, respectively. Note that the images of glands shown below are within
15% of 120 × 120, 240 × 240, 360 × 360 and 720 × 720 pixels. The aspect ratios of the
sample set’s width and height has much higher variability than the samples shown.

Due to limited dataset size, we estimated the discriminators’ performance using the
Monte Carlo cross-validation (MCCV) technique and reported the ensemble statistics [38],
which will be shown in Section 3. Due to extensive time required for network training on
the computational resource, retraining of the network was avoided and re-sampling of the
outcome was resorted to.

https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
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Figure 2. Sample selection of UM/MCC gland-level patches using the tight bounding-box technique
paired with corresponding mask layer (on the right): (a) samples of benign, (b) samples of GS3, and
(c) samples of GS4.

2.1.2. PANDA Radboud Data Cohort

We curated the large open-source prostate pathology data cohort shared as a part of the
prostate cancer grade assessment (PANDA) challenge organized through the Kaggle open
challenge platform [16]. The PANDA training set had expert-provided annotations; it was
composed of two separate patient sources: the Karolinska Institute and Radboud University.
In our study, we used images from the Radboud collection because of the fidelity of the
labeled segmentation masks that overlapped with the cases in the UM/MCC dataset.

The PANDA Radboud dataset, scanned from needle biopsy slides, was synthesized
into a set of data patches from the Kaggle-provided data. The partial WSI images were
downsampled by 2× then Otsu binarized to isolate foreground and background. Fixed-
sized patches were extracted from the foreground (biopsy image) area by sliding a window
(400 × 400) over the label mask (where foreground was identified) and accepting patch
areas that contained an appropriate density of segmented (labeled) data for some target
Gleason score. The degree of window overlap pω was adjusted until each WSI sample
produced at least 20 patches (overlap pω starting from 0.5 and adjusted as high as 0.8 if
enough samples were not generated per image). Several thresholds were tuned to generate
an approximately equal set of patches for each Gleason pattern level by testing each label
mask pixel (xi) for the ratio of Gleason–label mask pα (nominally ≥ 0.1) that was not
identified as background or stroma and the purity of label pβ (0.95) at the targeted Gleason
level. The cut points for the quality filters were heuristically fixed at these levels.
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pα = 0.1
pβ = 0.95

N = width ∗ height
lepithelium = 2

M =
N
∑

i=1
xi ≥ lepithelium

ltarget = GS; GS ∈ {3, 4, or 5}

T =
N
∑

i=1
xi ≡ ltarget

accept = M
N ≥ pα & T

N ≥ pβ

Once these patches were generated for each Radboud image file, the patches were
rank sorted by the proportion of epithelial/malignant label mask coverage M/N, and the
20 patches with highest ratio of label were added to a synthesized set of patches for Gleason
levels benign, GS3, GS4 and GS5. If, after adjusting the sliding window overlap as high
as pω = 0.8, an image was still unable to produce 20 patches, it was excluded from the
training set. The PANDA Radboud dataset may include multiple glands per patch, which is
different than the UM/MCC data but is sufficient as a pretraining dataset for distinguishing
Gleason patterns. In Figure 3, patches and their corresponding Radboud masks are shown
for Gleason levels benign, GS3, GS4 and GS5.
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Figure 3. Sample selection of PANDA Radboud patches using the fixed-box technique paired
alongside corresponding mask layer (on the right): (a) two samples of benign, (b) two samples of
GS3, (c) two samples of GS4 and (d) two samples of GS5.

In generating this dataset, we made the training and validation/test cohorts as uniform
as possible for the Gleason pattern; patches for benign were only pulled from images with
clinical diagnosis benign, ISUP grade 1 (3 + 3) for GS3 pattern and grade 4 (4 + 4) for
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GS4 pattern. For Gleason pattern 5, very few images were graded as 5 + 5; therefore,
patches were drawn from 4 + 5, 5 + 4 and 5 + 5 samples. The patch quality metrics,
epithelial/glandular density pα (nominally≥ 0.1) and purity of label pβ = 0.95 ensured that
each patch was appropriate for the primary Gleason grade. Note that this procedure was
not required for the UM/MCC dataset since patches were extracted from each labeled gland.
Table 2 shows the resultant dataset with 310 images and the corresponding 6200 patches
per each Gleason level. Most of the clinical data such as subject identification was excluded
from the Kaggle PANDA collection. The patient data was completely anonymized with no
outcome or treatment data provided.

2.2. Image Preprocessing
2.2.1. Sample-Mix

A necessary step in preprocessing the data was to ensure the image patches were
identical in size prior to being processed through the DL CNN. There have been many
resizing techniques that were tried previously such as in [39,40], cropping to fixed size areas
(or loose bounding boxes) around the areas of interest, such as the glands. In our study, we
adopted a sample-mix approach, which was inspired by other image mixing techniques such
as in [41–43]. The approach preserves the scale and the aspect ratio of textural features; see
sample in Figure 4. The tiled approach allows smaller and larger images to be adjusted
to the same size, preserving their original textural characteristics, immaterial of the gland
size (small or large). It is possible to construct sample-mixed patches for any dimension
and rank, where rank is the number of tiles sampled along each axis. The examples show
a target dimension of 300 × 300 pixels and rank of three tiles (along the horizontal and
vertical), requiring the sampled tiles to be 100 × 100 (or 1/9 of the target size).

The sample-mix methodology, a resize strategy, was used when image data sources
were variably sized and needed to be resized to train the network model. We used this
strategy in the UM/MCC training cohort, where the extracted patches with tight bounding
boxes were of different sizes. For images that were smaller in the horizontal or vertical
direction than the sample tile (100 × 100), those samples were simply removed from the
dataset as a preprocessing step. When data elimination is not desired, the algorithm can
automatically generate a sample mix with smaller sample tiles.
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2.2.2. Standardization

The technique of staining hematoxylin and eosin (H&E), respectively, provides pathol-
ogists with functional and morphological details at the cellular level. It is well-recognized
that even after over a century of its usage, there are many variables such as the stain
protocol, dye quality and dye age that are uncontrolled factors causing inter-laboratory
variability resulting in visual differences in slide appearance (color and intensity) [44,45].
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The staining of images across sources is often inconsistent, and varying degrees of
chemical application may result in significantly different color saturation [46]. In Figure 5,
three partial views of WSIs with clearly varied colors are shown; the first two are from the
same UM/MCC cohort, and the third on the right is from PANDA Radboud data. It is
possible that these shade differences between the cohorts dampens generalization of the
DL models.
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To mitigate these wide variations, the image patches were normalized using z-score
standardization, where color channels are re-centered to zero mean and unit standard
deviation. This technique is the most often used approach for training on large image
datasets such as ImageNet [27]. As a result of applying transfer learning starting with
ImageNet weights, standardization is a necessary preprocessing step to ensure proper
feature extraction through the CNN layers. Unfortunately, this transformation step may not
always improve a model’s reproducibility in histopathology images. It has been reported
that most H&E-stained image intensity follows a bi- or tri-modal distribution [47–49].
The standardization followed in most learning methods uses linear scaling that may not
compensate for the distributional spread, which would be an additional source of alteration
in the model training.

2.2.3. Eliminating Outliers

Outlier detection (OD) is an important step in maximizing performance of an ML
algorithm [50]. To remove outliers in the dataset, we performed the random sampling
and consensus (RANSAC) method as has been applied in regression problems [51]. In a
classification problem, we remove samples that never or very seldom classify correctly
after an initial training of the DL models. The technique is similar to a histogram-based
OD in which outliers are removed based on a threshold rule, classically as a distance away
from the 25% and 75% quartile, normalized by inter-quartile range or IQR. The RANSAC
technique requires multiple models to be trained on the data (as is a natural approach when
performing CV experiments); inference is then performed on the entire sample set for each
model, and a consensus of each sample’s performance is determined. While performing
the test, the samples that never classify correctly were removed from the training set. To
preserve the integrity of the performance metrics, RANSACed outliers are removed from
future training sets, but validation data are not altered.

In determining the outliers, the consensus scores are drawn by inferencing the training
data with the models derived using the CV folds. As a result, the sample models will have
seen the data many times, and hence, low consensus scores of no correct classification or
one correct classification out of multiple models applied (e.g., 0/20 and 1/20) imply likely
outliers. This technique was applied at least once for the binary DL classifiers shown in
Section 3.
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In Figure 6, the RANSAC consensus scores are shown as stacked histograms when
training GS3 versus GS4 DL models. The colors in the vertical bars and the legend along
the bottom of the chart represent different consensus scores in 20 models; thus, the worst
outliers score 0/20 times, and the best performers score 20/20 times. The stacked his-
tograms add up to the total number of subjects in our training set, and as can be seen,
with each iteration, several low-performing samples are eliminated from the set. Addition-
ally, this plot demonstrates how with each iteration, the remaining training samples see a
gradual improvement in the consensus score. Other unsupervised or semi-supervised OD
techniques are under consideration for future work [52,53].
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2.2.4. Balancing Data

The GS3 versus GS4 classification experiment was largely unbalanced; in the UM/MCC
cohort, the GS3 majority class was twice as large as the GS4 minority class. To ensure that
the machine learners did not simply prefer the majority class, in all experiments, the data
was balanced. To train DL networks, we used bootstrapping to dynamically balance both
training and validation sets [54]. A custom TensorFlow iterator was created to ensure data
was balanced on every batch training update. Performance statistics were estimated using
the bootstrap technique.

2.3. Deep Learning

A convolutional neural network (CNN) utilizing transfer learning from very large
datasets such as ImageNet shows promise for classification problems. Networks with lower
inductive bias are expected to outperform CNN architectures as more and larger datasets
become available (such as those from Kaggle PANDA), through knowledge distillation and
improved architectures that optimize generalized learning [55–57].

Most DL models that are studied with CNN feature layers combine with a binary
or multiclass dense classification layer. Common techniques such as dropout, pooling
and batch normalization were used between layers to improve performance [58–60]. The
fully connected classification layer has a 32-node layer to aggregate features from the
CNN, followed by as many neurons as are required for the classification task (1 for binary
classification, or 3+ for multi-classifier), as shown in Figure 7.
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2.3.1. Optimization Technique

Research has shown that adjusting the learning rate in a cyclic fashion can help
to escape local minima and saddle points [61]. The learning rate may be “shocked” or
annealed by jumping back to a maximum on a periodic basis [62]. Our optimization strategy
leveraged the cosine annealing technique. In this technique, the learning rate is adjusted
from a maximum rate to a lower rate (perhaps one or two orders of magnitude smaller) and
updated at each batch (partial training of epoch). Cosine-annealed training was used in
this study, cycled every 29 epochs in our experiments. Additional hyper parameter values
are shown in the Supplementary Document Table S1.

2.3.2. Transfer Learning

Transfer learning is very effective at jumpstarting NN training, especially when data
are limited. The UM/MCC cohort is relatively small; hence, we began training by ini-
tializing a VGG-16 network on ImageNet feature weights, a popular approach shortly
following the original AlexNet [27,63]. We started by coarse tuning the fully connected (FC)
classification layers with the UM/MCC data and followed by fine tuning the CNN feature
layers and FC layers. We improved the results by first training on a larger Kaggle PANDA
Radboud dataset (both a coarse tune followed by a fine tune to train the CNN feature
weights), then fine tuning with data in our own UM/MCC cohort. The NN learner goes
through four stages of learning, as shown in Figure 8. The technique of pretraining on one
dataset and then tuning on another is a common and effective transfer-learning approach.
A recent study corroborates this method when used for prostate pathology grading [64].

To create a more generalized model, we combined both our PANDA and UM/MCC
datasets into one large training set and then trained our CNN to classify both sources. The
combined dataset is also trained starting with ImageNet weights, first on the FC layers and
eventually fine-tuning all weights in the FC and CNN layers.

2.4. Measuring Performance

Accurate measurement of ML performance poses a challenge when there are a lim-
ited number of subjects for model training. In the study, a randomized Monte Carlo
cross-validation (MCCV) technique was used to estimate the network-based discrimina-
tors’ performance [38]. When applying MCCV, we performed a minimum of 20 folds, as
recommended to ensure most data were tested since folds were sampled with replacements.

The following metrics were computed to evaluate deep networks’ classification perfor-
mance: accuracy, sensitivity, specificity, precision, negative predicted value (NPV), F1-score
and area under the receiver operating characteristic curve (AUC) [65]. Statistical metrics
were computed using the Python scikit-learn metrics package (sklearn.metric) for DL ex-
periments. These metrics were calculated across the folds following the recommendations
described by Forman and Scholz [66]. The performance metrics are provided with 95%
confidence intervals determined by the bootstrap estimation procedure [67].
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2.5. Implementation Challenges

There were two main challenges for this study. The first major challenge was sample
size and curation of a data cohort with gland-level labels in prostate histopathology. This
work involved a clinical expert-driven manual gland scoring (semi-automatic) to create
a pure cohort of about 14,000 labeled glands. The second challenge in this study was
investigating the many state-of-the-art DL architectures, finding hyperparameters and
tuning methods that resulted in optimized training with the diverse size of the gland-level
patches. The computational resources required for model building in a timely manner
posed a challenge.

3. Results

We used deep networks to perform binary classification tests to discriminate various grades
of primary Gleason patterns at the glandular and small-tile level. These experiments compare
benign versus GS3/4 (malignant) and finer grade levels, GS3 versus GS4 levels, as some may
have clinical significance on the decision boundary of cancer progression and treatment.

We evaluated several types of deep networks for prostate histopathology classifica-
tion, given the constraints of small sample sets. We found CNNs are well-studied with
small sample dataset constraints, and multiple prior studies have shown stable perfor-
mance with these constraints [68,69]. Several popular deep CNN architectures and their
initial performances are detailed in the Supplementary Document Table S2. The VGG-16
and sample-mix technique proved to be the top performer and most practical, so all re-
maining tests include this combination. Table S3 in the Supplementary Document shows
performance for several alternative resizing techniques.
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Deep Network Performance

Results using the VGG16 CNN network trained on the PANDA Radboud, UM/MCC
and combined dataset (PANDA + UM/MCC) follow. The models were built and trained in
Python 3.8.10, Tensorflow/Keras 2.9.1 on the NVIDIA® DGX™/A100 platform. Model files
and samples of Python code are available for download at https://github.com/rfogarty/
glandLevelGleasonClassification.git (accessed on 13 February 2023).

We found the best DL network trained on PANDA’s data (tile size of 400 × 400)
showed exceptional results in discriminating cancer from benign with an AUC of 0.981 and
AUC of 0.997 for discriminating cancer grades (GS3 vs. GS4), with other metrics shown in
Table 3. The reported scores are cross-validation scores, and optimistic versus a holdout
test set—the GS3 versus GS4 results are especially optimistic.

Table 3. PANDA Radboud classifier scores.

Trained on PANDA Radboud

PANDA Radboud
Benign vs. GS3/4/5

PANDA Radboud
GS3 vs. GS4

Accuracy 0.941 (0.88, 0.98) 0.979 (0.95, 1.0)

Sensitivity 0.964 (0.92, 0.99) 0.980 (0.94, 1.0)

Specificity 0.920 (0.80, 0.98) 0.979(0.93, 1.0)

Precision 0.927 (0.83, 0.98) 0.979 (0.94, 1.0)

NPV 0.959 (0.90, 0.99) 0.980 (0.94, 1.0)

F1-score 0.944 (0.88, 0.98) 0.980 (0.95, 1.0)

AUC 0.981 (0.93, 1.0) 0.997 (0.99, 1.0)

Table 4 summarizes performance of our VGG-16 DL architecture and establishes a
baseline of performance for our UM/MCC dataset for the two binary problems studied.
The networks were pretrained on ImageNet only (light blue columns) and pretrained on
ImageNet followed by a pretraining on PANDA Radboud (darker blue columns). In this
case, the benign versus GS3/4 binary classifier performed much better than the GS3 versus
GS4, measuring better than 20% in almost all metrics. Although in both cases we scored
better after a PANDA Radboud pretraining, the results of pretraining on PANDA only
showed a marginal improvement. The scores for benign versus GS3/4 were measured
using a conventional 10-fold CV, while the scores in GS3 versus GS4 classification were
measured using a 20-fold Monte Carlo CV (because of very limited data size). Scores
include 95% confidence intervals computed using the bootstrap method in parentheses.

Table 4. UM/MCC performance 1-stage versus 2-stage (ImageNet + PANDA) training.

Trained on UM/MCC

Benign vs. GS3/4
(1-Stage ImageNet
Transfer-Learning)

Benign vs. GS3/4
(2-Stage ImageNet Plus
PANDA Transfer-Learn)

GS3 vs. GS4
(1-Stage ImageNet
Transfer-Learning)

GS3 vs. GS4
(2-Stage ImageNet Plus
PANDA Transfer-Learn)

Accuracy 0.901 (0.79, 0.98) 0.911 (0.81, 0.97) 0.669 (0.53, 0.84) 0.680 (0.54, 0.84)

Sensitivity 0.898 (0.75, 0.97) 0.897 (0.71, 0.97) 0.732 (0.37, 0.93) 0.753 (0.47, 0.90)

Specificity 0.898 (0.75, 0.97) 0.897 (0.71, 0.97) 0.606 (0.26, 0.87) 0.606 (0.19, 0.92)

Precision 0.912 (0.75, 1.0) 0.923 (0.76, 0.99) 0.660 (0.52, 0.86) 0.670 (0.52, 0.90)

NPV 0.912 (0.75, 1.0) 0.923 (0.76, 0.99) 0.699 (0.54, 0.86) 0.712 (0.55, 0.83)

F1-score 0.903 (0.78, 0.98) 0.908 (0.77, 0.98) 0.686 (0.47, 0.83) 0.702 (0.51, 0.84)

AUC 0.955 (0.87, 0.99) 0.955 (0.87, 0.99) 0.706 (0.43, 0.90) 0.714 (0.44, 0.90)

https://github.com/rfogarty/glandLevelGleasonClassification.git
https://github.com/rfogarty/glandLevelGleasonClassification.git
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Tests of cross-source generalization on our best PANDA-trained models and UM/MCC-
trained models were poor, which demonstrates that the datasets are quite distinct. The best DL
discriminator trained on PANDAs and tested on UM/MCC was able to differentiate cancer
from benign (benign vs. GS3/4) with an AUC of 0.738. While the AUC drops to worse than
random guessing (<0.5) for GS3 vs. GS4. In the alternate case, there was marginal performance
for DL networks trained on UM/MCC and tested on PANDAs with an AUC of 0.522 for
benign vs. GS3/4/5 and AUC of 0.692 for GS3 vs. GS4. Details of this experiment are shown
in Table S4 of the Supplementary Document. As shown below, we will significantly improve
these results by training on a combined PANDA + UM/MCC dataset.

Finally, in Table 5, results are summarized for two networks that were simultaneously
trained on a combined PANDA Radboud plus UM/MCC dataset. The columns in light
green on the left are derived from the network that classifies benign versus malignancy
(GS3/4), while the columns in dark green show results from a network that classifies a GS3
versus GS4 rating. The DL networks were configured to classify both source and Gleason
pattern simultaneously, such as PANDA-GS3 or UMMCC-GS4, so both networks trained
on four classes. These classes were then reduced to just a Gleason score for the inference
decision (and comparison to patch label). Our AUC results on PANDA Radboud data,
0.988 for benign versus GS3/4 and 0.996 for GS3 versus GS4, demonstrate performance
that equals the network trained solely on PANDA Radboud data. For our UM/MCC data,
AUC is estimated at 0.963 for benign versus GS3/4 and 0.710 for GS3 versus GS4.

Table 5. PANDA + UMMCC training.

Trained on Combined PANDA Radboud + UM/MCC

PANDA Radboud
Benign vs. GS3/4

UM/MCC
Benign vs. GS3/4

PANDA Radboud
GS3 vs. GS4

UM/MCC
GS3 vs. GS4

Accuracy 0.961 (0.93, 0.99) 0.915 (0.80, 0.97) 0.970 (0.94, 1.0) 0.668 (0.53, 0.84)

Sensitivity 0.944 (0.89, 0.99) 0.902 (0.75, 0.99) 0.971 (0.92, 1.0) 0.647 (0.36, 0.84)

Specificity 0.978 (0.95, 1.0) 0.928 (0.82, 0.98) 0.968 (0.88, 1.0) 0.689 (0.24, 0.87)

Precision 0.977 (0.95, 1.0) 0.927 (0.83, 0.98) 0.970 (0.89, 1.0) 0.687 (0.52, 0.85)

NPV 0.946 (0.90, 0.99) 0.908 (0.78, 0.99) 0.972 (0.92, 1.0) 0.665 (0.55, 0.83)

F1-score 0.960 (0.92, 0.99) 0.913 (0.79, 0.97) 0.970 (0.94, 1.0) 0.656 (0.47, 0.84)

AUC 0.988 (0.96, 1.0) 0.963 (0.86, 0.99) 0.996 (0.99, 1.0) 0.710 (0.52, 0.90)

4. Discussion

DL methods have proven to be more effective in discriminating objects from different
categories, exceeding human perception in the recent decade [27]. It is known that the DL
methods’ performance drops in discriminating subjects that are sparse in their occurrence
in the training sets. In our case, various quality factors affect our performance, which
include inconsistent lighting conditions or stain quality, stain differences and generalizing
across sources [70,71]. State-of-the-art approaches have ushered in techniques for much
more complicated classification tasks, including Gleason scoring (GS) or ISUP Gleason
grading of prostate pathology [72–76]. Classifying indolent from cancer grade based
on H&E pathology with multiple glands is empirically a difficult problem—there is a
subtle distinction between any neighboring patterns with a fuzzy discrimination boundary
between the pattern scoring levels [8,77].

In our study, discrimination from benign/indolent versus cancer (GS3/4) grades
shows excellent performance at the glandular level (AUC 0.96, Table 5). Grades of cancer
discrimination GS3 versus GS4 performance was lower for the UM/MCC dataset (AUC
0.71, Table 5) but excellent for Kaggle PANDA Radboud data (whose patches may include
multiple glands). Our results demonstrate that classifying individual glands at a Gleason
level has acceptable performance and provides a basis to develop overall slide-level Gleason
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pattern scores. Grading individual glandular features has the advantage of increased fidelity
in the decision process and provides supporting evidence for pathologists. Other studies
have employed different approaches to the problem [78,79]. It is challenging to make a
direct comparison with other findings; nevertheless, a comparison with recently published
works follows. Singhal et al. show an accuracy of discriminating benign from malignancy
of 0.85 on PANDA Radboud biopsy images [80], while our work shows an accuracy of
0.92 at the glandular level on our UMMCC data cohort and 0.96 on the PANDA Radboud
data. Comparing with PANDA’s challenge data, in Bulten (2022) [16], a representative
algorithm had validation metrics on sensitivity and specificity of tumor detection at 99.7%
(98.1–99.7) and 92.9% (91.9–96.7), respectively, while our benign-versus-malignant classifier
demonstrated Radboud scores of 94.4% (89.0–99.0) and 97.8% (95–1.0). In each of these
comparisons, the results of our tests were tallied on single patches or glands, while the other
studies compute results over the entire biopsy. See Table 5 for a summary of our results.

We used a cyclic learning rate to improve gradient descent, but the technique may also
be used to choose an effective ensemble set [62]. Generally, we can train an ensemble set
using a variety of methods to improve generalization and to lower variance [81]. The high
variance reported on the VGG-16 DL network was contributed to by the small validation
sets but also by not leveraging an ensemble technique.

The generalization of consistent ISUP grading or Gleason scoring across sources proves
to be difficult if the network has not trained on that source or if the network is retrained on
a new dataset (forgetting what it has previously learned). The Supplementary Document
Table S4 shows an example of catastrophic forgetting when testing PANDA data on a
network fine-tuned on UM/MCC data, a common problem with machine learners [82].
Model training can be improved by continual learning, when integrating new sources, to
ensure good cross-source generalization [83,84]. Alternatively, since datasets are relatively
small within this domain, we successfully demonstrated combined-datasets training that
integrated previously unseen sources, as shown in Table 5.

An orchestrated solution classifying glandular features and detection of additional
features (such as density of nuclei and other recognized pathologic features) would exem-
plify a DSS that provides trust. Our contention is that ML and classifying entire WSIs is a
useful aid, but DL CNNs, in particular, may make decisions that are not consistent with
human observation and perception [12].

Using modern graphics processing units such as the NVIDIA® A100, training on our
combined prostate pathology cohorts require less than 1 h of compute time per DL model
(roughly 17 h for 20 models of a 20-fold CV). A single inference decision on an image patch
takes fractions of a second to process on any high-end commercial and consumer grade
GPU device (a GPU accelerator is not needed for inference when deployed in the field),
supporting rapid response and interrogation of data for histopathologists.

Limitations and Future Improvements

A significant limitation to the approach is to classify higher grade patterns caused by
limited samples in these grades. It is well-understood that a higher-grade Gleason pattern
has progressively receding luminal regions and shows distinct morphological characteris-
tics. Small sample size across the grades and varying glandular patterns make it difficult for
the model to train and discriminate the patterns. We used the public cohort (PANDA Rad-
boud) to find patches with Gleason pattern examples, but they may unavoidably contain
multiple glands.

It is recognized that wide confidence bounds for some of our performance metrics
could be attributed to smaller sample size. We believe using an ensemble technique,
training on larger datasets and consensus scoring on WSIs will minimize the complexity of
the DL model and improve the confidence bounds [85–87].

Future improvements to consider for generalization are consistent image preprocess-
ing across sources, such as stain correction [14,88–90] and image resizing [91]. In future
experiments, we intend to show improved generalization on unseen sources by first reduc-
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ing discrepancies among data sources. Additionally, cross-source generalization could be
improved by training an ensemble across many sources while ensuring that confounding
factors are not contributing to shortcut learning—a generalized solution must learn from
the wisdom of the masses to apply as a reference standard [92].

5. Conclusions

The baseline scores presented in this paper focus on discriminating primary Gleason
patterns on individual glands or small patches of a prostate WSI. Our study demonstrates
that a CNN DL model discriminates malignant patterns from benign tissue with a high
level of accuracy. Furthermore, we were able to show validation of the findings in an
independent larger-sized cohort (Kaggle PANDA Radboud data). Our work shows that
classification of an indolent Gleason pattern from a clinically significant Gleason pattern
shows impressive discrimination. We would need a larger sample cohort from diverse
multi-centers to improve discrimination at the glandular level. Increasing the fidelity of an
automated Gleason scoring scheme will provide a decision aid for clinical judgement.

It is well-recognized that clinical translation of pathological findings in the clinic
would require improved region targeting. There are improved biopsy methods that show
promise of improving tumor detection [93].

Supplementary Materials: The following supporting information can be downloaded at https:
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