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Simple Summary: Innate immune natural killer (NK) cells are capable of killing metastatic cancer
cells without activation by antigen-presenting cells beforehand. The cytotoxic effects and immune
regulation of NK cells are precisely controlled by an energetic balance of signals produced by a
group of activating and inhibitory receptors expressed on NK cells, while metastatic tumor cells with
multiple strategies escape immune cells attack. This review focuses on the critical function of NK
cells in metastasis and recently developed objectively effective NK cell-based immunotherapies.

Abstract: Metastatic tumors cause the most deaths in cancer patients. Treating metastasis remains the
primary goal of current cancer research. Although the immune system prevents and kills the tumor
cells, the function of the immune system in metastatic cancer has been unappreciated for decades
because tumors are able to develop complex signaling pathways to suppress immune responses,
leading them to escape detection and elimination. Studies showed NK cell-based therapies have
many advantages and promise for fighting metastatic cancers. We here review the function of the
immune system in tumor progression, specifically focusing on the ability of NK cells in antimetastasis,
how metastatic tumors escape the NK cell attack, as well as the recent development of effective
antimetastatic immunotherapies.

Keywords: NK cell function; metastasis; NK cell-based immunotherapy; metastatic tumor immune
escape; immunosuppression; NK cell activation; CAR-NK cell

1. Introduction of the General Immune System

The immune system, composed of a complex of organs, immune cells, and molecules
in the body, not only defends against foreign pathogens but also eliminates potentially
deleterious mutation-bearing cells to protect and maintain normal body functions (Figure 1).
Immune cells originate from stem cells in immune organs and become a variety of cell
types, including neutrophils, eosinophils, basophils, mast cells, monocytes, macrophages,
dendritic cells, natural killer cells (NK cells), B lymphocytes (B cells), and T lymphocytes
(T cells). Physiologically, immune cells maintain a homeostatic balance between activating
and inhibitory immunity for an adequate immune reaction against pathogens and diseases,
including cancer [1]. The immune reaction contains two primary types: innate and adaptive
immunity. Innate immunity is predominantly nonspecific, and defense reactions are rapidly
generated within foreign antigen encounters. The NK and dendritic cells, as well as
macrophage, neutrophils, basophils, and eosinophils, are the primary cell types in innate
immunity [2]. Adaptive immunity is based on the clonal selection of T cells and B cells with
receptors recognizing particular ‘non-self’ antigens represented by major histocompatibility
complex (MHC) molecules on antigen-presenting cells. It is the second line of protection
and needs a few days to become activated. After activation and expansion, T cells become
cytotoxicity T cells (CD8+ T cell) to recognize and kill the target cells expressing the same
antigen through phagocytosis and antigen-specific cytotoxicity [3], while B cells produce
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the antibody for antigen and are primarily demanded in antibody-mediated immunity [4]
(Figure 1B).
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protects against foreign pathogens, eliminates cancer cells, and maintains normal body functions. 
(B) Two primary arms of effector immunity are innate and adaptive immunities for immune re-
sponse. Innate immunity is nonspecific and refers to defense mechanisms activated rapidly to pre-
vent the spread of foreign antigens, including those produced by cancer cells. The main cell types 
involved in innate immunity are natural killer cells (NK), dendritic cells (DC), and macrophages. 
NK cells are activated by cancers through NK cell activating receptor interaction with its ligands in 
cancer cells, releasing perforin and other killer molecules to trigger cancer cell death. Adaptive (ac-
quired) immunity comprises the second line of defense, responding to particular ‘non-self’ antigens 
expressed in cancer cells. It is characterized by clonal expansion of T and B lymphocytes (T cell and 
B cell); upon expansion, these clonal cells express the same antigen receptor and are primed to fight 
the same pathogen. B lymphocytes are primarily involved in antibody-mediated immunity, while 
T lymphocytes are mainly associated with cell-mediated immunity. After activation through inter-
action, T cells and tumor antigens represented by DC, CD8+ T cells become cytotoxicity T cells, and 
CD4+ T cells release cytokines to stimulate CD8+ T cells to convert to cytotoxicity T cells. Cytotoxi-
city T cells recognize the cancer cells and mediate cancer cell clearance through direct cytotoxicity 
or secretion of inflammatory cytokines. 

Cancer originates from cells harboring genetic mutations [5], which can express the 
mutant proteins as neoantigens. Neoantigen peptides are presented to immune cells 
through the MHC class I (MHC-I) molecules on the surface of the cancer cell, distinguish-
ing them from their normal counterparts (nonself) [6]. This presentation leads to the acti-
vation of T cells to become specific cytotoxicity CD8+ T cells, which can kill those tumor 
cells. NK cells can detect and rapidly destroy tumor cells with downregulated MHC-I ex-
pression, terming ‘missing self’ recognition [7,8]. Hereafter, NK cells quickly produce cy-
tokines and secret the interferon-γ (IFNγ), tumor necrosis factor-alpha (TNFα), 

Figure 1. The human immune system and its functions. (A) The immune system consists of organs
(thymus, tonsils, spleen, lymph, lymphatic tissue of the gut and bone marrow), immune cells (T cells,
NK cells, B cells, macrophage, etc.), and molecules (antibodies, cytokines, chemokines, etc.). It
protects against foreign pathogens, eliminates cancer cells, and maintains normal body functions.
(B) Two primary arms of effector immunity are innate and adaptive immunities for immune response.
Innate immunity is nonspecific and refers to defense mechanisms activated rapidly to prevent the
spread of foreign antigens, including those produced by cancer cells. The main cell types involved
in innate immunity are natural killer cells (NK), dendritic cells (DC), and macrophages. NK cells
are activated by cancers through NK cell activating receptor interaction with its ligands in cancer
cells, releasing perforin and other killer molecules to trigger cancer cell death. Adaptive (acquired)
immunity comprises the second line of defense, responding to particular ‘non-self’ antigens expressed
in cancer cells. It is characterized by clonal expansion of T and B lymphocytes (T cell and B cell);
upon expansion, these clonal cells express the same antigen receptor and are primed to fight the
same pathogen. B lymphocytes are primarily involved in antibody-mediated immunity, while T
lymphocytes are mainly associated with cell-mediated immunity. After activation through interaction,
T cells and tumor antigens represented by DC, CD8+ T cells become cytotoxicity T cells, and CD4+ T
cells release cytokines to stimulate CD8+ T cells to convert to cytotoxicity T cells. Cytotoxicity T cells
recognize the cancer cells and mediate cancer cell clearance through direct cytotoxicity or secretion of
inflammatory cytokines.

Cancer originates from cells harboring genetic mutations [5], which can express the mu-
tant proteins as neoantigens. Neoantigen peptides are presented to immune cells through
the MHC class I (MHC-I) molecules on the surface of the cancer cell, distinguishing them
from their normal counterparts (nonself) [6]. This presentation leads to the activation of T
cells to become specific cytotoxicity CD8+ T cells, which can kill those tumor cells. NK cells
can detect and rapidly destroy tumor cells with downregulated MHC-I expression, terming
‘missing self’ recognition [7,8]. Hereafter, NK cells quickly produce cytokines and secret the
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interferon-γ (IFNγ), tumor necrosis factor-alpha (TNFα), granulocyte-macrophage colony-
stimulating factor (GM-CSF), and chemokines for activating other immune cells such as
T and B cells to boost adaptive immunity [9]. Moreover, NK cells can be provoked by
antibody opsonization for mediating antibody-dependent cellular cytotoxicity (ADCC) [10].
To trigger and develop the entire immune response requires the interaction of tumor cells
and immune cells, which needs three signals: (1) first signal—an antigen expressed in
cancer cells; (2) second signal—stimulatory molecules in both cancer and immune cells,
and (3) third signal—cytokine signaling in immune cells [11,12]. However, cancers can
develop multiple strategies to escape immune cell attack [13]. Immune escape is usually
associated with loss of stimulating molecules that includes the downregulation of classical
HLA molecules (missing self-hypothesis), loss of stimulatory cytokines, and/or gain of sup-
pressing molecules such as expression of nonclassical HLA-G, functional Th2-type activity
shift (e.g., decrease in IFNγ and/or increase in TGFb, IL6, and IL10) and elevation of the
Fas ligand on cancer cells [14–16]. The interactivity of the immune cells and cancer cells can
determine the fate of tumors. This can be described as three “E’s”, which are eradication,
equilibrium, and escape (Figure 2) [17,18]. This process, called cancer immunoediting, has
built a theoretical hypothesis for comprehending our immune protection and sculpting
cancer immunogenicity on tumor progression. In early cancer development, tumor cells can
be eliminated by the immune system via the responses of innate and adaptive immunity in
the eradication phase. However, tumor cells can manage the immune pressure to survive
and then may enter the equilibrium phase. Escape is the phase of the tumor progression,
where tumors are sculpted immunologically with the ability to inhibit the immune cells
attach and establish an immunosuppressive tumor microenvironment (TME), then become
clinically relevant as a mass and/or metastasis [13,17–20] (Figure 2). Boosting immunity
and inhibiting immunosuppressive TME are principal strategies for anticancer immune
therapy. One of the breakthroughs in antitumor immunotherapy focuses on utilizing adap-
tive immunity, achieving primary success through inhibiting immune checkpoints [21] or
using CAR-T cells to enhance antitumor CD8+ T cell responses [22,23]. Emerging evidence
indicates that tumors can develop various strategies to evade CD8+ T cell recognition, and
side effects remain in T cell therapies [24]. Although T cells can eliminate most cells within
a primary tumor, a fraction can still escape antitumor immunity and survive, ultimately
leading to metastatic disease and death of the patient. However, NK cells can preferentially
attack these tumors [25]. NK cells have built-in safety characteristics to avoid autoimmunity
and have the ability to maintain immune homeostasis to prevent autoimmune disease [26].
Moreover, a subgroup of NK cells can present memory-like recall responses, playing the
role of adaptive immunity [27,28]. Thus, these unique features of NK cells make them
attractive targets for immunotherapy that can provoke their potent antitumor mechanisms
(Table 1). Consequently, a new field of NK cells in metastasis has highlighted the important
role of NK cells in immunosurveillance against metastasis [29]. This review focuses on
the critical functions of NK cells in metastasis and the recent development of novel and
objectively effective cancer immunotherapies.

Table 1. Properties of NK cells and T cells in antitumor activity.

Property NK Cell T Cells

Type of immune response Innate immunity, Adaptive Immunity Adaptive immunity

Cell marker CD56+CD3-CD16+ CD3+CD4+ or CD3+CD8+

Development Differentiate in the BM Differentiate in the thymus

pre-stimulation No antigen priming Antigen priming required

Location Primarily in blood and tissue resident Antigen specific tumor site

Side effect of overactivation No/low risk of GVHD Allogeneic T cells induce GVHD
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Table 1. Cont.

Property NK Cell T Cells

Mechanism of activation
Recognition of abnormal or missing

self-molecules on the surface of cancer cells
through the complex array of receptors

Antigen-specific recognition of of cancer
cells through TCR

MHC dependence Do not require MHC matching for antigen
recognition and activation

Require MHC matching for antigen
recognition and activation

Cytotoxicity Directly kill cancer cells through the release of
cytotoxic granules, greater cytotoxicity

Directly kill cancer cells through the
release of cytotoxic granules

Cytokine secretion Secrete cytokines to stimulate other immune cells
to attack cancer cells

Secrete cytokines that stimulate other
immune cells to attack cancer cells

Target Target various cancer cells that have lost MHC
expression or express stress-induced molecules

Target cancer cells that express specific
antigens on their surface

ADCC mediated antibody-dependent cellular
cytotoxicity of cancer cells No

Anti-metastatic activity Highly effective against dissimilating tumor cells
and distant site tumor cells

Have limited efficacy against metastatic
tumor cells
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Figure 2. Interactions between the immune system and tumor cells can determine the fate of tumors.
Interactions between the immune system and tumor cells are like the relationship between a mouse
and a cat game. This process is called cancer immunoediting, which consists of three “Es”: eradication,
equilibrium, and escape. In eradication, tumor cells are initially destroyed by the immune system
by activating both innate and adaptive mechanisms. However, some tumor cells manage to survive
immune destruction and enter what could be a lengthy equilibrium phase. Immunologically sculpted
tumors grow progressively during the final escape phase, become clinically mass or metastasize, and
establish an immunosuppressive TME.

2. NK Cell Biology and Function

NK cells represent 5–15% of the lymphocytes in human peripheral blood, with the
unique ability to rapidly eliminate infected, mutated cells without preactivation [30–32].
NK cells originate from CD34+ hematopoietic stem cells in the BM, migrate to blood and
other organs, and infiltrate cancer tissue [31,33]. Based on the surface marker profiles, NK
cells exhibit different populations with functional heterogeneity at different maturation
stages and anatomical locations [34]. Distinguished from myeloid cells, NK cells are
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defined as CD3−CD56+ in peripheral blood [35]. Two major subtypes of NK cells are
differentiated by levels of marker CD56 (neural cell adhesion molecule, NCAM) [36]. A
total of 5–10% of blood NK cells are immature and express high levels of CD56 named
CD56 bright NK cells, while most (90–95%) have downregulation of CD56 and convert
into the matured CD56dim subgroup and also begin to express CD16 (FcrRIIIa) [37,38].
NK cells play roles in cytotoxic effects and immune regulation, two significant functions
in innate immunity [39]. Without prestimulation, NK cells are able to detect and kill
transformed cells by secreting perforin and granzymes [40]. Activated NK cells can also
deliver the death ligands of TNFa, FasL, and apoptosis-inducing ligand (TRAIL), starting
the apoptotic pathway [41]. In immune regulation, NK cells release various cytokines and
chemokines such as IFNγ, IL10, CCL3, CCL4, and CCL5, connecting innate immunity to
adaptive immunity [42]. NK cells express diverse activating and inhibitory receptors that
transfer positive and negative signals for precisely regulating NK cell activity (Figure 3).
The quantity of activating and inhibitory receptor signals contributes to the fate of NK cells’
target cells [43]. NKG2D and DNAM-1 are important receptors for activating NK cells.
NKG2D can bind to the ligands of NKG2D (NKG2D), such as MICA/B [44] and UL16-
binding proteins (ULBPs) [45,46], extending the signals via the adaptor protein DAP10,
thereby activating the PI3K singling pathway to trigger cytotoxicity [47]. DNAM-1 can
interact with its ligands, such as CD112 and CD155, in cancer cells [48] (Figure 3). CD16
is another highly efficient activating receptor that matured NK cells express [10]. After
binding with the Fc region of antibodies, CD16 induces activation signals and triggers
ADCC for lysing antibody-coated cancer cells [10]. Studies showed that several therapeutic
antibodies, such as the anti-HER2 antibody trastuzumab not only recognized tumor-specific
antigens but also increased NK cell infiltration in tumors to trigger ADCC with a role
for NK cells in adaptive immunity [49,50]. Immunoglobulin family receptors, NKp46,
NKp30, and NKp44 in NK cells, also play a natural cytotoxicity function when activated
by metastatic tumor cells [51–56] (Figure 3). The killer immunoglobulin-like receptors
(KIRs) [57] are the main NK cell inhibitory receptors that specifically bind to MHC-I
molecules. Usually, MHC-I molecules are expressed in the normal cell but are lost in
cancer and metastatic cells. By detecting MHC-I molecules, NK cells are inhibited by self-
molecules, so they avoid killing normal cells and check “missing self” cancer and metastatic
cells using their inhibitory receptors. NKG2A is another inhibitory receptor in NK cells.
Upon interacting with nonclassical human leukocyte antigen class I molecule E (HLA-E),
NKG2A triggers an inhibitory signal through the immunoreceptor tyrosine-based inhibition
motif (ITIM) [58]. Furthermore, the inhibitory leukocyte immunoglobulin-like receptor-1
(LIR-1) could bind to HLA-G and HLA-I to inhibit NK cell activation [59]. Moreover,
other inhibitory receptors, TIGIT, CD96, LAG3, PD-1, and Tim-3, express in NK cells for
negatively regulating NK cell activation. CD96 and TIGIT can also bind to CD112 and
CD155 competitively with DNAM-1 to play checkpoint action for maintaining a balance
of activating and inhibitory signals. These receptors also increase as cancer progresses,
causing NK cell exhaustion to act as an NK checkpoint, suggesting that these are potential
targets in cancer immunotherapy [60] (Figure 3).
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Figure 3. NK cell activity is precisely regulated by a dynamic balance of signals transduced by
a diverse set of activating and inhibitory receptors expressed on NK cells. NK cells express an
array of activating and inhibitory receptors. Both activating and inhibitory receptor signals jointly
mediate the outcome of NK cell target metastatic tumor cells. The activating receptors encounter the
ligands expressed in metastatic tumor cells, activate the immunoreceptor tyrosine-based activation
motif (ITAM), and activate PI3K and PLC through adaptors such as Syk, Vav1, Zap70, Lck, and
Fyn, therefore activating transcriptional factors for stimulating gene expression and promote NK
proliferation and release killing molecules for cytotoxicity. As another highly efficient activating
receptor, CD16 induces activation signals and triggers antibody-dependent cellular cytotoxicity
(ADCC) against antibody-coated cancer cells following binding with the Fc region of antibodies.
Moreover, NK cells are activated by cytokines through cytokine receptors. The inhibitory receptors
contain the immunoreceptor tyrosine-based inhibition motif (ITIM) in the cytoplasmic tail. After
binding to the ligands in metastatic tumor cells, the inhibitory receptors trigger an inhibitory signal
through the immunoreceptor tyrosine-based inhibition motif (ITIM), requite the SHP-1 and delivering
the inhibition signals through adaptors molecules, therefore blocking gene expression and NK cell
proliferation and maintaining NK cell self-tolerance.

3. The Function of NK Cells in Tumor Metastasis

NK cells constitutively express lytic machinery that kills aberrant cells independently
from preactivation with safety characteristics and rarely elicits autoimmunity (Table 1).
Since their identification, NK cells with unique functional features have been suggested to
play an important role in controlling tumor growth and metastasis [61–63].
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3.1. NK Cell Function Related to Metastasis

NK cells were first found for their capability to eliminate tumor cells without prior
stimulation by antigen-presenting cells [63,64]. Studies have reported that patients with a
higher cancer incidence had inadequate peripheral NK cell cytotoxicity responses in various
types of cancer [65–69]. Additionally, the patients who suffered NK cell dysfunction had an
increased rate of malignancies and metastases [70–77]. Using an experimental metastasis
assay, we and others found that antibodies mediated depletion of NK function or the use of
an NK cell-deficient host increased metastasis, suggesting that NK cells play an essential
role in antimetastasis ([78], our unpublished data). An intravital imaging system directly
observed NK cells attack disseminated tumor cells leading to cancer cell death in mouse
models [78]. These observations indicated that NK cells act as a killer in tumor progres-
sion, especially cancer cells spreading from their original site to the bloodstream [29,62].
Clinically, the patients who suffered various cancers with low amounts of peripheral or
infiltrating NK cells at tumor sites have higher numbers of metastatic lesions. [74,79–84].
In contrast, the patients who suffered an increased metastatic cancer risk with high levels
of NK cell activating receptors (NKAR) have good prognoses [77,85–89]. Moreover, a high
level of IFNγ production by circulating NK cells and the presence of NKp30 are associated
with a positive prediction for long-term survival in patients with breast cancer, gastrointesti-
nal stromal tumor, or melanoma under treatments [69,79,80,90–92]. More recently, a study
has shown that NK cells could sustain breast cancer dormancy for controlling breast cancer
liver metastasis [93]. These facts suggest the notion that NK cells mediate antimetastatic
effects in clinical. The notion has also been strongly linked to cancer treatment and pre-
venting tumor metastasis. For example, after successfully removing the tumor by surgery,
many patients still developed distant metastasis later; one of the important reasons is that
low NK cell cytotoxicity and less IFNγ secretion link impaired NK cell function directly to
increased postoperative metastases [94–96]. Thus, the functional restoration of NK cells by
agents such as arginine prevents metastases [97,98].

3.2. How NK Cells Kill Metastases

It is well appreciated that the amount of positive and negative signals transmitted by
NK cell activating or inhibitory receptors determines the fate of the targets [99]. Normal
cells typically express low amounts of activating ligands and have higher amounts of
MHC-I molecules that interact with inhibitory receptors and transduce more negative
signals; therefore, NK cells will not eliminate normal somatic cells. In contrast, in malignant
tumor cells, the expression of activating ligands has been increased, and the positive signals
will overcome the negative signals, thus ensuring that aberrant cells are destroyed by NK
cells [100,101]. The deficiency of NK cell activating receptor NCR1 in a GEM (genetically
engineered mouse) model was shown to promote tumor growth [101,102]. Interestingly,
when comparing with B16 melanoma growing subcutaneously in either NCR1 heterozy-
gous (het) or homozygous (KO) mice, the tumor size in the two groups had no significant
difference. Still, there was a substantial difference in the rate of metastasis between the
two groups: NCR1 KO mice appeared to have significantly higher metastatic lesions than
NCR1 het mice [102,103]. This indicates that the absence of an activating receptor dra-
matically affects metastasis development but has no evident effect on the primary tumor,
implying that the level of NK cell activating signaling plays a vital role in controlling
tumor metastasis. Subsequently, it was found that elevated secretion of IFNγ by NK
cells enhanced the level of FN1 in the tumor, resulting in architectural alteration and less
aggressive metastasis. In contrast, deficient NCR1 abolished the release of IFNγ [103].
Recent studies have also reported that NK cells are necessary for the selective destruction
of circulating single breast tumor cells [104,105]. Extensive studies also support that NK
cells control metastasis by activating receptor signaling. For example, NK cells efficiently
eliminate metastatic melanoma cells when overexpressing ligands for NKp44, NKp46, and
DNAM-1 [74]. In contrast, GEM mice deficient in DNAM-1 [106,107], Tlr3 (regulating
NK cell responses to cytokines) [108], Il2rg (ablating NKp46+ NK cells) [109], or T-bet
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(regulating the differentiation of NK cells) [110,111] are susceptible to metastatic coloniza-
tion. Interestingly, the metastatic potential could be prevented by transplanting bulk NK
cells [110–116]. Moreover, treating NK cells with activating cytokine IL-15 can restore
protection from metastasis in Tbx21-deficient mice [111]. Deletion of a negative regulator
Clbl also promotes NK cell-dependent antimetastatic effects in mice [115]. Furthermore,
deficient endogenous IL-15 inhibitor of Cish in NK cells (Cish−/−NK cells) leads to NK
cell hyperactivation; transplanting the Cish−/−NK cells into mice could robustly abrogate
the metastatic phenotype of highly metastatic B16F10 melanoma cells [117,118]. Decrease
in DNAM-1 limits NK cytotoxicity and blocks IFNγ production, while the overexpression
of DNAM-1 ligand in tumor cells causes a decrease in NKG2D ligands, indicating that NK
cell-induced killing is initiated by DNAM-1 or NKG2D signaling pathway [74,117,119].
Moreover, NK cell depletion with antibodies of NK1.1 or asiago-GM markedly enhances the
metastasis [116,120–122]. Mice with NK cell activating factors, including IFNγ, perforin 1
(PRF1), or TRAIL deficiency by gene knockout or antibody-caused neutralization, were
more susceptible to metastatic incidences following challenges with tumor cell inoculation
or with carcinogen-induced tumors [123–125]. NK cells also produce and release IFNγ

and TNFα to function on macrophages and dendritic cells for enhancing the immune
response [126]. Interestingly, using an image tracker system, a recent study functionally
visualized that NK cells directly contacted metastatic tumor cells rapidly, leading to its ERK
activation and metastatic tumor cell apoptosis [78]. They then confirmed metastatic tumor
cell death related to DNAM-1 activation in NK cells [78]. Whereas a more recent study
has shown that activation of inhibitory receptor NKG2A/HLA-E signaling promoted the
distant metastasis of PDAC; blocking this pathway provokes NK cells and inhibits PDAC
metastasis [127]. Whether the NK cells destroy metastatic cancer depends on the amounts
of signals from activating and inhibitory receptors in the NK cells. Activating receptors
interact with molecules on the surface of cancer cells and ‘turn on’ activation of the NK
cell. Inhibitory receptors on NK cells check the signals from its ligands on metastatic cancer
cells to block the ability of NK cell-mediated killing. Metastatic tumor cells often lose NK
cell inhibitory receptor ligands of MHC-I, which reduce the inhibitory signal and leave
them vulnerable to NK cell killing. Activating signals through activating receptors in NK
cells promote NK proliferation and stimulate the secretion of cytotoxic granules to release
perforin and granzymes, leading to metastatic tumor lysis (Figures 1B and 3).

4. Immunosuppression of NK in Tumor Metastasis

The effectiveness of NK cell killing of metastatic tumors depends not only on the
immensity of the NK cell response, such as the activation of NK cells, but also on the
capacity of cancer cells to evade destruction. Tumor cells can develop a wide range of
strategies to elude detection and destruction by NK cells, continue to grow at distant sites,
and then form metastases [61]. The process by which tumor cells develop the intrinsic
properties to avoid recognition and elimination by NK cells is referred to as “escape” [61].
The efficiency of escape determines the success of disseminated tumor cells in giving rise
to distant metastases. Most strategies tumor cells use to evade NK cell killing are described
here. First, tumor cells can increase ligands of NK inhibitory receptors such as CD111 [128],
PD-L1 [129], HLA-G [130], galectin-9 [131], HMGB-1 [132–134], and CEACAM-1 [135],
therefore the activation of inhibitory receptor signal pathways [127]. The expression of
nonclassical HLA-G is reported in various metastatic cancers, which ties up the inhibitory
receptor of LIR-1 to transduce the inhibitory signals to NK cells and inhibit the NK cell
proliferation and gene expression (Figure 3) [130]. In fact, cancer cells frequently lose their
MHC-1 to escape T cell attack but are vulnerable to NK cell killing, and the metastatic
tumor has too many tricks to manage the MHC-1 level for refraining both T cell and NK
cell elimination [67], such as genetic and epigenetic modification, and transcriptional and
translational regulation [136–138]. Second, metastatic cancer cells decrease the ligands of
NK cells activating receptors (NKAR) [139,140]. For example, metastatic tumor cells often
shed the NKG2D ligand of MICA and MICB proteins [141] through proteolytic proteins
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such as ADAM10, ADAM17, and MMP14 [142,143], thereby producing soluble variants
of ligands, acting as molecular decoys for blocking NK cell activation [144,145]. Indeed,
in many different cohorts of cancers, patients with advanced stage tumors often have a
high level of soluble NKAR ligands [146,147]. Loss of PVR and nectin 2, a ligand for the
NK cell activating receptor DNAM-1, abolished NK cell-mediated destruction of metastatic
melanoma B16F10 [78]; the consequence of deletion of DNAM-1 ligand caused due to
failure to activation of ERK signal pathway in NK cells [78]. The downregulation of a
death receptor FAS in metastatic tumors is another way to turn off NK cells for killing
the metastatic cells through the FAS/FASL pathway [148]. Tumor cells can also decrease
immunostimulatory factors within the TME. Tumor cells can secrete IL10, CXCL8, and
TGFB1, which directly reduce NK cell cytotoxic functions [149–151] and/or recruit other
immune cells such as Treg cells [152], MDSCs [153], CD11b + Ly6G + neutrophils [122,154],
and DC [155], thus inhibiting NK cell functions indirectly. Analysis of the secreted protein
profiling of progressive cancers showed little amounts of NK cell-stimulating molecules
such as IFN [156] and IL-15 [157]. Tumor cells can rewrite their metabolic programming
and release the metabolites that affect the TME to interfere with the antimetastatic functions
of NK cells. For example, overexpression of the ectonucleoside triphosphate diphospho-
hydrolase 1 (ENTPD1) in metastatic tumor cells hydrolyze extracellular ATP into AMP
to convert it to adenosine in hypoxia condition caused by HIF-1 [158,159]. Adenosine
unleashes powerful immunosuppressive effects on NK cells via adenosine A2a recep-
tor (ADORA2A) signaling [159–162]. Hypoxia in TME favors metastatic tumor cells for
avoiding NK cell elimination by releasing TGFB1 and miRNAs through exosome to target
NKG2D [163] and trigger cell autophagy to block tumor cells to GZMB-mediated lysis [164].
In contrast, hyperoxia promotes the destruction of metastases through immune responses
of CD8+ CTLs and NK cells [165]. Inhibition of ENTPD1 by small molecular inhibitor
polyoxometalate-1 or Entpd1 deletion blocked the metastasis of melanoma and colon cancer
cells [166]. In addition, lactate produced by tumors creates a favorable niche for metastasis
and modulates the TME preventing NK cell activation [167,168]. Furthermore, tumor-
derived stromal inflammation has a condition-dependent effect on controlling metastasis
by NK cells [169,170]. Recent studies showed other proteins such as PAEP, pp12, and
pp14 upregulated in metastatic tumor cells to hamper NK cell function [171,172]. Last,
some reports have shown that metastases exhibited higher stemness features than primary
tumors, suggesting that metastatic tumor cells may obtain immune escape abilities from
stem cells or dormant cells [173,174] that could shield their proliferation and hide in distant
sites for a long time.

5. NK Cell-Based Immunotherapy for Metastasis Therapy

Metastatic tumors are challenging to treat and are the principal driver of cancer-related
death [175]. Currently, available immunotherapies show promise for treating metastatic
disease in some cancer patients. NK cells were discovered over half a century and are
well known for eliminating tumor cells without prior activation; thus, they are in the first
line against malignant tumors and metastases. Multiple strategies have been aimed at
activating NK function, showing substantial therapeutic effects on metastatic diseases.

5.1. Cytokines to Boost Activation of NK Cells

NK cells can be activated by various factors. The cytokines are the first to use the direct
engagement of NKR to boost the immune response of NK cells for treating cancer disease.
These include IL2, IL12, IL15, IL21, and type I IFNs but not for all [176–182]. Following
cytokine treatment, NK cells convert (turn into) lymphokine-activated killer (LAK) cells,
subsequently producing cytokines and upregulating the factors such as adhesion molecules,
perforin, granzymes, FasL, and TRAIL [183–187], thereby enhancing their capability to
detect and adhere to cancer cells, triggering various activity to eliminate cancer cells
through perforin/granzyme-dependent necrosis [188,189] and/or Fasl/TRAIL-mediated
apoptosis [184–187].
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IL2. Immunotherapeutic strategies against cancer started in the early 1980s. At the
time, clinicians used IL2 to activate NK cells by injecting NK cell-stimulating doses of IL2
or preactivated NK cells (LAK cells) for treating patients with primary or metastasized
tumors [190]. Although treatment of NK-stimulating doses of IL2 or transplantation of
LAK showed some positive effects in patients with advanced cancers [190], IL2 treatment
was unfortunately associated with side effects of capillary leak syndrome [191]. Moreover,
IL2 enhanced the sensitivity of NK cells to apoptosis when they came into contact with
vascular endothelium [192], leading to a reduction in tumor NK cell infiltration.

IL15. IL15 could promote NK cell survival and protects NK from activation-induced
cell death (AICD). Additionally, it stimulates NK cell expansion more efficiently than
IL2 [192,193]. However, relevant high doses of IL15 are required to elicit significant antitu-
mor effects [194].

IL12. Unlike IL2 and IL15, IL12 mainly stimulates NK cell-mediated IFNγ

production [195,196] to inhibit tumor angiogenesis and stimulate TRAIL/FasL-induced
cell apoptosis in various cancers [197,198]. However, IFN-γ stimulated type 1 immunity
may counteract the functions of tumor immunosuppressive type 2 cytokines (TGFβ and
IL10) [199,200].

IL21. IL21 is a promising cytokine with the capability to activate NK cell antitumor
immunity [201,202]. It promotes the expression of genes associated with type 1 immune
reaction and differentiation of the highly cytotoxic CD56dim/CD16+ NK cells for triggering
ADCC against tumor cells [202,203]. However, its treatment appears to have no specificity,
and its efficacy was not as expected. Moreover, its treatment does not create cross-resistance
or overlapping toxicities as other agents [204]; it still uses in cancer treatment in combination
with other cytokine-based immunotherapies [205,206].

Other cytokines. The early-acting cytokines such as Flt3L, SCF, and IL7 can also
enhance NK cell numbers [207,208]. However, Flt3L did not stimulate a desirable effect for
a long time; more studies will be needed to examine the efficacy [209].

TLR. The engagement of TLR3 and TLR9 could lead to NK cell activation [108,210].
Due to viral and bacterial products could stimulate immune activity through TLRS, the
study has synthesized the molecules from viral and bacterial products to treat the cancer
cells in combination with cytokines [211].

Although the promise of cytokines to boost NK cell activation, the side effects of the
toxicity of systemic cytokine usages and induced NK cell apoptosis are two significant
limitations of cytokine-related NK cell immunotherapies in cancers. To overcome the
limitations, a new strategy of dose pulsing of cytokine combinations keeps synergistic
antitumor function and manages their toxicities. For example, using low doses of IL2 to
promote NK cell proliferation, following high-dose pulses of IL2 or other cytokines to
stimulate NK cells [212–214]. Additionally, an alternative approach was reported to use
fusion proteins to deliver cytokines to tumor cells by tumor-specific Abs in synergy with
NK activating cytokines IL21 [214,215].

To efficiently kill metastases, NK cells require the capability to traffic to tumor sites.
Chemokines could regulate NK cell migration and stimulate NK cells to infiltrate tumor
sites. For example, NK cells express chemokine receptors to respond to CXCL12 and
CXC3L1, leading to migration vigorously [19]. Chemokines also regulate the NK cell
interaction with other immune cells, such as DC [216,217], which triggers NK cell-associated
antitumor immunity [218]. After directly contacting NK cells, DC promotes NK cell
survival, activation, and differentiation through the secretion of IL12, IL1, IL18, and IL15
cytokines [219].

5.2. Immunomodulatory Agents to Modulate the Activation of NK Cells

Recent studies have renewed interest in using molecules that can block inhibitory
pathways of NK cells to counter metastatic disease [220]. For example, one study showed
that deletion of the gene-encoded E3 ubiquitin ligase Cbl-b or inactivation of its E3 ligase,
allows NK cells to destroy metastatic tumors spontaneously [115]. The TAM tyrosine kinase
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receptors (Tyro3, Axl, and Mer) were identified to be a ubiquitylation substrate of Cbl-b.
Treating mice bearing metastatic melanoma and mammary cancer with a small molecule
TAM kinase inhibitor remarkedly reduced metastases and enhanced NK cell-mediated
antimetastatic activity [221,222]. Moreover, the anticoagulant warfarin was found to exert
antimetastatic activity via Cbl-b/TAM receptors through NK cells, suggesting that the
TAM/Cbl-b inhibitory pathway may be the druggable target for awakening the NK cells
to kill cancer metastases. Others that can mediate antimetastatic potential through NK
cells include CD39/Entpd1 inhibitor polyoxomethalate-1 [166], ADORA2A antagonist
PFB-709 [223], immunomodulatory drugs lenalidomide [224] and pomalidomide [225], as
well as IDO inhibitors indoximod [226] and epacadostat [227] that inhibit IDO mediated
suppression of NK cell function.

5.3. Enhancing NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity

Most matured NK cells express potent activating receptor CD16 that crosslinks with
the Fc region of antibodies to initiate ADCC, killing the antibody-coated metastatic cancer
cells [228] (Figure 4). Many targeted anticancer antibodies used in the clinic can not only
inhibit the targeted signaling pathways for metastatic tumor cell survival and proliferation
but also enhance NK cell-induced ADCC [229] (Figure 4), such as FDA-approved cetux-
imab (antibody for the epidermal growth factor receptor) and trastuzumab (antibody of
the erb-b2 receptor tyrosine kinase). The efficacy of these antibodies in treatment depends
on NK cells to execute ADCC [230]. For example, studies showed that the therapeutic
antibodies for tumor antigens could promote NK cell infiltration to cancer and trigger NK
cell-mediated ADCC, suggesting the role of NK cells in adaptive immunity [231]. Another
agent ALT-803, a superagonist IL-15 mutant and IL-15Rα-Fc fusion complex, is currently
under FDA review, which appears to have the potential to treat patients with advanced
solid tumors through activating NK cells and enhancing NK-mediated ADCC [232,233].
For promoting the efficacy of ADCC, substantial progress has been achieved in developing
advanced-generation antibodies with ameliorated ADCC potential [234] based on isotype
and glycosylation of antibody and NK cell activating receptor CD16 [229]. Furthermore,
bispecific and trispecific multifunctional antibodies with Fc recognizing NK cell CD16a and
one or more Fc regions for tumor antigens that preserve ADCC potential and physically tie
NK cells to malignant cells through bispecific killer engagers (BiKEs) or trispecific killer
engagers (TriKEs), therefore ensuing specificity and direct interaction between immune
cells and tumors while low systemic toxicity [235,236] (Figure 4). NK cell-engaged BiKEs or
TriKEs provide a solution to hurdle the limitations, which are lower cost, less toxicity, and
less time-consuming preparation compared to T cell-engaged [63,237]. These agents can
create an immunological synapse between NK and tumor cells by simultaneously engaging
other NK cell activating receptors (not CD16) with one or two tumor antigens to maximize
the lysis of the tumor by NK cells. Several BiKEs and TriKEs have been developed for
various targets in preclinical or clinical trials (Table 2) [238,239]. For example, AFM-24, a
BiTKe engaged IgG1-scFv fusion antibody of CD16 with epidermal growth factor receptor
(EGFR) activating NK cells through CD16 receptor for targeting EGFR, is now in clinical
Phase II for treating patients with lung, colorectal cancer, and metastasis [240]. Recently,
Vallera and colleagues reported successfully generating a functional TriKE bispecific an-
tibody that could bind CD16 on NK cells, recognize CD33 on myeloid cancer cells, and
also contain a modified human IL15 to better induce significant NK cell cytotoxicity and
cytokine secretion against CD33+ tumors [241] compared to BiKE only recognize CD16 and
CD33 [242]. More recent studies have reported that replacement of “humanized” anti-CD16
single-domain camelid antibody from the anti-CD16 scFv enabled the use of wild-type
IL15 instant of modified IL15 to build up cam16-wtIL15–33 TriKE, which exhibited more
robust IL15 signaling and NK cell activation leading effective elimination of cancer by NK
cells [243]. Thus, this TriKE is a unique NK engager with cytokine signaling, tumor-specific
targeting, and a single intramolecular ADCC, which drives specific tumor-killing and
induces NK cell proliferation and survival via IL15 fragments.
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Figure 4. Enhancement of NK cell cytotoxicity (antibody-dependent cellular cytotoxicity, ADCC).
(A) Matured NK cells express activating receptor CD16 (FcγRIII) that crosslinks with the Fc region
of antibodies and initiates antibody-dependent cellular cytotoxicity (ADCC), killing the antibody-
coated metastatic cancer cells. (B) For promoting the efficacy of ADCC, a novel bispecific IgG1-scFv
fusion antibody targeting CD16a on NK cells and specific tumor antigens (bispecific) on metastatic
tumor cells has been developed as a second-generation antibody with improved ADCC potential.
(C) Multifunctional antibodies combined anti-CD16 scFv with IL15 and antimetastatic tumor scFv
(bispecific) or anti-CD16 scFv with two antimetastatic tumor scFvs (trispecific) to amplify NK cells
and enhance their mediated killing of antigen-expressed metastatic tumor cells. This approach has
also been used to physically bridge malignant cells and immune effectors through bispecific killer
engagers (BiKEs) or trispecific killer engagers (TriKEs) to increase specificity and facilitate more direct
interaction between immune cells and tumors while decreasing systemic toxicity.
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Table 2. Progress of multiple-specific functional (bispecific, trispecific, and tetraspeicific) antibodies
in NK cell-based therapy.

Name Target Format Mechanism Disease Status

AFM-13 CD30/CD16 scFv-scFv (BiKE) CD30 inhibitor
CD16 regulator

relapsed or
refractory MM phase II

AFM-24 EGFR/CD16 scFv-scFv (BiKE) EGFR blockers
CD16 regulator

advanced solid
tumors phase II

AFM26 BCMA/CD16 scFv-scFv (BiKE) BCMA blocker
CD16 regulator

relapsed or
refractory MM phase I/II

6MW3411 PD-L1/CD16 scFv-scFv (BiKE) PD-L1 inhibitors CD16 NK
cell recruitment agent solid tumor pre-clinical

HRS-3/A9 or
Anti-CD16/

CD30 BiMAB
CD16/CD30 scFv-scFv (BiKE) CD30 regulator

CD16 regulator hodgkin’s disease pre-clinical

NKp46 NKCE NCR1/CD16 scFv-scFv (BiKE) NCR1 inhibitor CD16 NK
cell recruitment agent tumor pre-clinical

161533/GTB3550/
OXS3550 CD16/IL15/CD33 scFv-IL15-scFv

(TriKE)

fusion protein trifunctional,
NK cell stimulant, CD16
regulator, CD33 inhibitor

High -risk MDS,
relapsed or

refractory AML
phase II

cam161533 TriKE CD16/IL15/CD33 scFv-IL15-scFv
(TriKE)

CD33 regulator IL15
regulator CD16 regulator

High -risk MDS,
relapsed or

refractory AML
pre-clinical

GTB-3650
(humanized
CD16scFv)

CD16/IL-15/CD33 scFv-IL15-scFv
(TriKE)

fusion protein trifunctional,
NK cell stimulant, CD16
regulator, CD33 inhibitor

AML, MDS pre-clinical

CD16-IL15-CLEC12A CD16/IL15/CLEC12A scFv-IL15-scFv
(TriKE)

NK cell stimulant
ADCC effect

acute myeloid
leukemia, Leukemic

stem cells
pre-clinical

triplebody NKG2D/CD19/CD33 ULPB2-scFv-scFv
(TriKE)

activating NK cell, CD19
and CD33 inhibitors

mixed lineage
leukemia (MLL) pre-clinical

triplebody CD33/CD16/CD19 scFv-scFv-scFv
(TriKE)

CD16 regulator, CD19 and
CD33 inhibitors ADCC MLL pre-clinical

sctb CD123/CD16/CD33 scFv-scFv-scFv
(TriKE)

CD16 regulator, CD123 and
CD133 inhibitors, ADCC AML pre-clinical

SPM-2 CD33/CD16/CD123 scFv-scFv-scFv
(TriKE)

CD16 regulator, CD19 and
CD133 inhibitors, ADCC AML pre-clinical

TriKE CD16/CD22/CD19 scFv-scFv-scFv
(TriKE)

CD16 regulator, CD19 and
CD22 inhibitors, ADCC B-ALL, B-CLL, AML pre-clinical

ATriFlex BCMA/CD200/CD16A scFv-diabody-scFv
(TriKE)

CD16 regulator, CD200 and
BCMA inhibitors, ADCC MM pre-clinical

SAR443579 (ANKET) CD123/CD16/NKp46 NKp46-Fc-CD123
(TriKE)

fusion protein trifunctional,
NK cell stimulant, CD16

regulator, CD123 inhibitor
AML, MDS pre-clinical

1615EpCAM CD16/IL-15/EpCAM scFv-IL15-scFv
(TriKE)

fusion protein trifunctional,
NK cell stimulant, CD16

regulator, EpCAM inhibitor
Various carcinomas pre-clinical

1615133 CD16/IL-15/CD133 scFv-IL15-scFv
(TriKE)

fusion protein trifunctional,
NK cell stimulant, CD16

regulator, CD133 inhibitor
Cancer stem cells pre-clinical

161519 CD16/IL-15/CD19 scFv-IL15-scFv
(TriKE)

fusion protein trifunctional,
NK cell stimulant, CD16
regulator, CD19 inhibitor

B-CLL pre-clinical

cam1615B7H3 CD16/IL-15/B7H3 VHH-IL15-scFv
(TriKE)

fusion protein trifunctional,
NK cell stimulant, CD16
regulator, B7H3 inhibitor

Ovarian cancer pre-clinical

cam1615HER2 CD16/IL-15/HER2 VHH-IL15-scFv
(TriKE)

fusion protein trifunctional,
NK cell stimulant, CD16
regulator, HER2 inhibitor

Ovarian cancer pre-clinical
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Table 2. Cont.

Name Target Format Mechanism Disease Status

cam1615TEM8 CD16/IL-15/TEM8 VHH-IL15-scFv
(TriKE)

fusion protein trifunctional,
NK cell stimulant, CD16

regulator, TEM8 inhibitor
NSCLC, solid tumor pre-clinical

TetraKE (TtsAb) CD16/IL-5/
EpCAM/CD133

scFv-IL15-scFv-scFv
(tetraKE)

fusion protein trifunctional,
NK cell stimulant, CD16

regulator, CD133 and
EpCAM inhibitor

CRC pre-clinical

SEEDbody EGFR/HER2/NKG2D IgG-like VHH-based
(NKCE)

activating NK cell, EGFR
and HER2inhibitors Breast cancer pre-clinical

TsAb EGFR/CD16a/PD-L1 Bs IgG-Fab (NKCE)
EGFR blocker, PD-L1

blocker and CD16
regulator, ADCC

Epidermoid
carcinoma pre-clinical

ANKET NKp46/CD16/
CD19-CD20-EGFR Fab-Fc-Fab (NKCE)

activating NK cell, CD16
regulator CD19 and CD20

EGFR inhibitors
LNH pre-clinical

ANKET NKp46-NKp30/
CD16/CD19-CD20 Fab-Fc-Fab(NKCE)

activating NK cell, CD16
regulator CD19 and

CD20 inhibitors
B-ALL pre-clinical

ANKET4 NKp46/CD16/
CD20/IL-2v Fab-Fc-Fab (NKCE) activating NK cell, CD16

regulator CD20 inhibitors B-ALL pre-clinical

HLE-nano-BiKE CD38/CD16/HSA VHH-VHH-VHH
(nano)

fusion protein trifunctional,
NK cell stimulant, CD16
regulator, CD38 inhibitor

multiple myeloma pre-clinical

DuoBody (DB)-VHH
(TtsAb)

HER2/cMET/
EGFR-IL6R-NKG2D

bs IgG-VHH-VHH
(NKCE)

fusion protein trifunctional,
NK cell stimulant, HER2,

cMet, EGFR inhibitor
Breast cancer pre-clinical

5.4. Blocking (Shielding) the NK Inhibitory Receptor Signals

NK cells undergo functional equilibrium through activating and inhibitory receptors.
Metastatic cells often express high levels of ligands for inhibitory receptors to suppress
the immune response. For example, NK cells serve as detectors and killers in tumor pro-
gression, typically eliminating cells lacking MHC class molecules. However, metastatic
cells often manage to express a certain level of downregulated MHC-I and other criti-
cal molecules in the antigen presentation pathway, which may inhibit NK cell activation
through its inhibitory receptor and limit T cell response to avoid both NK and T cell-
mediated elimination [244]. Thus, blockade of the inhibitory signal is essential to evoke
the capability of NK cells against metastatic tumors [245]. Specific antibodies against NK
cell inhibitory receptors (NKIR) are common agents for blocking NK inhibition signals and
inducing activation signals to unleash the capacity of NK cells in antimetastases [246,247].
Several antibodies specific for KIRs, NKG2A, or LIR-1 inhibitory receptors exert sub-
stantial therapeutic effects in preclinical models [248–250]. For example, in clinical trials,
lirilumab targeted KIR2D1/2/3 has been evaluated in multiple patient cohorts with re-
lapsed/refractory myeloma [251,252]. However, clinical trials did not result in the designed
efficacy in monotherapy [246] due to the reason of that it might reduce the expression of
KIR2D on NK cells and disrupt the NK cell’s “education” process, resulting in a decrease
in NK cell quantity and quality [253]. Despite the unexpected in monotherapy, the KIRs
antibodies combined with other agents are showing some promise [117,251]. For instance,
the combination of lirilumab and lenalidomide was well tolerated and increased the median
progression-free survival of multiple myeloma patients [251]. It was also reported that the
anti-NKG2A antibody could restore NK cell activation and promote anticancer immunity
in combination with PD-1/PD-L1 antibodies for lymphoma [254] as well as the combina-
tion with anti-EGFR antibody for treating squamous cell carcinoma [246]. A combination
of such anticancer agents could restore NK cell activation by blocking the inhibition of
NKG2A and triggering NK cell-mediated ADCC [125]. The TIGIT, CD96, TIM-3, and PD1
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inhibitory receptors expressed in NK cells are potential immune checkpoint therapeutic
targets [254,255]. Metastatic cancer cells highly express the ligands of these receptors,
which leads to NK cell exhaustion and is often associated with unfavorable prognosis.
Thus, inhibition of these receptor signaling averts the exhaustion of NK cells and enhances
antimetastasis solid effectiveness. In fact, the studies have shown that the combination
of anti-TIGIT antibody tiragolumab and anti-PD-L1 antibody atezolizumab exhibited a
significant benefit for treating NSCLC patients with high levels of PD-L1 [256–258], lead-
ing to US FDA to approve the tiragolumab/atezolizumab as the first-line treatment for
metastatic NSCLC patients with PD-L1 positive but no EGFR or ALK mutations recently.
Other studies using a combination of tiragolumab and atezolizumab for treating solid
tumors have also shown significant effects [259]. These indicate that inhibiting PD-1/PD-L1
signaling could significantly promote the capability of NK cells to antitumor progression,
implicating that combined therapy with PD-1/PD-L1 on NK cells is a reasonable approach
for NK cell-based therapy [260]. Interestingly, recent studies have demonstrated that allore-
active KIR-mismatched NK cells could induce antitumor effects [261,262]. Additionally,
the knock of NKG2A inhibitory receptors in NK cells promoted NK cell-induced killing of
metastasis [127,263].

5.5. Engineered NK Cells (CAR-NK) for Metastasis Therapy

Although many studies demonstrated that NK cells could kill tumor cells in animal
models, the clinical benefits of NK cells in cancer therapy are limited. Moreover, con-
ventional immunotherapies have several disadvantages, for example, cytokine-induced
toxicity, tumor lysis syndrome, other side effects on normal tissues, and genotoxicity, which
may cause death. A new generation of cancer immunotherapy has started to genetically
engineer T cells and NK cells that express chimeric antigen receptors (CARs), which have
been demonstrated to have promise for treating hematologic cancers [264]. CAR-T or -NK
cells express engineered IgG to recognize tumor antigens allowing T cells and NK to de-
stroy the tumor cells precisely and effectively [264,265]. Unlike CAR-T cells, CAR-NK cells
are designed to avoid therapy-related toxicity and immune-induced side effects [266,267].
Furthermore, NK cells have significant advantages, including their contribution to the
graft-vs-leukemia/graft-vs-tumor effect, and are not responsible for the graft-vs-host dis-
ease and multiple various sources [266–270] (Figure 5. Like the structure and design of
the CAR-T, the CAR-NK is composed of a promoter, a short signal peptide (SP), a tumor
antigen binding domain (scFv with a linker between VH and VL) (ectodomain), a hinge
region, a transmembrane domain, and intracellular activation signal domain (endodomain)
(Figure 6) [271]. The tumor antigen binding domain derives from single chain variable
fragments (scFv) of an antibody that recognizes tumor-specific antigens. The hinge region
links a tumor antigen scFV to a transmembrane domain for promoting the dimerization of
the CAR, increasing cytokine production and cell proliferation of CAR cells, and enhancing
persistence and antitumor effects in vivo. The transmembrane domain leads the CAR struc-
ture to anchor on the cell NK cell membrane. Once recognizing tumor cells by the tumor
antigen binding domain, the CAR triggers the activation domain signal for killing targeted
tumor cells. Numerous CAR-NKs have shown promise in mediating antimetastasis activity
in preclinical and clinical trials (Figures 5 and 6) [272,273].

5.6. Combination of Multiple Strategies for Metastasis Therapy

Despite the success of CAR-NK cells in some hematologic cancers, their application has
been hindered by the high production cost, the time-consuming treatment procedure, and
some unexpected side effects. In recent years, a variety of combined approaches have been
tested, including NKIR and immune checkpoint blockers, CAR-NK producing Bi-specific
scFv and immune checkpoint blocker, CAR-NK with NKIR blocker, CAR-NK with targeted
inhibitor, or multifunctional BiKEs and TriKEs (Figure 7) [274–276]. The fusion molecules
containing one or two NK activating receptors binding scFv or IgG (CD16-binding scFv
and NKG2D binding IgG VHH or NKp46 binding Fc) and one or more tumor-specific
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antigens binding regions have been engineered as the trifunctional or tetrafunctional NK
cell engager that targets tumor-specific antigens and activates NK cells for eliminating the
tumors significantly with minimized side effects [38,277–279]. This approach combined the
different strategies for activating NK cells to kill tumors specifically and efficiently, which
is particularly innovative.
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Figure 6. Engineered NK cells (CAR-NK) for metastasis therapy. CARs for NK cells consist of a tumor
antigen binding domain (scFv with a linker between VH and VL), a hinge region, a transmembrane
domain, and an intracellular activation signal domain. The tumor antigen binding domain contains
single chain variable fragments (scFv) derived from antibody recognize tumor-specific antigens. The
hinge region links to a transmembrane domain to promote the dimerization of CAR, increase cytokine
production and cell proliferation of CAR, and enhance persistence and antitumor effects in vivo. The
transmembrane domain allows the CAR structure to anchor on the NK membrane. Recognition of
tumor cells by CARs through the tumor antigen binding domain triggers the activation domain signal
and leads to tumor cell death. The scFv binds and recognizes the tumor-specific antigen, then activate
CAR-NK cells’ intracellular activation domain triggering functional activation and proliferation.
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tumor cells without prior stimulation, thus participating in the first line of defense against malignant
transformation and metastasis. Multiple strategies aimed at activating NK cell immunosurveillance
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Most therapeutic strategies currently employed in the clinic stem from restoring NK cell activation-
dependent immune responses against metastatic cancers.

6. Perspectives

Tumor immunology has progressed impressively in developing innovative therapeutic
approaches for fighting cancer and metastasis. The remarkable body of research aimed
to boost the immune response by activating positive and/or inhibiting negative signals.
Antibodies targeting the immune checkpoint have unlatched a new era for the clinical
treatment of cancers. The significant research in the mechanism of antibodies has provided
awareness to understand how the Fc region of an antibody affects the immune response.
Accordingly, BiKEs or TriKEs have increased specificity and facilitated direct interaction
between NK cells and tumors with less systemic toxicity. Recently, new techniques can
be used to control when and where CAR-NK cells are active, targeting tumors at specific
times and preventing CAR-NK cells from becoming less effective over time during cancer
treatment. NK cells possess vigorous cytolytic activity in metastatic cancer and have
become an attractive tool for antimetastatic immunotherapy. Therefore, more studies on
the interactions between metastatic cancer cells and NK cells will be necessary to clarify
the mechanism of NK cell cytolytic activity against metastasis and tumor resistance to
NK cell-induced destruction. For example, trogocytosis has been observed between CAR
cells and tumor cells, causing antigen reduction and tumor relapse [39,280]. A study of
the mechanism of trogocytosis in CAR-NK cell therapy will be needed to develop a more
effective strategy for CAR-NK application in antimetastatic diseases. Recently, a study using
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a dual CAR system with an NK self-recognizing inhibitory CAR and an activating CAR
against a tumor antigen prevented the trogocytosis-caused tumor resistance to CAR-NK
cells mediated elimination, indicating its practical application moving forward [39,281]. In
summary, future studies should focus on better understanding the molecular mechanisms
of how metastatic tumors escape immune detection and destruction and developing new
agents with higher immune specificity, better tolerability, and fewer side effects for clinics
to cure metastatic dead diseases successfully.
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