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Abstract: Brain tumor classification is crucial for medical evaluation in computer-assisted diagnostics
(CAD). However, manual diagnosis of brain tumors from magnetic resonance imaging (MRI) can
be time-consuming and complex, leading to inaccurate detection and classification. This is mainly
because brain tumor identification is a complex procedure that relies on different modules. The
advancements in Deep Learning (DL) have assisted in the automated process of medical images
and diagnostics for various medical conditions, which benefits the health sector. Convolutional
Neural Network (CNN) is one of the most prominent DL methods for visual learning and image
classification tasks. This study presents a novel CNN algorithm to classify the brain tumor types of
glioma, meningioma, and pituitary. The algorithm was tested on benchmarked data and compared
with the existing pre-trained VGG16, VGG19, ResNet50, MobileNetV2, and InceptionV3 algorithms
reported in the literature. The experimental results have indicated a high classification accuracy
of 98.04%, precision, recall, and f1-score success rate of 98%, respectively. The classification results
proved that the most common kinds of brain tumors could be categorized with a high level of
accuracy. The presented algorithm has good generalization capability and execution speed that can be
helpful in the field of medicine to assist doctors in making prompt and accurate decisions associated
with brain tumor diagnosis.

Keywords: brain tumors; magnetic resonance imaging; Deep Learning; neural network; tumor
classification; healthcare; pre-trained models

1. Introduction

A brain tumor is the growth of abnormal cells in the brain tissues. According to
the World Health Organization (WHO), tumor is the second leading cause of mortality
worldwide [1,2]. A brain tumor can be benign or malignant; unlike malignant tumors,
benign tumors grow slowly, do not invade surrounding tissues or organs, and generally do
not pose a serious threat to health. Benign tumors can be removed surgically and typically
do not return after surgical removal [3]. Unlike benign tumors, malignant tumors invade
surrounding tissues and organs and cause serious bodily harm if not treated promptly
and effectively [4]. Therefore, early detection of brain tumors is very important to increase
the survival of patients. The most common brain tumors are glioma, meningioma, and
pituitary tumors. Glioma is a tumor that develops in the glial cells that surround and
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support neurons in the brain, including astrocytes, oligodendrocytes, and ependymal
cells [5], pituitary tumor develops in the pituitary gland [6]; while meningioma forms in
the meninges, which are the outer three layers of tissues between the skull [7]. The most
distinguished contrast between these three tumors is that meningioma is commonly benign,
whereas glioma is malignant, and the pituitary tumor is identified as benign [8].

Primary brain tumors can cause various symptoms depending on their size, location,
and growth rate, regardless of whether the tumor is benign or malignant [9,10]. Further-
more, glioma may cause various symptoms, including aphasia, vision changes or loss,
cognitive difficulties, and problems with walking or balance [11,12]. Meningioma typically
has subtle symptoms that may gradually worsen, including changes in vision and morning
headaches [13]. Pituitary tumors can result in headaches, vision problems, and double
vision due to pressure on the optic nerve [6]. Therefore, distinguishing between these
tumor types is crucial for clinical diagnosis and treatment evaluation. Early diagnosis
of brain tumors largely depends on the expertise of radiologists. Magnetic Resonance
Imaging (MRI) is commonly used to determine tumor types, but it relies on human in-
terpretation and can be challenging to analyze large amounts of data [14]. The standard
procedure for diagnosing and treating brain tumors, biopsies are seldom performed before
conclusive brain surgery [15]. Developing a comprehensive diagnostics tool for tumor
detection and classification from MR images is essential to acquire an exact diagnosis and
prevent surgery and subjectivity [16]. Recent technological breakthroughs, particularly
Artificial Intelligence (AI) [17] and Machine Learning (ML) [18–22], have had far-reaching
implications on the healthcare sector, providing essential resources for several formerly
ineffective healthcare sectors comprising imaging [23].

Various ML algorithms are determined for MR image detection and classification to
give radiologists a new perspective. In addition to detecting tumors, medical imaging
techniques are widely regarded as the most reliable and popular for diagnosing cancer in
many forms. This method’s importance increases due to its lack of invasiveness [24–29].
Medical imaging techniques such as MRI are widely utilized because they provide clear
pictures of brain tissue that can diagnose and classify different brain tumors. There is a
vast variety of sizes, forms, and densities among brain tumors [30]. Moreover, tumors
with distinct pathogenic features may appear identical. Many images inside the database
created the most significant challenges when classifying the MR images using some neural
networks. However, as MR images are obtained in different planes, using all of them might
increase the database. Preprocessing is necessary before feeding the MR images into the
various networks to achieve the classification result [24]. Convolutional Neural Networks
(CNN) resolved this issue and has several benefits, including feature engineering, and
preprocessing is not required. Utilizing a less complex network demands fewer resources
for deployment and training. It is a major challenge due to the lack of resources to use
the system for medical diagnostics or on mobile platforms. The method must be generally
useful if it is required for daily routine clinical diagnostics.

Our key contributions in this study are as follows:

• This study presents a novel CNN approach for classifying three types of brain tumors:
glioma, meningioma, and pituitary tumors.

• The objective is to show that the presented approach can outperform more complex
methods with limited resources for deployment and training. The study evaluates the
network’s ability to generalize for clinical research and further deployment.

• The presented investigation suggests that the proposed methodology outperforms
existing approaches, as evidenced by achieving the highest accuracy score on the
Kaggle dataset. Furthermore, comparisons were made with pre-trained models and
previous methods to reveal the prediction performance of the presented approach.

The following sections of this paper describe the literature in Section 2, the dataset,
proposed architecture, pre-trained models, and optimization techniques in Section 3, the
experimental results of the models in Section 4, and discussion in Section 5. The conclusion
is presented in the last section.
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2. Literature Review

Due to the above considerations, classifying brain tumors into discrete categories is
arduous. MR image’s capacity to detect and classify brain tumors has been the subject of
several studies that deployed various methodologies. Sasikala et al. [31] deployed wavelet-
based feature extraction and a Genetic Algorithm (GA) to select features from brain tumors,
and an artificial neural network was utilized for classification. EI-Dahshan et al. [32]
classified the brain tumor using hybrid techniques; they extracted the features using
Discrete Wavelet Transform (DWT), reduced the features using Principal Component
Analysis (PCA), and then classified these features using Feedforward Backpropagation
Artificial Neural Network (FP-ANN) and K-Nearest Neighbor (KNN) classifiers.

Kaplan et al. [24] deployed distinct techniques, namely Local Binary Pattern (LBP),
nLBP, and αLBP, for feature extraction, and the classification process was performed using
K-Nearest Neighbor (KNN), ANN, Random Forest (RF), AIDE, and Linear Discriminant
Analysis (LDA) methods; the highest success rate was achieved 95.56% with nLBPd=1 and
KNN. Rathi and Palani primarily deployed the segmentation approach by applying several
kernel-based probabilistic clustering algorithms on noise-free images filtered with a median
filter [25]. The most significant features of the information acquired for each segment
were evaluated using linear discriminant analysis, and Deep Learning (DL) based methods
were utilized to categorize brain tumors. Mohsen et al. [33] investigated the application of
Deep Neural Networks (DNNs) for classifying brain tumors. They tested the DNN-based
classification system using 66 MR images of the brain and utilized extracted features using the
discrete wavelet transformation and principal component analysis techniques. In 2015, Cheng
developed a figshare dataset of brain tumors [34], and furtherutilized it [30] to attempt the
three classes problem of detecting brain malignancies. Using image dilation, they magnified
the tumor location and deployed Support Vector Machines (SVM) to classify the images after
extracting the features using the intensity histogram, gray level co-occurrence matrix, and
bag-of-words model; the highest classification results were achieved at 91.28%. Combining
statistical features with the neural network method, Ismael and Abdel Qader [35] presented
a framework for classification. Two-dimensional (2D), discrete wavelet transform, and 2D
Gabor filter techniques were combined with supporting feature selection. Using a back
propagation neural network as the classifier improved accuracy to 91.9% when testing the
system on brain MRI data for cancer diagnosis. Abiwinanda et al. [36] utilized five diverse
and straightforward CNN architectures and found that the two-layer convolution design
achieved the best performance, with an accuracy rate of 84.19%. To classify brain tumors
from MR images, Afshar et al. [14] utilized a modified CNN framework called Capsule
network (CapsNet) and achieved a success rate of 90.89% for the classification.

Pashaei et al. [37] extracted information from brain images using CNN, classified brain
malignancies using Kernel Extreme Learning Machines (KELM), and achieved a 93.68%
accuracy. According to Phaye et al. [38], multiple capsule networks were used to categorize
brain cancers. This design improved the accuracy to 95.03% by replacing the standard
convolution layer in the CapsNet with a densely connected convolution layer. Avşar and
Salçin [39] applied DL to classify brain tumors and created a faster region-based CNN
(Faster R-CNN) with a success rate of 91.66%. Zhou et al. [40] collected information from
axial sections and obtained sequential information of many frames using dense CNN; for
classification, they deployed a Recurrent Neural Network (RNN) and attained a 92.13%
accuracy. Anaraki et al. [41] achieved an effective classification rate of 94.2% on brain tumor
types, including glioma, meningioma, and pituitary, using a combination of CNN and GA as
a classification technique. Gumaei et al. [42] deployed a hybrid feature extraction approach
based on a Regularized Extreme Learning Machine (RELM) to enhance the accuracy of a
classification method and achieved a success rate of 94.23%; RELM is used for classification
after enhancing the contrast of brain edges and regions with the min–max normalization rule
and extracted brain tumor features using the hybrid technique. Ghassemi et al. [43] deployed
a DL classification system for brain tumors using a pre-trained Deep Neural Network (DNN)
in a Generative Adversarial Network (GAN). The pre-training of the DNN was accomplished
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using multiple datasets to create features for the GAN. Following pre-training, the fully
connected layers were swapped, and the resulting system achieved a success rate of 95.6%
for brain tumor classification task. Swati et al. [44] implemented AlexNet, VGG16, and
VGG19 with fine-tuning to classify brain tumors; the authors achieved 94.82% accuracy.
Noreen et al. [45] used fined tuned models such as InceptionV3 and Xception to classify brain
tumors, and the authors explored these models through ML algorithms such as softmax,
random forest, SVM, K-nearest neighbors, and the ensemble techniques; they achieved the
highest accuracy at 94.34% on ensemble InceptionV3.

3. Material and Methods

This section presents the suggested scheme with the proposed CNN, which involves
two major steps. Firstly, the input images were resized to maintain the same aspect ratio
and normalized to preserve the uniform information distribution. The data were split into
training 80% and testing 20% sets. Secondly, training approaches were performed on the
training data to evaluate the presented model using Adam optimizer and ReduceLROn-
Plateau callbacks for learning rates. Furthermore, we evaluated the proposed model based
on accuracy, precision, recall, and f1-score findings. The flow chart of the proposed scheme
is illustrated in Figure 1.

Brain Sci. 2023, 13, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 1. Flow chart of the proposed scheme. 

3.1. Dataset 
This study utilized a dataset comprising 3064 T1 weighted contrast-enhanced MR 

images, which were acquired from two hospitals, namely Nangfang Hospital and General 
Hospital Tianjin Medical University, China. The images were collected between 2005 and 
2010 and made available online in 2015. The most recent update to the dataset was per-
formed in 2017 [34]. The dataset is also accessible on the Kaggle website in PNG format 
[46]. The collection consists of 233 patients, featuring three different tumor types: glioma 
(1426 images), meningioma (708 images), and pituitary (930 images). The images were 
captured in three different planes: sagittal (1025 images), axial (994 images), and coronal 
(1045 images), with original images of 512 × 512 dimensions. Figure 1 visually represents 
the various tumor forms in the dataset. 

3.2. Network Architectures 
3.2.1. Proposed Model 

Figure 2 demonstrates the proposed CNN model; it extracted the MRI data with 224 
× 224 input dimensions. We primarily used a single filter of 16 convolution layers [47] 
with a kernel size of 3 × 3, stride size of 1 × 1, and padding is valid. Subsequently, we used 
the batch normalization layer [48] and 2D max pooling layer of 2 × 2 to acquire maximum 
information on the images. In the same way, we added the number of convolution layers 

Figure 1. Flow chart of the proposed scheme.

3.1. Dataset

This study utilized a dataset comprising 3064 T1 weighted contrast-enhanced MR
images, which were acquired from two hospitals, namely Nangfang Hospital and General
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Hospital Tianjin Medical University, China. The images were collected between 2005
and 2010 and made available online in 2015. The most recent update to the dataset was
performed in 2017 [34]. The dataset is also accessible on the Kaggle website in PNG
format [46]. The collection consists of 233 patients, featuring three different tumor types:
glioma (1426 images), meningioma (708 images), and pituitary (930 images). The images
were captured in three different planes: sagittal (1025 images), axial (994 images), and
coronal (1045 images), with original images of 512 × 512 dimensions. Figure 1 visually
represents the various tumor forms in the dataset.

3.2. Network Architectures
3.2.1. Proposed Model

Figure 2 demonstrates the proposed CNN model; it extracted the MRI data with
224 × 224 input dimensions. We primarily used a single filter of 16 convolution layers [47]
with a kernel size of 3 × 3, stride size of 1 × 1, and padding is valid. Subsequently, we used
the batch normalization layer [48] and 2D max pooling layer of 2 × 2 to acquire maximum
information on the images. In the same way, we added the number of convolution layers
with the filter size of 32, 64, 128, and 256 having the same kernel size of 3 × 3, stride size
of 1 × 1, and padding is valid. Subsequently, we applied the global average pooling [49],
flattened, dense [50] (in the dense layer, we used 512 neurons and kernel regularizing
techniques L1 (10−5) and L2 (10−4), and dropout [51] layers with 0.5%. In the end, the
softmax function [47] was utilized with the output layer to determine the likelihood score
for each class and classify the decision label as to whether the input image contained a
glioma, meningioma, or pituitary tumor.
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Figure 2. Proposed CNN architecture.

Rectifier Linear Unit (ReLU) is the activation function employed for all convolutional
layers; as demonstrated by Vinod and Hinton [52], it transforms the weighted input sum
into the output of the nodes. The ReLU function can be mathematically represented as

f (g) = max (0, g) (1)

where g represents the input value when g is negative or equal to zero, the output is
also zero. However, when g exceeds zero, the output is set to one. The ReLU function is
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frequently utilized in the hidden nodes of CNNs. The derivation of the function can be
mathematically represented as

f ′(g) =
{

1, f or g ≥ 0
0, f or g < 0

(2)

In Equation (2), if the input value is zero, the corresponding neuron is considered
“deceased” and will not be triggered. In addition, pooling layers are commonly used
in CNNs to reduce feature maps’ spatial size (i.e., height and width) while retaining
important information. It is important because as we move deeper into the neural network,
the number of filters and feature maps increases, resulting in a high computational cost.
Pooling layers help reduce the number of parameters in the model and prevent overfitting
by reducing the spatial resolution. In max pooling, a fixed-size window slides over the
input feature map and selects the maximum value within that window. The output of max
pooling is a reduced-size feature map that highlights the most important features of the
input. The max pooling operation can be defined as

MaxPooling(x)i,j =
max
m,n xi+m,j+n (3)

where x is the input feature map, i, j are the spatial coordinates of the output feature map,
and m, n are the coordinates of the pooling window [47]. Global pooling is a type of pooling
layer that takes the entire feature map as input and outputs a single value for each feature
map. Global max pooling takes the maximum value of the feature map, while global
average pooling takes the average value. Global pooling is useful when we want to reduce
the dimensionality of the feature map and extract global information about the input. The
global average pooling can be expressed as

Gobalavgpooling(x) =
1

k× 1

k

∑
i=1

l

∑
j=1

xi,j (4)

The equation for global average pooling operation on a feature map x with k channels
and l spatial dimensions (height and width) the symbol ∑ represents the summation
operation, i and j are the indices used to iterate over the spatial dimensions of the feature
map, and k is the number of channels in the feature map. The result of the equation is a
vector of k values, where each value represents the average activation for the corresponding
channel across all spatial locations in the feature map. Furthermore, the loss function is
used in DL to quantify the discrepancy between the algorithm’s predictions and the actual
values. However, different optimization techniques can be employed to reduce the size of
this error. This study used categorical cross-entropy for the loss function with softmax. In
categorical cross-entropy, the error rate is calculated by using Equation (5); mathematically
expression follows as

LCE = −∑
j

yi,jlog
(
ŷi,j

)
(5)

In Equation (5) where LCE are samples of loss value, i is the ith sample in the set j is the
label/output index, y is the actual value, and ŷ is predicted value. Furthermore, the softmax
function is used as an output layer to normalize the model output into a probability distri-
bution over predicted output classes. The following equation shows the function of softmax.

σ(
→
Z)i =

eZi

∑K
j=1 eZj

(6)

where σ represents softmax,
→
Z denotes the input vector, eZi represents the standard expo-

nential function of the input vector, K represents the number of classes, eZj represents the
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standard exponential function of the output. Figure 3 depicts the function of softmax as the
output layer [47].
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Figure 3. Shows the softmax function as the output layer in a neural network, where the input vector
x is transformed through hidden layers to produce an output vector z, representing the scores for each
class. The softmax function is then applied to z to obtain a probability distribution over the classes.

3.2.2. Optimization Approaches

Several optimization strategies are used to decrease the loss in deep neural networks
by adjusting parameters such as weights and learning rates. This study used Adam opti-
mizer regularization methods, dropout, and ReduceLROnPlateau callbacks. The adaptive
moment estimation (Adam) optimizer was developed by Diederik Kingma [53]. Adam is an
optimizer that uses RMSprop in conjunction with a stochastic gradient descent algorithm
based on momentum. Herbert and Sutton [54] suggested the stochastic gradient descent
method. The pseudocode of the Adam algorithm (Algorithms 1) is given as below.

Algorithm 1: Pseudocode: For the Adam algorithm.
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end 
return 𝜃௧ resulting parameters 

Regularization is a group of methods that can avoid overfitting in neural networks 
and, as a result, improve the accuracy of a DL model when presented with new data from 
the problem domain [54,55]. L2 and L1 are standard and effective regularization tech-
niques used in our model. L2 regularization is known as weight decay or ridge regression, 
and L1 is known as Lasso regression. The cost function can be calculated by using the 
following equations. 

𝐿1 𝐶𝑜𝑠𝑡 𝑓𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑡𝑖𝑜𝑛(𝐿𝑜𝑠𝑠) + 𝜆 |𝑤|ே
ୀଵ  (7)

𝐿2 𝐶𝑜𝑠𝑡 𝑓𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑡𝑖𝑜𝑛(𝐿𝑜𝑠𝑠) + 𝜆 |𝑤ଶ|ே
ୀଵ  (8)

The equations involve a hyperparameter denoted by 𝜆, which controls the strength 
of regularization, N is the number of model parameters, and 𝑤 represents the ith param-
eter, ∑ the sum of all parameters. Dropout is also a regularization technique intended to 
enhance the ability of a network to generalize and prevent it from becoming very profi-
cient at its task. Typically, a dropout [56] value between 0.2 and 0.5 is employed; if the 
dropout probability value is too low, it is of little consequence. However, if the value is 
too high, the network might not learn enough about the features during model training. 
This layer eliminates the random activation nodes, significantly boosting the training
phase. In the proposed framework, 0.5% of dropouts found a suitable dropout value, as 
an example is shown in Figure 4.

Regularization is a group of methods that can avoid overfitting in neural networks
and, as a result, improve the accuracy of a DL model when presented with new data
from the problem domain [54,55]. L2 and L1 are standard and effective regularization
techniques used in our model. L2 regularization is known as weight decay or ridge



Brain Sci. 2023, 13, 602 8 of 18

regression, and L1 is known as Lasso regression. The cost function can be calculated by
using the following equations.

L1 Cost f uction = cost f untion(Loss) + λ
N

∑
i=1
|wi| (7)

L2 Cost f uction = cost f untion(Loss) + λ
N

∑
i=1

∣∣∣w2
i

∣∣∣ (8)

The equations involve a hyperparameter denoted by λ, which controls the strength of
regularization, N is the number of model parameters, and wi represents the ith parameter, ∑
the sum of all parameters. Dropout is also a regularization technique intended to enhance
the ability of a network to generalize and prevent it from becoming very proficient at
its task. Typically, a dropout [56] value between 0.2 and 0.5 is employed; if the dropout
probability value is too low, it is of little consequence. However, if the value is too high,
the network might not learn enough about the features during model training. This layer
eliminates the random activation nodes, significantly boosting the training phase. In the
proposed framework, 0.5% of dropouts found a suitable dropout value, as an example is
shown in Figure 4.
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Callbacks: In model training, we used ReduceLROnPlateau [57] callbacks. ReduceL-
ROnPlateau callback in Keras can be used to reduce the learning rate of the model during
training if the validation loss has stopped improving. By reducing the learning rate, the
optimization process can make smaller steps toward the minimum of the loss function,
which can help the model become more efficient. It is also worth mentioning that the
ReduceLROnPlateau callback works by keeping track of the best-observed value of the
monitored quantity and reducing the learning rate when the current value has not im-
proved for a certain number of epochs. A factor is used to reduce the learning rate; the
following equation represents the new learning rate using a factor.

new_learning_rate = learning_rate(0.001) ∗ f actor(0.4) (9)

The factor value should be between 0 and 1; if the value exceeds 1, the learning rate
will explode. If the factor is 1, the learning rate would never decay.

3.3. Pre-Trained Models

Pre-trained models are ML models trained on large-scale datasets such as ImageNet,
which contains a million images from different classes and can be used for image classifi-
cation, object detection, and other tasks. The idea behind pre-trained models is that they
have already learned to recognize patterns in the data to be used as a starting point for a
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new task rather than training a model from scratch. Five pre-trained models, including
VGG16, VGG19, InceptionV3, ResNet50, and MobileNetV2, were utilized in this study.

3.3.1. VGG16

VGG16 was proposed in 2014 by Karen Simonyan and Zisserman [58] of Oxford
University’s Visual Geometry Group. The architecture consists of 16 layers, including 13
convolutional layers, 3 fully connected layers, and small filters of size 3 × 3 with a stride
size of 1. The max pooling layers use a 2 × 2 pooling window with a stride size of 2. It has
138 million parameters and is widely used for feature extraction in transfer learning.

3.3.2. VGG19

VGG19 [58] is an extension of the VGG16 architecture; it has 19 layers, including
16 convolutional layers, 3 fully connected layers, and a small filter of size 3 × 3 with a
stride size of 1. It also uses max-pooling layers with a 2 × 2 pooling window and a stride
size of 2. It has 144 million parameters, more than VGG16, making it more powerful but
computationally expensive.

3.3.3. ResNet50

Deep neural networks perform better as the model’s depth increases, which has been
proven in the literature [59,60]. As the network size increases, vanishing/exploding gradi-
ents become problematic. To address this issue, the authors of ResNet50 [61] deployed a
residual module, allowing the network to learn the residual mapping between the inputs and
outputs rather than the original mapping. It is achieved by adding shortcut connections that
bypass certain layers and adds the input to the output of the modules. The residual blocks
help to alleviate the vanishing gradient problem and avoid degradation as the network
depth increases. The ResNet50 is an architecture that uses a combination of convolutional
layers with varying filter sizes (1 × 1, 3 × 3, 1 × 1) within bottleneck blocks, along with max
pooling and average pooling layers to extract the features from the input images.

3.3.4. InceptionV3

The inception model [62] is offered in three different versions, each of which improves
upon its successors in one or more ways. This one is quite complex compared to the
previous version, which consisted of stacked layers. The engineering behind it allows it to
operate more quickly and accurately. This strategy provides an advantage by deploying
several kernel sizes at the same level, making the network wider rather than deeper. The
authors created a single module by merging a max pooling layer at the same level with
kernel sizes of 1 × 1, 3 × 3, and 5 × 5. The output results would be concatenated before
forwarding since adding all of these layers at once would increase the computational
demands of this model. To alleviate this, the authors included a 1 × 1 convolution layer
before the 3× 3 and 5× 5 layers and after the max pooling layer. This layer uses 1× 1 layers
instead of 5 × 5 layers to save computing by reducing the number of input channels [62].

3.3.5. MobileNetV2

The architecture was designed for mobile and embedded applications to achieve high
accuracy while being lightweight and efficient in computation and memory usage. The
model uses inverted residual, linear bottlenecks, and width multiplier parameters. The
inverted residual is a series of convolutional layers that increase network capacity while
minimizing computation and memory usage by expanding the input to a large number
of channels, then convolving with a small kernel, and finally projecting back to a smaller
number of channels. Linear bottlenecks reduce the number of parameters required by using
a linear activation function instead of a nonlinear one. The width multiplier parameter
scales the number of channels in the network [63].



Brain Sci. 2023, 13, 602 10 of 18

4. Experimental Results

The aim of this study is to classify the MRI dataset containing 3064 images of the
glioma, meningioma, and pituitary tumors using the proposed model. Initially, the dataset
was resized and separated into training and testing sets. In all experiments, the data were
shuffled using a random state value of 101. The model was trained for 30 epochs using
five-fold cross-validation and a batch size of 8 on the Adam optimizer. The learning rates
were optimized with the ReduceLROnPlateau callbacks. The mean accuracy and losses of
the presented model are presented in Figure 5. During the initial training phase, the graphs
exhibit fluctuations, which can be attributed to the utilization of the ReduceLROnPlateau
callback. This callback dynamically adjusts the optimizer’s learning rate during training
based on the plateauing of the loss function. Following the 15th epoch of training, the
optimizer is observed to converge more smoothly to an optimal set of weights, reducing
the fluctuations of the accuracy and loss curves.
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The platform utilized several libraries, including TensorFlow, Keras, Pandas, Numpy,
Matplotlib, and Sklearn, to facilitate the data and model-building processes. The Central
Processing Unit (CPU) used was an Intel(R) Core(TM) i7-7800 with a processing speed of
3.5 GHz. The Graphical Processing Unit (GPU) used was an NVIDIA GeForce GTX 1080 Ti,
which enabled efficient model training and optimization. The software employed for the
study was Python 3.7, which provided a comprehensive set of tools for data manipulation,
analysis, and visualization. The platform had a total RAM capacity of 16 GB, sufficient for
handling the data used in the study.

4.1. Evaluation Matrix

The proposed framework’s accuracy, precision, recall, and f1-score were evaluated.
Recall measures the model’s ability to accurately identify the correct type of tumor, calcu-
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lated as the ratio of true positives to the sum of true positives and false negatives. Precision
measures the model’s ability to avoid misclassifying negative examples as positive and is
calculated as the ratio of true positives to the sum of true and false positives. The f1-score
is the harmonic mean of precision and recall and is calculated as two times the product
of precision and recall divided by their sum. Accuracy measures the model’s overall per-
formance in correctly classifying and is calculated as the ratio of correct predictions to the
total number of predictions. The mathematical expressions for recall, precision, f1-score,
and accuracy are represented by Equations (10)–(13) [64].

Recall =
TP

TP + FN
(10)

Precision =
TP

TP + FP
(11)

f 1-Score = 2× Recall × Precision
Recall + Precision

(12)

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

The results of average precision, recall, f1-score, and accuracy on testing data for both
the suggested framework and pre-trained models are presented in Figure 6. The proposed
model achieved the highest accuracy rate of 98.04%, as well as precision, recall, and f1-score
rates of 98%, while InceptionV3 exhibited the lowest performance, with an accuracy rate
of 85.97%, precision rate of 86%, recall rate of 84%, and f1-score rate of 85%. It is worth
noting that the inferior performance of InceptionV3 could be attributed to the utilization of
multiple parallel convolutional and pooling layers, which are not well-suited for small datasets,
as corroborated by our findings. Among the pre-trained models, ResNet50 demonstrated
superior accuracy, precision, recall, and f1-score rates compared to VGG16, VGG19, and
MobileNetV2. Moreover, default input sizes of 224 × 224 were employed for VGG16, VGG19,
ResNet50, and MobileNetV2, whereas InceptionV3 employed 299 × 299 as its input size.
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4.2. Confusion Matrix

A confusion matrix is a table used to evaluate the performance of classification mod-
els [65]. The proposed network performed well in multi-tumor classification and properly
detected each type of brain tumor in this investigation. Figure 7 illustrates the results
obtained from the testing data, which can be compared with pre-trained models and had
low performance compared to the suggested models. In comparison, the proposed model
accurately predicted glioma 99%, meningioma 95%, and 100% pituitary; the predicted ratio
was greater than the pre-trained models. In addition, the meningioma success rate was not
very high in this study; we consider it for further studies.
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Figure 7. The confusion matrices of the proposed and pre-trained models on the testing data are
presented in Figure 7. The figure displays the prediction rate of each model. Specifically, (a) illustrates
that the proposed model achieved a high accuracy rate of 98.04%. Comparatively, (b) shows that
VGG16 obtained an accuracy rate of 90.70%, (c) reveals that VGG19 achieved 92.82%, (d) demonstrates
that the accuracy rate of ResNet50 was 94.77%, (e) indicates that MobileNetV2 achieved 93.47%, and
lastly, (f) depicts that InceptionV3 achieved an accuracy rate of 85.97%.

In addition, ResNet50 predicted (glioma 95%, meningioma 89%, and 99% pituitary)
was a better success rate compared to VGG19 predicted (glioma 94%, meningioma 85%,
and 98% pituitary), VGG16 predicted (glioma 92%, meningioma 79%, and 99% pituitary),
InceptionV3 predicted (glioma 89%, meningioma 66%, and 98% pituitary) and MobileNetV2
predicted (glioma 92%, meningioma 90%, and 99% pituitary).

4.3. ROC Curve Analysis

The Receiver Operation Characteristics (ROC) curve is crucial for identifying brain
tumors. True Positive Rate (TPR) and False Positive Rate (FPR) [66] are two metrics through
which the prediction performance can be calculated at all classification thresholds on
testing data. In comparison, the proposed model predicted (glioma 0.98%, meningioma
0.97%, pituitary 1.00%), ResNet50 predicted (glioma 0.95%, meningioma 0.93%, pituitary
0.99%), MobileNetV2 predicted(glioma 0.95%, meningioma 0.92%, pituitary 0.99%), VGG19
predicted (glioma 0.94%, meningioma 0.91%, pituitary 0.98%), VGG16 predicted (glioma
0.93%, meningioma 0.87%, pituitary 0.98%), and InceptionV3 (glioma 0.87%, meningioma
0.80%, pituitary 0.98%). Figure 8 demonstrates the overall ROC AUC scores.

It is common practice in the literature to use hyperparameters to optimize the learning
process during training. This work employed ReduceLROnPlateau callbacks with the
Adam optimizer because the Adam algorithm uses the stochastic gradient method to
update the weights of a neural network during training. It adapts the learning rate for each
parameter based on the estimates of the gradient’s first and second moments, which can
lead to faster convergence and better performance. ReduceLROnPlateau callback reduces
the learning rate when a matric (e.g., validation loss) has stopped improving. It helps the
model avoid getting stuck in a suboptimal local minimum [67] and can result in better
generalization and lower test error. The five-fold cross-validation method [68] randomly
divides the data into five subsets and trains and assesses the model five times; these five
runs provide a more accurate assessment of the model’s performance on test data than
a single split. Using these techniques together was helpful in model training with the
best results. In comparing training and testing time for each epoch using 8 batch size, the
proposed model grabbed less time, specifically 12 ms/step. In contrast, VGG16 grabbed
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24 ms/step, VGG19 30 ms/step, ResNet50 28 ms/step, MobileNetV2 16 ms/step, and
InceptionV3 grabbed 34 ms/step.
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Figure 8. The overall receiver operating characteristic (ROC) area under the curve (AUC) score for
the proposed and pre-trained models. The proposed model obtained the highest ROC AUC score
of 98%, indicating its superior ability to discriminate between positive and negative classes. In
contrast, ResNet50 scored 96% in ROC AUC, MobileNetV2 achieved a score of 95%, VGG19 scored
94%, VGG16 scored 93%, and InceptionV3 achieved 88%. These results demonstrate the superiority
of the proposed model over the pre-trained models in terms of ROC AUC scores, underscoring its
robustness in differentiating among the brain tumor classes.

5. Discussion

This study presented a classification approach for primary brain tumor types such
as glioma, meningioma, and pituitary by applying a CNN model to MR images. Table 1
summarizes the findings from previous research involving the same types of brain tumors
but with different methods. The reliability of the proposed system is demonstrated by the
fact that the proposed structure provides the most precise prediction results compared
to previous studies of a similar nature. The suggested CNN method is a segment-free
approach, as the brain tumor images are loaded to obtain classes of tumors, unlike the
other methods that require additional manual processes such as feature extractions or
localization of tumors. For example, ref. [35] extracted the features with DWT and the
Gabor filter and then deployed them in another stage for classification [14]. The authors
utilized coarse boundaries as an additional input to aid the network in producing better
classification outcomes. Ref. [37] deployed CNN for feature extraction and then classified
by KELM, while ref. [39] used R CNN to extract features from MR images and then used
these features to classify the tumors [40]. They collected characteristics from axial slices
using DesnesNet and used these features for classification [41]. The authors used GA to
optimize the CNN structure for the best classification accuracy [42]. They retrieved the
feature using PCA-NGIST methods and then used these features for classification. However,
the proposed model achieved a favorable classification rate without the preceding stage,
demanding another manual process to localize the tumors before training. Furthermore,
the proposed model employed the ReduceLROnPlateau callbacks that automatically adjust
the learning rate without manually tuning the learning rate schedule; finding the optimal
learning rate can be challenging and time-consuming [43–45]. The authors used pre-train
approaches to solve the problem, which were not precise predictions compared to our
proposed framework.
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Table 1. Comparison between the proposed model and previous related work.

Authors Methods Average Precision Average Recall Average F1-Score Accuracy

Ismael and
Abdel-Qader [35] DWT-Gabor-NN X X X 91.9

Afshar [14] CapsNet X X X 90.89

Pashaei [37] CNN + KELM 94.6 58.43 93 93.68

Avşar and Salçin [39] R-CNN 97 X 95 91.66

Zhou [40] LSTM + DenseNet X X X 92.13

Anaraki [41] CCN + GA X X X 94.20

Gumaei [42] Hybrid PCA-NGIST + RELM X X X 94.23

Ghassemi [43] CNN based GAN 95.29 X 95.10 95.60

Swati [44] VGG16 Finetune 89.17 X 91.50 94.65

Swati [44] VGG19 Finetune 89.52 X 91.73 94.82

Swati [44] AlexNet 84.56 X 86.83 89.95

Noreen [45] InceptionV3 Ensemble 93 92 92 94.34

Our studies Proposed CNN 98 98 98 98.04

6. Conclusions

This study presented a convolutional neural network (CNN) that can accurately clas-
sify various types of brain tumors, such as glioma, meningioma, and pituitary tumors. We
compared the performance of our proposed model with previous and several pre-trained
models, namely VGG16, VGG19, ResNet50, MobileNetV2, and InceptionV3. Our findings
suggest that the presented model exhibits superior accuracy of 98.04%, generalization
capability, and execution speed, which makes it a valuable decision-support tool for routine
clinical diagnostics. Moreover, the proposed method can contribute significantly to the early
identification of life-threatening illnesses in various clinical domains, including medical
imaging, where lung and breast cancer is associated with high mortality rates worldwide.
For future work, we intend to explore data augmentation techniques to increase the number
of images, thereby improving the generalization capability of the networks. Additionally,
we plan to develop real-time detection systems for brain tumors in the operation room and
3D networks for other medical images.
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29. Gębska, M.; Dalewski, B.; Pałka, Ł.; Kołodziej, Ł.; Sobolewska, E. The Importance of Type D Personality in the Development
of Temporomandibular Disorders (TMDs) and Depression in Students during the COVID-19 Pandemic. Brain Sci. 2021, 12, 28.
[CrossRef] [PubMed]

30. Cheng, J.; Huang, W.; Cao, S.; Yang, R.; Yang, W.; Yun, Z.; Wang, Z.; Feng, Q. Enhanced Performance of Brain Tumor Classification
via Tumor Region Augmentation and Partition. PLoS ONE 2015, 10, e0140381. [CrossRef] [PubMed]

31. Sasikala, M.; Kumaravel, N. A wavelet-based optimal texture feature set for classification of brain tumours. J. Med. Eng. Technol.
2008, 32, 198–205. [CrossRef]

32. El-Dahshan, E.-S.A.; Hosny, T.; Salem, A.-B.M. Hybrid intelligent techniques for MRI brain images classification. Digit. Signal
Process. 2010, 20, 433–441. [CrossRef]

33. Mohsen, H.; El-Dahshan, E.-S.A.; El-Horbaty, E.-S.M.; Salem, A.-B.M. Classification using deep learning neural networks for
brain tumors. Future Comput. Inform. J. 2018, 3, 68–71. [CrossRef]

34. Cheng, J. Figshare Brain Tumor Dataset. 2017. Available online: https://figshare.com/articles/dataset/brain_tumor_dataset/15
12427/5 (accessed on 13 May 2022).

35. Ismael, M.R.; Abdel-Qader, I. Brain Tumor Classification via Statistical Features and Back-Propagation Neural Network. In Pro-
ceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018;
pp. 252–257. [CrossRef]

36. Abiwinanda, N.; Hanif, M.; Hesaputra, S.T.; Handayani, A.; Mengko, T.R. Brain Tumor Classification Using Convolutional Neural
Network. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering 2018, Prague, Czech Republic,
3–8 June 2018; Springer: Singapore, 2019; Volume 68, pp. 183–189. [CrossRef]

37. Pashaei, A.; Sajedi, H.; Jazayeri, N. Brain Tumor Classification via Convolutional Neural Network and Extreme Learning
Machines. In Proceedings of the 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad,
Iran, 25–26 October 2018; pp. 314–319.

38. Phaye, S.S.R.; Sikka, A.; Dhall, A.; Bathula, D. Dense and Diverse Capsule Networks: Making the Capsules Learn Better. arXiv
2018, arXiv:1805.04001.

39. Avsar, E.; Salçin, K. Detection and classification of brain tumours from MRI images using faster R-CNN. Teh. Glas. 2019, 13,
337–342. [CrossRef]

40. Zhou, Y.; Li, Z.; Zhu, H.; Chen, C.; Gao, M.; Xu, K.; Xu, J. Holistic Brain Tumor Screening and Classification Based on DenseNet
and Recurrent Neural Network. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Springer: Cham,
Switzerland, 2019; Volume 11383, pp. 208–217. [CrossRef]

41. Anaraki, A.K.; Ayati, M.; Kazemi, F. Magnetic resonance imaging-based brain tumor grades classification and grading via
convolutional neural networks and genetic algorithms. Biocybern. Biomed. Eng. 2018, 39, 63–74. [CrossRef]

42. Gumaei, A.; Hassan, M.M.; Hassan, R.; Alelaiwi, A.; Fortino, G. A Hybrid Feature Extraction Method with Regularized Extreme
Learning Machine for Brain Tumor Classification. IEEE Access 2019, 7, 36266–36273. [CrossRef]

43. Ghassemi, N.; Shoeibi, A.; Rouhani, M. Deep neural network with generative adversarial networks pre-training for brain tumor
classification based on MR images. Biomed. Signal Process. Control. 2019, 57, 101678. [CrossRef]

44. Swati, Z.N.K.; Zhao, Q.; Kabir, M.; Ali, F.; Ali, Z.; Ahmed, S.; Lu, J. Brain tumor classification for MR images using transfer
learning and fine-tuning. Comput. Med. Imaging Graph. 2019, 75, 34–46. [CrossRef] [PubMed]

45. Noreen, N.; Palaniappan, S.; Qayyum, A.; Ahmad, I.; Alassafi, M.O. Brain Tumor Classification Based on Fine-Tuned Models and
the Ensemble Method. Comput. Mater. Contin. 2021, 67, 3967–3982. [CrossRef]

46. Cheng, J. Brain Tumor Image Dataset. Kaggle. Available online: https://www.kaggle.com/datasets/denizkavi1/brain-tumor
(accessed on 6 August 2022).

47. Goodfellow, I. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; pp. 1–10.
48. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift . In Proceedings

of the 32nd International Conference on Machine Learning (ICML 2015), Lille, France, 6–11 July 2015; Volume 1, pp. 448–456.
49. Koffas, S.; Picek, S.; Conti, M. Dynamic Backdoors with Global Average Pooling. In Proceedings of the 2022 IEEE 4th International

Conference on Artificial Intelligence Circuits and Systems (AICAS), Incheon, Republic of Korea, 13–15 June 2022; pp. 320–323.
[CrossRef]

50. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan,
L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [CrossRef]

http://doi.org/10.3390/brainsci11080968
http://www.ncbi.nlm.nih.gov/pubmed/34439587
http://doi.org/10.3390/brainsci11020215
http://www.ncbi.nlm.nih.gov/pubmed/33578866
http://doi.org/10.3390/brainsci11050579
http://www.ncbi.nlm.nih.gov/pubmed/33946179
http://doi.org/10.3390/brainsci12010028
http://www.ncbi.nlm.nih.gov/pubmed/35053772
http://doi.org/10.1371/journal.pone.0140381
http://www.ncbi.nlm.nih.gov/pubmed/26447861
http://doi.org/10.1080/03091900701455524
http://doi.org/10.1016/j.dsp.2009.07.002
http://doi.org/10.1016/j.fcij.2017.12.001
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427/5
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427/5
http://doi.org/10.1109/eit.2018.8500308
http://doi.org/10.1007/978-981-10-9035-6_33
http://doi.org/10.31803/tg-20190712095507
http://doi.org/10.1007/978-3-030-11723-8_21
http://doi.org/10.1016/j.bbe.2018.10.004
http://doi.org/10.1109/ACCESS.2019.2904145
http://doi.org/10.1016/j.bspc.2019.101678
http://doi.org/10.1016/j.compmedimag.2019.05.001
http://www.ncbi.nlm.nih.gov/pubmed/31150950
http://doi.org/10.32604/cmc.2021.014158
https://www.kaggle.com/datasets/denizkavi1/brain-tumor
http://doi.org/10.1109/aicas54282.2022.9869920
http://doi.org/10.1186/s40537-021-00444-8


Brain Sci. 2023, 13, 602 18 of 18

51. Bin Tufail, A.; Ullah, I.; Rehman, A.U.; Khan, R.A.; Khan, M.A.; Ma, Y.-K.; Khokhar, N.H.; Sadiq, M.T.; Khan, R.; Shafiq, M.; et al.
On Disharmony in Batch Normalization and Dropout Methods for Early Categorization of Alzheimer’s Disease. Sustainability
2022, 14, 14695. [CrossRef]

52. Nair, V.; Hinton, G.E. Rectified linear units improve Restricted Boltzmann machines. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010.

53. Kingma, D.P.; Ba, J.; Bengio, Y.; LeCun, Y. Adam: A method for stochastic optimization. In Proceedings of the 3rd International
Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015.

54. Robbins, H.; Monro, S. A Stochastic Approximation Method. Ann. Math. Stat. 1951, 22, 400–407. [CrossRef]
55. Moradi, R.; Berangi, R.; Minaei, B. A survey of regularization strategies for deep models. Artif. Intell. Rev. 2019, 53, 3947–3986.

[CrossRef]
56. Mele, B.; Altarelli, G. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 299,

345–350. [CrossRef]
57. Keras. ReduceLROnPlateau. Available online: https://keras.io/api/callbacks/reduce_lr_on_plateau/ (accessed on 21 October 2022).
58. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd

International Conference on Learning Representations, ICLR, San Diego, CA, USA, 7–9 May 2015; pp. 1–14.
59. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.; Liu, W.; et al. Going

deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, 7–12 June 2015; pp. 1–9. [CrossRef]

60. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 2010, 9,
249–256.

61. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

62. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 2818–2826. [CrossRef]

63. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23
June 2018; pp. 4510–4520. [CrossRef]

64. Kuraparthi, S.; Reddy, M.K.; Sujatha, C.; Valiveti, H.; Duggineni, C.; Kollati, M.; Kora, P.; Sravan, V. Brain Tumor Classification of
MRI Images Using Deep Convolutional Neural Network. Trait. Signal 2021, 38, 1171–1179. [CrossRef]

65. Ting, K.M. Confusion Matrix. In Encyclopedia of Machine Learning and Data Mining; Sammut, C., Webb, G.I., Eds.; Springer: Boston,
MA, USA, 2017; p. 206. [CrossRef]

66. Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Casp. J. Intern.
Med. 2013, 4, 627.

67. Ding, T.; Li, D.; Sun, R. Sub-Optimal Local Minima Exist for Neural Networks with Almost All Non-Linear Activations. arXiv
2019, arXiv:1911.01413.

68. Yadav, S.; Shukla, S. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification.
In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28
February 2016; pp. 78–83.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/su142214695
http://doi.org/10.1214/aoms/1177729586
http://doi.org/10.1007/s10462-019-09784-7
http://doi.org/10.1016/0370-2693(93)90272-J
https://keras.io/api/callbacks/reduce_lr_on_plateau/
http://doi.org/10.1109/CVPR.2015.7298594
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/cvpr.2016.308
http://doi.org/10.1109/CVPR.2018.00474
http://doi.org/10.18280/ts.380428
http://doi.org/10.1007/978-1-4899-7687-1_50

	Introduction 
	Literature Review 
	Material and Methods 
	Dataset 
	Network Architectures 
	Proposed Model 
	Optimization Approaches 

	Pre-Trained Models 
	VGG16 
	VGG19 
	ResNet50 
	InceptionV3 
	MobileNetV2 


	Experimental Results 
	Evaluation Matrix 
	Confusion Matrix 
	ROC Curve Analysis 

	Discussion 
	Conclusions 
	References

