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ABSTRACT
Imaging genetics provides an opportunity to discern associations between genetic variants and brain imaging
phenotypes. Historically, the field has focused on adults and adolescents; very few imaging genetics studies have
focused on brain development in infancy and early childhood (from birth to age 6 years). This is an important
knowledge gap because developmental changes in the brain during the prenatal and early postnatal period are
regulated by dynamic gene expression patterns that likely play an important role in establishing an individual’s risk for
later psychiatric illness and neurodevelopmental disabilities. In this review, we summarize findings from imaging
genetics studies spanning from early infancy to early childhood, with a focus on studies examining genetic risk for
neuropsychiatric disorders. We also introduce the Organization for Imaging Genomics in Infancy (ORIGINs), a working
group of the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium, which was established
to facilitate large-scale imaging genetics studies in infancy and early childhood.

https://doi.org/10.1016/j.biopsych.2023.01.013
Imaging genetics reveals considerable information about ge-
netic influences on structural and functional imaging pheno-
types (1–3), but until recently focused largely on the adolescent
or adult human brain (4,5). This is an important limitation
because the most dynamic phase of human brain development
is from embryonic life through early childhood (6) (Figure 1).
Disrupted gene expression in this period can produce lifelong
changes in brain morphology and function. Even common
genetic variations may affect early neurodevelopmental pro-
cesses, thereby increasing risk for psychiatric conditions later
in life (7). These effects may be detectable in early life via
neuroimaging, thereby providing opportunities for identifying
at-risk populations in infancy for primary prevention and the
development of interventions to adjust adverse trajectories
earlier in the clinical sequence. In this paper, we review
empirical evidence underlying this hypothesis focusing on
magnetic resonance imaging (MRI). Studies using ultrasound
(8,9) and studies integrating imaging and epigenetic data
(10–13) also provide insights into how genes influence the
developing young brain but are beyond the scope of this re-
view. First, we describe the heritability of brain imaging phe-
notypes in early life. Then, we discuss candidate gene studies
of brain structure, function, and connectivity. Next, we review
studies characterizing associations between psychiatric risk
genes and brain phenotypes in early life using polygenic
scores. Then, we discuss genome-wide studies on brain
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imaging phenotypes in early childhood. Finally, we introduce
ORIGINs (the Organization for Imaging Genomics in Infancy), a
working group of the ENIGMA (Enhancing NeuroImaging Ge-
netics through Meta-Analysis) consortium, which was estab-
lished to facilitate large-scale imaging genetics studies in
infancy and early childhood.

HERITABILITY

Twin studies have revealed that many brain phenotypes are
heritable in early infancy. Genetic effects explain around 85%
of the variance in global white matter volume (WMV) and 56%
of the variance in global gray matter volume (GMV), at around 1
month of age (14), while heritability of head size is negligible
(15). This contrasts with studies of older children and adults
where heritabilities greater than 80% are reported for all 3
phenotypes (global WMV, GMV, and head size) (16–18). Heri-
tability estimates for global cortical surface area (SA) are high
in early infancy (78%), while estimates for global cortical
thickness (CT) are lower (29%), with significant genetic overlap
between the two (19). This differs from adults, among whom
SA and CT are both highly heritable (89% and 81%, respec-
tively), with distinct genetic factors contributing to each mea-
sure (20–22). White matter microstructure is moderately
heritable in early life, with 30% to 60% of the variability in mean
fractional anisotropy (FA) linked to genetic variation and similar
estimates for other diffusivity indices (23,24). In adults,
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Figure 1. Early neurodevelopment is a sensitive
period for accumulating transdiagnostic risk for
psychiatric disorders. Neurodevelopment in the hu-
man brain begins from approximately 2 weeks after
conception. Neurogenesis and neural migration are
primarily prenatal processes, and neurite outgrowth
is minimal after 4 years of age. Myelination and
synaptic pruning continue beyond 6 years of age
(indicated by the small arrows). Genetic influences
on these various processes contribute to psychiatric
risk, which accumulates across development and
may not manifest until later in life (large orange
arrow).
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estimates for FA range from 72% to 88% (25). Despite large
variations in heritability estimates across individual tracts, a
single latent measure of white matter microstructure accounts
for a great deal of heritable variation in neonates (50%) (26).
Similarly, individual differences in regional CT and SA appear
to be driven by a common set of genetic factors influencing
cortical structure at the global level (19). In both cases, the
pattern of results mirrors temporal changes in gene expression
which show strong spatial differences in fetal but not postnatal
development (27,28). Finally, genetic effects on resting-state
functional MRI phenotypes have been observed during the
first 2 years of life. Gao et al. (29) reported modest genetic
effects on within-network connectivity in neonates, with 3 vi-
sual networks and the right frontoparietal network demon-
strating above-average effects. At age 1 year, the most
heritable networks were the bilateral frontoparietal networks,
the salience network, and 2 visual networks. At age 2 years,
genetic effects were the strongest for the auditory network.
However, genetic effects were not as strong as those reported
in adolescents and adults (30–32). Genetic effects on between-
network connectivity are also minimal in neonates (33). Inter-
generational transmission of imaging phenotypes has been
reported and likely reflects a combination of genetic, epige-
netic, and environmental effects (34–36). One such study
examined the intergenerational transmission from mothers to
their 5-year-old children and reported significant effects on
sulcal phenotypes in the right frontal and parietal cortices (35).

A recurring theme across studies is that heritability is higher
in adulthood than in infancy. This might appear paradoxical
because interindividual variation in environmental exposures
increases with age, but similar patterns are observed for IQ,
where increasing heritability during development is called the
Wilson effect (37). The Wilson effect is thought to arise from
gene-environment correlations that increase with age. In other
words, babies and young children have environments thrust
upon them, but as they age, they select, modify, and create
environments that are correlated with their genetic pre-
dispositions (38). Alternatively, higher heritability observed at
later ages could reflect stronger heritability of postnatal pro-
cesses such as myelination and shifts in proportions of white
versus gray matter across development. Determining whether
a genetic amplification model applies to neuroimaging
906 Biological Psychiatry May 15, 2023; 93:905–920 www.sobp.org/jo
phenotypes will require large-scale longitudinal studies that
address gene-environment interplay across the life span. The
ENIGMA plasticity working group has begun tackling this
question. Using 5 longitudinal twin cohorts, they demonstrated
that rates of brain change are heritable, and heritability esti-
mates of change rates were higher in adults than in children
(39). They subsequently identified variants involved in struc-
tural brain changes via a genome-wide association study
(GWAS) (40). However, their studies did not include infants or
toddlers.
Candidate Gene Approaches

Traditional candidate gene studies test for associations be-
tween phenotypic outcomes and variation within specific
genes selected for suspected roles in organ development or
physiology. In imaging genetics, selection is often based on
hypothesized involvement in psychiatric disease. The first
candidate gene study of brain imaging phenotypes in neonates
focused on global and local brain tissue volumes and several
genes with known roles in brain development and putative
links to psychiatric disease including DISC1, COMT, NRG1,
ESR1, and BDNF (41). Many reported effects mirrored findings
in adults; others were unique to infancy. For the BDNF Val/Met
polymorphism, Met1 neonates had decreased volumes in re-
gions of the right occipital cortex, left hippocampus, para-
hippocampus, fusiform gyrus, and inferior temporal gyrus and
increased volumes in the motor and somatosensory cortex
(41). We highlight this result because a recent study partially
replicated the original findings. Specifically, Kawasaki et al. (42)
reported that Met1 neonates had significantly smaller relative
hippocampal volumes.

The largest traditional candidate gene study to include
children under 6 years of age focused on Klotho, a gene linked
to age-related decline. A significant interaction between Klotho
allele status (rs9536314) and age was observed for total brain
volume and total GMV, with KLS-VS heterozygotes having
larger volumes in early childhood but not in later childhood/
adolescence. Among girls, KL-VS heterozygotes had less
WMV than noncarriers, whereas among boys, heterozygotes
had greater WMV than noncarriers. No effects were significant
in a replication cohort that did not include children younger
urnal
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than 6 years of age (43), supporting the importance of con-
ducting imaging genetics studies in early life to unveil effects
that have been found to be absent in older cohorts.

In addition to age, genetic effects on neurodevelopment
may vary based on factors such as prematurity and family
history. For example, Krishnan et al. (44) hypothesized that
polymorphisms in DLG4 would moderate responses to peri-
natal inflammation and their impact on white matter micro-
structure based on gene network analysis of the microglial
transcriptomic response to injury in mouse models and com-
plementary, data-driven analysis of protein-protein in-
teractions, transcription factors, and human brain gene
expression. The team discovered a specific variant in DLG4
(rs17203281) associated with FA in preterm individuals in 2
independent cohorts. Van Steenwinckel et al. (45) adopted a
similar approach, identifying key genes and gene networks in
animal models of neuroinflammation-induced hypomyelination
and then testing for associations in preterm infants. The re-
searchers revealed that Wnt pathway genes were collectively
associated with cerebral structural connectivity. In addition, a
study of 13 candidate genes revealed that ARVCF, previously
linked to schizophrenia, and FADS2, previously linked to in-
telligence, were associated with white matter FA in preterm
infants (46). These studies highlight the importance of
considering potential interactions between genetic variation
and early-life environmental exposures given that neither DLG4
nor the Wnt pathway genes would be expected to impact
diffusion tensor imaging phenotypes in the absence of peri-
natal inflammation. With regard to family history, Douet et al.
(47) reported that the effects of variants in ERBB4 differed in
children with and without a family history of schizophrenia and/
or bipolar disorder. The TT variant for rs7598440 had more
pronounced effects on age-related changes (3–20 years) in CT
and SA in children with a family history; these children showed
steeper increases in frontal and temporal SA in both early and
late childhood.

Several studies explicitly tested for gene-environment in-
teractions using the candidate gene approach. COMT single
nucleotide polymorphisms (SNPs) moderated the association
between antenatal maternal anxiety and prefrontal and parietal
CT in neonates (48). The BDNF genotype (Val66Met) moder-
ates associations between methylation patterns and neonatal
hippocampal and amygdala volumes (49). FKBP5, which reg-
ulates the hypothalamic-pituitary-adrenal axis, moderates the
association between antenatal maternal depressive symptoms
and neonatal right hippocampal volume (50). For oxytocin re-
ceptor (OXTR) gene variant rs53576, a sex-specific main effect
was seen for neonatal hippocampal volume. Left hippocampal
volumes were larger in GG-homozygotes than A-allele carriers
in boys only. Prenatal maternal anxiety interacted with geno-
type in both sexes: higher maternal anxiety was associated
with larger hippocampal volumes in A-allele carriers (51).
Additional details on these studies are found in Table 1. A
graphical representation (PhenoGram) (52) of genes and
associated phenotypes is given in Figure 2.

Interestingly, imaging genetics studies of infants and young
children began at a time when microarray genotyping began
making large-scale genotyping practical. The GWAS era
quickly highlighted weaknesses in the traditional candidate
gene approach. Well-powered GWASs failed to support
Biological
involvement of many traditional candidate genes in psychiatric
disorders. This may partly reflect addressable methodological
weaknesses including failure to control for population stratifi-
cation and thereby increasing the risk of false-positive asso-
ciations due to differences in ancestry. However, the key
disadvantage of the candidate gene approach is likely poor
candidate selection, given the inadequacy of current knowl-
edge about underlying biological processes. Subsequent
meta-analyses of candidate gene studies relevant to psychi-
atry, including imaging genetics studies conducted in older
populations, revealed poor replicability, false-positive associ-
ations, overestimation of effect sizes, and publication bias (53).
While the imaging genetics literature for infants and young
children is not extensive enough to allow meta-analyses,
existing studies likely have similar weaknesses.

One promising approach to addressing these problems is to
focus future studies on variants that are robustly associated
with mental and neurological disorders or adult brain imaging
phenotypes in large-scale GWASs. The e4 allele of the apoli-
poprotein E (APOE) gene meets this criterion. Not only is e4 the
strongest known risk variant for Alzheimer’s disease, it also
has well-documented effects on brain structure and cognition
in healthy individuals (54,55). In neonates, APOE e3e4 het-
erozygotes have significantly lower volumes in temporal re-
gions, compared with e3 homozygotes, and lower volume in
the frontal and parietal lobes. e3e4 heterozygotes have
significantly greater volumes in specific parietal, frontal, and
occipital areas (41). Infant ε4 carriers have lower white matter
myelin water fraction (MWF) and GMV measurements in the
precuneus, posterior/middle cingulate, lateral temporal, and
medial occipitotemporal regions, areas which are preferentially
affected by Alzheimer’s disease, and greater MWF and GMV
measurements in frontal regions (56). Decreased myelin in ε4
carriers in the corticospinal tract, the splenium of the corpus
callosum, and frontal white matter, observed in the previous
study, was also reported in a longitudinal analysis from the
same group in which children were followed from birth to age
5.5 years (57). Regions in which ε4 carriers had greater MWF
early on had a decreased rate of MWF development until age
5.5 years, allowing noncarriers to catch up and surpass ε4
carriers at around 3 years of age. In another study, age-related
changes in brain structures and cognition were observed to
vary depending on genotype, with the smallest hippocampi in
ε2ε4 children, the lowest hippocampal FA in younger ε4ε4
children, the largest medial orbitofrontal cortical areas in ε3ε4
children, and age-dependent thinning of entorhinal cortex in
ε4ε4 children (58). All these studies suggest that Alzheimer’s
disease is a neurodevelopmental disorder as well as a neuro-
degenerative one.

Six SNPs robustly associated with subcortical volumes in
adult GWASs have recently been tested for effects in neo-
nates. An association between rs945270 (an intergenic locus
downstream of the kinectin 1 [KTN1] gene) and putamen vol-
ume was reported, suggesting that at least some variants have
detectable effects across the life span (59).

A significant challenge when performing a candidate gene
study informed by existing GWASs is how to prioritize genes
for follow-up. Fortunately, an increasing array of in silico tools
for searching GWAS literature and performing functional
characterization of variants can assist with this task (60–62).
Psychiatry May 15, 2023; 93:905–920 www.sobp.org/journal 907
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Table 1. Candidate Gene Studies of Imaging Phenotypes in Infancy and Childhood

Article Participants, N Age Group Ancestry Gene/SNP-Brain Phenotype Association Findings

Studies on Genetic Effects

Knickmeyer et al., 2014
(41)

272 Neonates
(gestational age
at MRI: 261–433
days)

Maternal
ethnicity—
White

ESR1 (rs9340799)—ICV; DISC1 (rs821616),
COMT, NRG1, APOE, ESR1 (rs9340799),
and BDNF—GMV

Associations in ISC1 and COMT mirrored findings in adults.

Dean et al., 2014 (56) 162 2- to 25-month-old
infants

Not reported APOE ε4 allele—Y MWF and GMV in
precuneus, posterior/middle cingulate,
lateral temporal, and medial
occipitotemporal regions. APOE ε4 allele—[

MWF and GMV in extensive frontal regions

Infant APOE ε4 lele carriers had lower white matter MWF and
GMV measu ents than noncarriers in areas preferentially
affected by heimer’s disease.

Boardman et al., 2014
(46)

83 preterm infants Neonates
(postmenstrual
age 23 1 2 to
32 1 6 weeks)

Multiancestry ARVCF (rs2518824) and FADS2 (rs174576)—
white matter FA

–

Douet et al., 2015 (47) 971 (PING study) 3–20 years Multiancestry ERBB4 (rs7598440)—cortical structures In the full sam , children with the TT genotype had smaller
SA in the oc ital and temporal lobes at ages ,5 years.
When stratif g by family history of schizophrenia and/or
bipolar disor r, TT children showed steeper increases in
frontal SA in rly childhood.

Chang et al., 2016 (58) 1187 (PING study) 3–20 years Multiancestry APOE (ε2ε4—Y hippocampus; ε4ε4—Y

hippocampal FA; ε3ε4—[ medial
orbitofrontal cortical areas)

The ε4ε4 and 4 genotypes may negatively influence brain
developmen d brain aging at the extremes of age.

Krishnan et al., 2017
(44)

Preterm infants (cohort
1: n = 70; cohort 2
[ePRIME study]: n =
271)

Cohort 1—mean
postmenstrual
age at scan 40 1
3 weeks; cohort
2—mean
postmenstrual
age at scan 42 1
4 weeks

Multiancestry DLG4 (rs17203281)—FA DLG4 (rs17203 1) was associated with structural white
matter chan .

Van Steenwinckel
et al., 2019 (45)

290 preterm infants
(ePRIME study)

Gestational age of
38.29–58.28
weeks

Multiancestry NFATC4, CSNK1A1, MAPK10, WNT2B,
SMAD3, FBXW11, NLK, CSNK1A1L,
PLCB2, and WNT5A—white matter
structural connectivity

Genomic varia in the Wnt pathway is associated with the
levels of con ctivity found in their brains.

De Vries et al., 2020
(43)

1387 (PING study) 3–21 years Multiancestry Klotho allele KL-VS; KL-CS 3 age
interaction—TBV, TGMV; Kl-VS 3 sex—
TWMV

A replication in cohort of 2306 children age 6–12 years
(Generation ample) showed no significant associations.
KL-VS’s influ ce may depend on age and sex.

Remer et al., 2020 (57) 223 2–68 months Multiancestry APOE ε4 carriers—MWF ε4 carriers—si ficant MWF trajectory differences in multiple
neuroanatom l locations

Kawasaki et al., 2021
(42)

66 Newborn infants
(37.9–47.6
postmenstrual
weeks)

Multiancestry BDNF-Val66Met variant—hippocampi,
amygdalae, TWMV

Met 1 group— hippocampi, amygdalae, age-dependent
declines in % otal WMVs, slower age-dependent declines
in total brain lumes

Cullen et al., 2022 (59) 208 (dHCP study) 0–6 weeks European rs945270 (intergenic locus downstream of the
kinectin 1 [KTN1] gene)—putamen volume

Greater numbe f C alleles associated with larger volume
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Another challenge is that candidate gene studies informed by
GWASs still focus on only a few selected genes/poly-
morphisms which account for only a fraction of variants
involved in psychiatric risk. One approach to overcoming this
challenge is to use polygenic risk scores.
Polygenic Risk Score Approaches

Polygenic risk scores (PRSs) estimate an individual’s sus-
ceptibility to a complex trait based on prior GWAS summary
statistics (63). Efforts such as the Psychiatric Genomics Con-
sortium have produced many well-powered GWASs of psy-
chiatric and neurodevelopmental conditions including
schizophrenia, major depressive disorder (MDD), bipolar dis-
order, attention-deficit/hyperactivity disorder, and autism
spectrum disorder (ASD) (64). Summary statistics are often
freely available, and researchers can obtain individual data
from controlled-access repositories. By examining associa-
tions between PRSs and neuroimaging phenotypes measured
in infancy and early childhood, researchers are clarifying how
genetic risk for these conditions manifests in early life, thereby
providing new insights into the etiology of psychiatric and
neurodevelopmental disorders. This is a key step in identifying
individuals who may benefit from early intervention.

One of the first studies to use this approach in early life was
conducted by Xia et al. (65), who found that PRSs for schizo-
phrenia and ASD were not associated with neonatal total brain
volume. Like Xia et al. (65), Cullen et al. (59) did not observe
associations between neonatal volumes and PRSs for
schizophrenia. However, PRSs for schizophrenia were nega-
tively associated with regional GMV and WMV and total WMV
in neonates in a different study (66). PRSs for ASD were
associated with greater CT and reduced white matter con-
nectivity in children (3 to w14 years) (67). In preterm infants, a
PRS for 5 conditions (ASD, attention-deficit/hyperactivity dis-
order, bipolar disorder, MDD, and schizophrenia) predicted
reduced volume of the lentiform nucleus, which plays a key
role in motor control, cognition, and emotion (68). The authors
hypothesized that genetic risk for psychiatric disorders
increased vulnerability to abnormal lentiform development in
the context of perinatal stress associated with preterm birth
but did not include term infants for comparison. Other studies
have used PRSs to probe relationships between early-life
adversity, genetic risk, and neurodevelopment. Ursini et al.
(69) used transcriptomic data to create placental genomic risk
scores (PlacGRSs) for schizophrenia. PlacGRSs were calcu-
lated like traditional PRSs, but only used markers in genes
highly expressed in placenta and differentially expressed in
placentae from complicated, compared with normal, preg-
nancies. PlacGRS was negatively associated with neonatal
brain volume in children with perinatal complications, espe-
cially in boys. No significant associations were observed for
PlacGRSs and nonplacental GRSs for other disorders and
traits associated with early-life complications, suggesting that
the link between placental biology, genetic risk, perinatal
environmental risk, and early brain development outcomes is
relatively unique to schizophrenia.

Another important perinatal stressor is maternal depression.
Many studies report associations of maternal depressive
symptoms with neuroimaging outcomes in early life, but it is
Psychiatry May 15, 2023; 93:905–920 www.sobp.org/journal 909
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Figure 2. PhenoGram of genes associated with
brain imaging phenotypes in infants and young
children from candidate gene studies and genome-
wide association studies. CT, cortical thickness;
FA, fractional anisotropy; GMV, gray matter volume;
ICV, intracranial volume; MWF, myelin water fraction;
PFC, prefrontal cortex; SA, surface area; TBV, total
brain volume; WM, white matter; WMV, white matter
volume.
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unclear whether such associations represent causal effects or
arise from genetic confounding. PRSs can be used to test in-
dependent effects of maternal depressive symptoms and ge-
netic risk for MDD as well as their interaction. Qiu et al. (70), the
first to apply this approach, reported significant interactions
between PRSs for MDD and antenatal maternal depressive
symptoms for right amygdala volume in Asian (GUSTO
[Growing Up in Singapore Towards healthy Outcomes]) and
U.S. neonates. However, the direction of the effect differed
across cohorts. In Finland, Acosta et al. found patterns similar
to those found in the U.S. cohort (71). However, the interaction
became nonsignificant after correction for multiple compari-
sons. The Finnish team also investigated associations of an
MDD PRS with infant striatal volumes and found sex-specific
effects: the MDD PRS was positively associated with
caudate volumes in boys but negatively associated with
caudate volumes in girls (72). They did not observe significant
interaction effects of the PRS with prenatal maternal depres-
sive symptoms for any dorsal striatal volumes.

PRSs can also be used to understand how molecular
pathways shape individual differences in neurodevelopment.
For example, a PRS for serum testosterone was recently found
to be positively associated with total SA development in fe-
male infants (73). Researchers interested in this application of
PRSs may implement expression-based PRSs (ePRSs) rather
than traditional PRSs. ePRSs integrate genotype data with
transcriptomic data to predict expression levels of a particular
gene or gene network. Morgunova et al. (74) used this
approach to investigate relationships between a coexpression
network of the DCC gene, which is robustly associated with
multiple psychiatric conditions, and total brain volume in both
neonates and older children. Higher ePRSs for the DCC
910 Biological Psychiatry May 15, 2023; 93:905–920 www.sobp.org/jo
coexpression network were associated with larger brain vol-
umes. A study from GUSTO investigated how genes involved
in inflammation interact with maternal depression to shape
neonatal brain morphology. They created separate ePRSs for
22 cytokine and chemokine genes expressed in fetal brain and
found that ePRSs for TNFRSF19, IL17RB, BMPR1B, IL1RAP,
and CXCR4 moderated the impact of maternal depression on
specific subcortical volumes and regional CT (75). Using lon-
gitudinal data from the same cohort, investigators revealed an
age-dependent involvement for transmembrane receptor
(TGF-b) variants in moderating effects of prenatal maternal
depressive symptoms on amygdala volume (76).

Finally, PRSs have been used to investigate how genetic
variants linked to adult and adolescent brain morphology
influence early brain development. Xia et al. (65) found that
PRSs for WMV and GMV in adolescence showed positive
associations with neonatal WMV and GMV, respectively,
although the overall proportion of variation explained was
low. Morgunova et al. (74) calculated PRSs for brain volume
using data from UK Biobank, ENIGMA, CHARGE (Cohorts
for Heart and Aging Research in Genomic Epidemiology),
and the Early Growth Genetics Consortium. These PRSs did
not predict brain volume in their neonate and school-age
community cohorts. The first large-scale GWAS of adult
intracranial volume tested whether a polygenic score
generated from 7 genome-wide significant loci predicted
head growth in children of European ancestry who were
followed prenatally until 6 years of age (77). The in-
vestigators found an age-dependent effect in which the PRS
became more predictive in older children, suggesting that
adult brain volume is strongly shaped by genetic influences
operating in early childhood. Cullen et al. (59) found robust
urnal
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associations between PRSs for adult brainstem, hippocam-
pus, putamen, and thalamus volumes and neonatal volumes,
suggesting some stability across the life course.

Reviewed studies highlight the potential of PRS-based in-
vestigations of neuroimaging phenotypes in infancy and early
childhood (Table 2). They also reveal the importance of
considering effects of sex and ancestry. A major limitation of
this approach is the lack of sufficiently powered GWASs
conducted in non-European populations. European ancestry
GWASs do not transfer well to other ancestries and can lead to
unpredictable biases (78). Another limitation of PRS studies is
that they are based on existing GWASs and hence limited by
the power of current datasets. In other words, PRS-based
studies, like candidate gene studies, are constrained by cur-
rent biological knowledge. To fully understand how DNA vari-
ants influence brain development, well-powered GWASs of
infants and young children encompassing multiple ancestries
are needed.
Genome-wide Association Studies

Hypothesis-free GWASs can identify new associations and
overturn prior assumptions. However, GWASs of neuroimaging
outcomes in infants and young children are very limited. The
first GWAS of healthy infants identified several common vari-
ants associated with neonatal brain structure (65). An intronic
SNP in IGFBP7 was significantly associated with GMV. An
intronic SNP in WWOX fell just short of genome-wide signifi-
cance for WMV. Many top associations tagged transcriptional
regulators expressed during brain development (KLF13,
LMCD1, TOX3, and TBX4). The investigators also compared
their results to large-scale neuroimaging GWASs in adoles-
cents and adults and concluded that genetic determinants of
global brain volumes are highly distinct at different ages. In a
subsequent GWAS of white matter microstructure in neonates,
an intronic SNP in PSMF1 was significantly associated with a
tractography-based factor capturing shared variation in FA
across 44 white matter bundles (26). Additional loci nearing
genome-wide significance were in or near genes with roles in
axon growth and guidance, fasciculation, and myelination
including B3GAT1, TENM2, NFATC1, and MAP3K13. The
above studies are the first of their kind, and replication is
crucial. Furthermore, these studies were not large enough to
generate stable SNP-wise heritability estimates or evaluate
genomic correlations between infant neuroimaging pheno-
types and psychiatric disorders.

A smaller study in preterm individuals used genome-wide
data and pathway-based and network-based approaches
(79). The peroxisome proliferator-activated receptor signaling
pathway was found to have a role in white matter develop-
ment, with 5 genes implicated (AQP7, ME1, PLIN1, SLC27A1,
and ACAA1). This inspired the team to examine the peroxi-
some proliferator-activated receptor pathway in a larger cohort
of preterm children. Using machine learning analysis, they
uncovered 3 genes associated with cerebral connectivity
(PPARG, ITGA6, and FXR1) (80). GWASs are summarized in
Table 3 and included in the Figure 2 PhenoGram (52). Gene
functions and associated neurological phenotypes/conditions
for candidate genes and genes identified via GWASs are pro-
vided in Table 4.
Biological
General strengths and limitations of GWASs have been
reviewed in detail elsewhere (81). In terms of GWASs in infants
and young children, the primary limitations of existing studies
include their being 1) underpowered due to small samples, 2)
mostly cross-sectional rather than longitudinal, 3) only focused
on neonates and preterm infants, and 4) the fact that in-
dividuals of non-European ancestry constitute such a small
proportion of the total samples.

Rigor and Reproducibility

When we consider the rigor and reproducibility of published
imaging genetics studies in infants and young children, insuf-
ficient power and sample size are significant concerns. Sample
sizes for early childhood imaging genetics studies are low, with
a mean of 365 for candidate gene studies (median = 216), a
mean of 225 for PRS-based studies (median = 168), and a
mean of 344 for GWASs (median = 371.5). Consequently,
existing studies are powered to detect variants with large ef-
fect sizes. It is likely that most variants impacting infant brain
imaging phenotypes will explain between 0.1% and 1% of the
variance, like other complex traits (82). Furthermore, small
samples can produce unstable results, and homogenous
sampling can generate statistical inferences that do not
represent the overall population. Independent replication is
essential to validate results and improve estimation of effects
but is currently rare due to difficulties recruiting and scanning
large groups of infants.

To improve rigor and reproducibility and fully understand
how DNA variants influence brain development in infancy and
early childhood across diverse populations and the implica-
tions for future research and clinical care, large longitudinal
studies are needed. ORIGINs was founded to facilitate such
work.

ORGANIZATION FOR IMAGING GENOMICS IN
INFANCY

ORIGINs includes investigators from different centers around
the world (16 sites, 19 cohorts, 5 countries) who are engaged
in neuroimaging research in infancy and early childhood. Our
goal is to determine how genetic and environmental factors
influence development of brain morphometry, anatomical and
functional connectivity, and cognitive and emotional function
from birth to age 6 years. In 2020, we received National In-
stitutes of Health funding to create the largest-ever imaging
genomics dataset focused on infancy and early childhood. In
subsequent sections, we briefly describe who will be included
in this dataset, what is being measured, and our data analysis
plans.

Participants

Participants will include approximately 6809 children (birth to
6 years of age) participating in neuroimaging studies of early
brain development at the University of North Carolina Chapel
Hill, University of California Irvine, Max Planck Institute for
Human Cognitive and Brain Sciences, Rhode Island Hospital,
Northwestern University, University of Denver, University of
Rochester, Magee-Womens Hospital of the University of
Pittsburgh Medical Center, University of Cape Town, Boston’s
Children Hospital/Harvard University, University of Minnesota,
Psychiatry May 15, 2023; 93:905–920 www.sobp.org/journal 911
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Table 2. PRS Studies of Imaging Phenotypes in Infancy and Childhood

Article Participants, N Age Group Ancestry PRS Findings

Studies on Main Genetic Effects

Xia et al., 2017 (65) 561 6–161 days Multiancestry Polygenic scores for GM and WM from adolescent
cohort; polygenic scores for ICV from
adolescent and adult cohort

Adolescent WM and GM scores showed positive associations
with neonatal WM and GM; adult polygenic scores for ICV
did not predict neonatal ICV

PRS for schizophrenia and ASD PRS did not predict global brain volumes.

Cullen et al., 2019
(68)

194 preterm infants Mean
postmenstrual
age at scan 42.6
weeks

Multiancestry PRS from meta-analysis of genome-wide SNP
data for 5 psychiatric disorders (ASD, ADHD,
bipolar disorder, MDD, and schizophrenia)

[PRS—Y lentiform volume in the mixed ancestral cohort and
a European subsample

Khundrakpam
et al., 2020 (67)

391 (PING study) 3–21 years Multiancestry PRS for ASD [ PRS for ASD—[ cortical thickness for a large age span
starting from 3years up to w14 years in several cortical
regions localized in the bilateral precentral gyri and the left
hemispheric postcentral gyrus and precuneus, YWM
connectivity between the frontal and parietal regions

Morgunova et al.,
2021 (74)

142 Neonates (27 6 13
days)

Multiancestry ePRS was created based on the DCC
coexpression gene network in the PFC.

[ ePRS—[ total brain volume (GM and WM, adjusted by ICV)

Alex et al., 2021
(73)

430 Birth–2 years European PRS for serum testosterone [ PRS—[ SA development over time in female infants

Cullen et al., 2022
(59)

208 0–6 weeks European GPSs for adult subcortical brain volumes Neonatal volumes of the hippocampus, brainstem, putamen,
and thalamus associated with adult GPS

GPSs for psychiatric disorders ASD, ADHD,
schizophrenia, bipolar disorder, MDD, and
cross-disorder (including 8 psychiatric
disorders: anorexia nervosa, ADHD, ASD,
bipolar disorder, MDD, obsessive-compulsive
disorder, schizophrenia, and Tourette syndrome)

None of the neonatal brain volumes showed an association
with psychiatric GPS.

Le et al., 2022 (66) 257 Postmenstrual age
at scan 38–45
weeks

Preliminary
analysis:
European;
secondary;
European
and Asian

PRS for schizophrenia [PRS—Y right frontal lobe WM, YGM and WM superior
temporal gyrus volumes and Ytotal white matter volume

Studies on Interaction Between Genetic and Environmental Risk

Qiu et al., 2017 (70) 168 (GUSTO) and
85 (US) mother-
infant dyads

Neonates: GUSTO
(5–14 days), US
(postconceptual
age at the MRI
visit 43.02 6 2.1
weeks)

GUSTO—

Asian; US—
mixed
ancestry

GPRSMDD A significant interaction was observed between antenatal
maternal depressive symptoms and infant GPRSMDD on
right hippocampal volume in the Asian cohort and right
amygdala volume in both cohorts. A significant interaction
was observed between SES and infant GPRSMDD on right
amygdala and hippocampal volumes and shapes in the
Asian cohort.

Wang et al., 2017
(50)

164 Mother-
offspring dyads
(GUSTO)

Neonates (5–14
days)

Asian A genetic risk score was calculated for individual
neonates by summing the number of minor
alleles of 19 FKBP5 SNPs.

Neonates with a genetic risk score less than or equal to the
median showed a positive association between antenatal
maternal depressive symptoms and right hippocampal
volume. Neonates with a genetic risk score greater than the
median showed a negative association between antenatal
maternal depressive symptoms and right hippocampal
volume.

G
enetic

In
fluences

on
Y
oung

B
rain

912
B
iolo

gicalP
sychiatry

M
ay

15,
2023;

93:905
–920

w
w
w
.so

b
p
.o
rg

/jo
urnal

B
io
lo
g
ical

P
sychiatry

http://www.sobp.org/journal


Table 2. Continued

Article Participants, N Age Group Ancestry PRS Findings

Acosta et al., 2020
(71)

105 11–54 days old European PRS-MDD A nonsignificant interaction effect was observed between
PRS-MDD and prenatal maternal depressive symptoms on
right amygdala volume.

Acosta et al., 2020
(72)

105 11–54 days old European PRS-MDD No significant interaction effects of PRS-MDD with prenatal
maternal depressive symptoms were found for infant dorsal
striatal volumes. PRS-MDD was more positively associated
with caudate volumes in boys compared with girls.

Wu et al., 2020 (75) 161 mother-child
dyads (GUSTO)

Neonates (5–14
days)

Asian A GES was calculated for individuals by summing
the number of minor alleles across the SNPs of
the gene that were highly correlated with its
expression level according to the existing eQTL
database.

Positive associations of prenatal maternal depressive
symptoms with the hippocampal volume, auditory and
prefrontal cortical thickness in neonates high in GESs of the
TNF, IL-1, IL-17, chemokine, and TGF family and receptors.

Ursini et al., 2021
(69)

242 10–60 days European Fractionated genomic risk scores for
schizophrenia based on placental gene
expression loci (PlacGRSs)

[PlacGRSs —Y neonatal brain volume in singletons and
offspring of multiple pregnancies with a history of early-life
complications

Qiu et al., 2021 (76) 162 (GUSTO) Birth–6 years Asian A GES was calculated for individuals by summing
the number of alleles across the SNPs of the
gene that was correlated with TGF-bRI
expression level according to the existing eQTL
database.

In neonates with a high GES of TGFBR1, higher levels of
prenatal maternal depressive symptoms were associated
with a smaller right amygdala volume. In children with a low
GES of TGFBR1, greater prenatal maternal depressive
symptoms predicted greater left and right amygdala
volumes at 6 years of age.

ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; ePRS, expression-based polygenic risk score; eQTL, expression quantitative trait loci; GES, genetic
expression score; GM, gray matter; GPRSMDD, genomic profile risk score for major depressive disorder; GPS, genome-wide polygenic score; GUSTO, Growing Up in Singapore Toward
healthy Outcomes; ICV, intracranial volume; IL, interleukin; MDD, major depressive disorder; MRI, magnetic resonance imaging; PING, Pediatric Imaging, Neurocognition, and Genetics
consortium; PFC, prefrontal cortex; PlacGRS, placental genomic risk score; PRS, polygenic risk score; SA, surface area; SES, socioeconomic status; SNP, single nucleotide
polymorphism; US, United States; WM, white matter.
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Table 3. Genome-wide Association Studies of Imaging Phenotypes in Infancy and Childhood

Article Participants, N Age Group Ancestry Findings

Krishnan et al.,
2016 (79)

72 preterm infants Gestational age 23 1 2
to 32 1 6 weeks

Multiancestry Identified significant role for lipid pathways and PPAR
signaling in influencing development of white matter in
preterm infants. Five genes were found to be highly
associated with the phenotype: AQP7, ME1, PLIN1,
SLC27A1, and ACAA1.

Krishnan et al.,
2017 (80)

272 preterm infants Gestational age 42
weeks 1 4 days

Multiancestry PPARG (6 SNPs), ITGA6 (4 SNPs), FXR1 (2 SNPs) are
associated with preterm cerebral endophenotype,
particularly insular cortex

Xia et al., 2017 (65) 561 6–161 days Multiancestry An intronica SNP in IGFBP7 (rs114518130) achieved
genome-wide significance for gray matter volume.

An intronic SNP in WWOX (rs10514437) neared genome-
wide significance for white matter volume.

Zhang et al., 2021
(26)

471 Neonates (days post
conception 293.4 6
16.6)

Multiancestry An intronic SNP in the gene PSMF1 was significant for a
tractography-based factor that captured shared
variation in fractional anisotropy across 44 white matter
bundles.

PPAR, peroxisome proliferator-activated receptor; SNP, single nucleotide polymorphism.
aIntronic SNPs are located in a segment of a DNA or RNA molecule which does not code for proteins and interrupts the sequence of genes.
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University of Washington, Washington University in St. Louis,
King’s College London, and National University of Singapore.
Eight cohorts have completed initial data collection and 11
are actively scanning. We estimate that 51% of the sample
will be female, 49% will be male, 0.05% will be American
Indian, Alaska Natives, Native Hawaiians, or Pacific Islanders,
11% will be Asian, 20% will be Black, 6% will be more than
one ancestry, and 62% will be White. Individuals identifying
as Hispanic/Latinx are expected to make up 15% of the
cohort.
Data Measurements

Demographic and Medical History. Health history and
demographic information of participants were provided by
parents or guardians and/or extracted from medical records.
The information includes birth outcomes (gestational age, birth
weight), sex, socioeconomic factors (maternal education, total
family income), and family history of medical and neuropsy-
chiatric disorders.

Genomic Data. Most participating sites have used/are using
saliva samples for DNA extraction. Two cohorts (Drakenstein
Child Health Study and GUSTO) used umbilical cord and
venous blood specimens. To harmonize data across geno-
typing platforms, we will impute genomes to a common set of
SNPs using the Michigan Imputation Server (83). See the
Supplement for details on harmonization and genotyping
platforms used by each cohort.

Behavioral Assessments. In a subset of participants
(w3800), we will examine 3 behavioral traits—impulsivity/
distractibility, anxiety, and aggressive behavior—that can be
reliably measured in very young children and are relevant to
multiple psychiatric disorders. Behavioral traits will be
measured using age-appropriate versions of the Child
Behavior Checklist (84) and the Behavior Assessment System
for Children, Second Edition (85,86).
914 Biological Psychiatry May 15, 2023; 93:905–920 www.sobp.org/jo
Image Acquisition and Quality Control. 3T Siemens
scanners (Allegra, Tim Trio, Verio, Skyra, and Prisma) and
comparable sequences (Tables S3–S6) were used with all
cohorts except for the dHCP (developing Human Connectome
Project) and GUSTO. dHCP data were acquired on a Philips
Achieva, and newborn T2 structural MRI acquisition for
GUSTO was on a 1.5T General Electric scanner. To ensure
consistent processing across datasets with the same tools and
appropriately standardized parameter settings, all structural,
diffusion, and functional connectivity data will be processed at
a central site. T1 and T2 structural MRI, diffusion tensor im-
aging, and resting-state functional MRI acquisition parameters,
platform, and harmonization pipeline for each site are detailed
in the Supplement.

Data Analysis Plan. Extracted neuroimaging measures will
be analyzed using nonlinear growth models. Growth model pa-
rameters, which we refer to as “developmental imaging pheno-
types,”will be used to test effects of genetic variants on structural
brain development and connectivity using a multivariate GWAS
approach. Canonical correlation analysis will be used to identify
association patterns between genetically influenced neuro-
developmental traits and clinically salient behaviors. The data
analysis and data sharing plan is detailed in the Supplement. A
schematic for data analysis is provided as Figure 3.

CONCLUSIONS

Imaging genetics studies of infants and young children have
provided evidence that variants associated with psychiatric
disorders influence early neurodevelopment both indepen-
dently and through interactions with environmental factors.
In addition, GWASs of neonates and preterm infants have
revealed new genes, variants, and molecular pathways
implicated in brain development. However, most findings
have not been independently replicated. Existing studies,
regardless of design, are relatively small and do not
encompass diverse ancestries. The ORIGINs initiative is
addressing these limitations by creating and harmonizing the
urnal
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Table 4. Brain Imaging Phenotype Associated Genes, Their Functions, and Associated Neurologic Phenotypes/Disorders

Gene Symbol Function
Associated Neurologic
Phenotype(s)/Disorder(s)

Acetyl-CoA Acyltransferase 1 ACAA1 Involved in neuronal growth and myelinogenesis (87) Alzheimer’s disease (88)

Apolipoprotein E APOE Facilitates the transfer of cholesterol and phospholipid
between cells, key role in neuronal development,
brain plasticity, and repair (89)

Alzheimer’s disease, schizophrenia (41)

Aquaporin 7 AQP7 Allows movement of water, glycerol, and urea across
cell membranesa

–

Armadillo Repeat Gene Deleted in
Velocardiofacial Syndrome

ARVCF Modulates neural cell-cell adhesion and migration (46) Schizophrenia (46)

Brain-Derived Neurotrophic Factor BDNF Regulates cell survival, axonal outgrowth, dendritic
growth, and synaptic plasticity (90)

Depression, bipolar disorder,
schizophrenia, anxiety, autism, ADHD,
substance abuse, eating disorders,
Alzheimer’s disease (41)

Casein Kinase 1, Alpha 1 CSNK1A1 Suppressor of Wnt/b-catenin signalinga Schizophrenia (91)

Casein Kinase 1, Alpha 1-like CSNK1A1L Involved in negative regulation of canonical Wnt
signaling pathway and peptidyl-serine
phosphorylationa

–

Catechol-O-Methyltransferase COMT Degrades dopamine and other catecholamines (92) Schizophrenia (41)

Discs Large MAGUK Scaffold
Protein 4

DLG4 Synapse structure and development (44) Intellectual disability, epilepsy, autism
spectrum disorder, schizophrenia
(44,93)

Disrupted in Schizophrenia 1 DISC1 Neural migration, neurite outgrowth, and dendritic
arborization (94)

Schizophrenia, bipolar disorder, autism,
depression (41)

Erb-B2 Receptor Tyrosine Kinase
4

ERBB4 Role in neurodevelopment such as glial and neuronal
migration, myelination, excitatory neuronal receptor
expression, and the onset of puberty (47)

Schizophrenia, bipolar disorder (47)

Estrogen Receptor 1 ESR1 Mediates estrogen effects on synaptogenesis, growth
factor production, and responses to oxidative stress
(95)

Anxiety, depression, schizophrenia,
Alzheimer’s disease (41)

Fatty Acid Desaturase 2 FADS2 Essential for neurogenesis, neurotransmission, and
protection from oxidative stress (46)

Interact with early dietary exposures to
influence childhood IQ (46)

F-Box and WD Repeat Domain
Containing 11

FBXW11 Involved in ubiquitination and proteasomal
degradation (96)

Autism spectrum disorder (96)

FK506-Binding Protein 5 FKBP5 Transcriptional regulation of the HPA axis (50) Depression, PTSD (50)

Fragile X Mental Retardation,
Autosomal Homolog 1

FXR1 Levels of FXR1 are important for parvalbumin
interneurons (97)

Schizophrenia, bipolar disorder (98)

Insulin-like Growth Factor-Binding
Protein 7

IGFBP7 Regulation of availability of IGFsa Learning and memory (99)

Integrin Subunit Alpha 6 ITGA6 Involved in insulin-like growth factor 1 signaling (80) Schizophrenia (100)

Kinectin 1 KTN1 Encodes the protein kinectin, a receptor that allows
vesicle binding to kinesin and is involved in organelle
transport (59)

ADHD (59)

Klotho KL Health and survival (43) Cognition (43)

Malic Enzyme 1 ME1 Sex-specific gene regulation in the offspring, key
regulator of a T2DM-specific gene expression
network (101,102)

–

Mitogen-Activated Protein
Kinase 10

MAPK10 Neuronal proliferation, differentiation, migration, and
programmed cell deatha

Cognition (103)

Nemo-like Kinase NLK Positive effector of the noncanonical Wnt signaling
pathway and negative regulator of the canonical
Wnt/beta-catenin signaling pathwaya

–

Neuregulin 1 NRG1 Mediate cell-cell interactions in the brain and other
organs, neuronal migration and specification,
oligodendrocyte differentiation and myelination,
regulation of acetylcholine, and expression of GABA
receptors (104)

Schizophrenia, bipolar disorder (41)

Nuclear Factor of Activated T-
Cells, Cytoplasmic 4

NFATC4 Hippocampal plasticity, axonal growth, neuronal
survival, and apoptosis (105)

Spatial memorya

Oxytocin Receptor OXTR Receptor for oxytocin (51) Depression, autism, eating disorder (51)
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Table 4. Continued

Gene Symbol Function
Associated Neurologic
Phenotype(s)/Disorder(s)

Perilipin 1 PLIN1 Regulates droplet formation in lipopolysaccharide-
stimulated microglia (106)

–

Peroxisome Proliferator-Activated
Receptor Gamma

PPARG Regulator of adipocyte differentiationa Schizophrenia (107)

Phospholipase C, Beta 2 PLCB2 Catalyzes the hydrolysis of phosphatidylinositol 4,5-
bisphosphatea

Schizophrenia (108)

Proteasome Inhibitor Subunit 1 PSMF1 Inhibits activation of the 26S proteasome, a
multicatalytic proteinase complex that may play a
role in developmental axonal pruning and synaptic
plasticity (109)

–

SMAD Family Member 3 SMAD3 Involved in regulating inflammatory responses (110) Alzheimer’s disease (110), cognition (111)

Solute Carrier Family 27 (Fatty Acid
Transporter), Member 1

SLC27A1 Involved in fatty acid transport across the blood-brain
barrier (112)

–

Wingless-Type MMTV Integration
Site Family, Member 2B

WNT2B Regulation of cell growth and differentiationa Bipolar disorder (113)

Wingless-Type MMTV Integration
Site Family, Member 5A

WNT5A Essential role in regulating developmental pathways
during embryogenesisa

Schizophrenia (114), memory (115)

ADHD, attention-deficit/hyperactivity disorder; GABA, gamma-aminobutyric acid; HPA, hypothalamic-pituitary-adrenal; IGF, insulin-like growth
factor; PTSD, posttraumatic stress disorder; T2DM, type 2 diabetes mellitus.

aGeneCards (116).

Overall Sample Size 
6809 

Aim 1a: Harmonized Genomes 
6400 

Aim 1b: Harmonized Imaging Data 
Structural MRI: 5700 

DTI: 5500 
fMRI: 5100 

Aim 1c: Harmonized Behavior Data 
3800 

Aim 2a: Genomic HeritabiliƟes & 
CorrelaƟons 

Structural MRI: 5400 
DTI: 5200 

fMRI: 4800 

Aim 2b: AssociaƟon Analysis 
 

Aim 2c: IntegraƟon with PGC data 
MRI: 4100 
DTI: 4000 

fMRI: 3700 

Aim 3: IdenƟfy correlaƟons 
between geneƟcally influenced 

DIPs and clinically salient behavior 
2900 

Figure 3. Data analysis plan for the ORIGINs
(Organization for Imaging Genomics in Infancy). DIP,
developmental imaging phenotype; DTI, diffusion
tensor imaging; fMRI, functional magnetic reso-
nance imaging; PGC, Psychiatric Genomics
Consortium.
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largest and most diverse imaging genomics dataset focused
on infancy and early childhood to date. This dataset will help
reveal how genetic risk for psychiatric disease manifests
across infancy and early childhood, in terms of brain struc-
ture and function, and assist in early identification of at-risk
individuals. Ultimately, identifying genes and molecular
pathways associated with early neuroimaging phenotypes
could lead to the development of novel prophylactics against
complex psychiatric illness.
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