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Abstract: Polydactyly is a rare autosomal dominant or recessive appendicular patterning defect of the
hands and feet, phenotypically characterized by the duplication of digits. Postaxial polydactyly (PAP)
is the most common form and includes two main types: PAP type A (PAPA) and PAP type B (PAPB).
Type A involves a well-established extra digit articulated with the fifth or sixth metacarpal, while type
B presents a rudimentary or poorly developed superfluous digit. Pathogenic variants in several genes
have been identified in isolated and syndromic forms of polydactyly. The current study presents
two Pakistani families with autosomal recessive PAPA with intra- and inter-familial phenotype
variability. Whole-exome sequencing and Sanger analysis revealed a novel missense variant in
KIAA0825 (c.3572C>T: p.Pro1191Leu) in family A and a known nonsense variant in GLI1 (c.337C>T:
p.Arg113*) in family B. In silico studies of mutant KIAA0825 and GLI1 proteins revealed considerable
structural and interactional modifications that suggest an abnormal function of the proteins leading
to the disease phenotype. The present study broadens the mutational spectrum of KIAA0825 and
demonstrates the second case of a previously identified GLI1 variant with variable phenotypes. These
findings facilitate genetic counseling in Pakistani families with a polydactyly-related phenotype.

Keywords: polydactyly; KIAA0825; GLI1; Pakistani

1. Introduction

Polydactyly (PD) or hyperdactyly is one of the most common congenital limb anoma-
lies, phenotypically characterized by the duplication of digits, observed prenatally or
instantly after birth [1]. It can be inherited as an isolated limb abnormality or as a syn-
dromic feature. Polydactyly mainly results from inaccurate patterning along the anterior to
posterior axis of the developing limb [2]. Non-syndromic polydactyly has been classified
into three main types based on the position of the superfluous digit [3]. The presence of
an extra digit outside the little finger and/or toe is referred to as postaxial polydactyly
(PAP). The presence of an extra digit outside the thumb and/or big toe is termed preaxial
polydactyly (PPD). Mesoaxial or central polydactyly is defined as the duplication of the
index, long, or ring finger. Mesoaxial polydactyly is very rare and is typically associated
with complex syndactyly or cleft hand [4].

PAP is categorized into two forms that include type A (PAPA) and type B (PAPB) [5].
PAPA involves a completely developed supernumerary digit articulated with either the fifth
or the sixth metacarpal, while PAPB involves a rudimentary, non-functional extra digit or
poorly developed soft digit with or without a defective bony element [3]. A Pakistan-based
clinical and descriptive genetic study reported that PAP accounts for 52% of non-syndromic
polydactyly [6]. In the literature, both syndromic and non-syndromic PAPs have been
reported, segregating as an autosomal recessive or autosomal dominant trait [7].
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To date, pathogenic variants in 12 genes (GLI3, GLI1, ZNF141, IQCE, KIA0825, FAM92A1,
DACH1, SMO, STKLD1, PITX1, MIPOL1 and LMBR1) and five loci (13q21-32, 13q13.3-21.2,
7q21-q34, 19p13.1-13.2, and 2q31.1-31.2) have been associated with isolated polydactyly [4].

The molecular processes involved in limb development are complex and still not
fully understood in vertebrates and invertebrates [8]. Several cellular pathways, including
Sonic Hedgehog (SHH), Transforming Growth Factor B (TGFβ), Fibroblast Growth Factor
(FGF), Wingless (WNT), Bone Morphogenetic Protein (BMP), and Notch regulate the limb
development in humans [2]. A deficiency or defect in any of the regulators in these path-
ways can result in several limb anomalies [5,9]. The molecular etiology of polydactyly has
been associated with genes involved in anterior-posterior patterning. The most important
pathway in regulating anterior-posterior patterning is the SHH-GLI pathway [10].

The SHH-GLI signaling pathway is a highly conserved signaling pathway that controls
cell specification, cell–cell interaction, and tissue patterning during embryonic
development [11]. Components of the SHH pathway are primarily located within the
cilia, which coordinate and control signaling/trafficking events. Advances in mouse ge-
netics and genome-wide CRISPR-based research have explained the connection between
SHH and cilia signaling. SHH signaling is mostly generalized within the cilia’s specialized
domains, such as the transition zone that regulates cilia receptor entry, the tip region that
regulates the GLI protein, and the EVC zone that scaffolds SMO signaling [4].

The role of GLI in limb development is well-explained in the literature [11]. GLI3 is pri-
marily responsible for transcription repression, while GLI2 is responsible for transcription
activation. GLI3 and GLI2 bind to GLI1 and act as transcriptional activators, increasing the
overall HH activity [12]. So far, the function of KIAA0825 has not been characterized. Some
studies have been performed on the KIAA0825 mouse orthologous gene 2210408I21Rik,
which shows its expression in the developing limbs and forelimb buds. A homozygous
knock-out mouse (2210408I21Riktm1b (EUCOMM) Wtsi) demonstrated several skeletal
irregularities affecting growth, body size, and bone mineral density [13].

In this study, we present two unrelated consanguineous Pakistani families presenting
with autosomal recessive PAPA with intra-familial phenotypic variations. Whole exome
sequencing (WES), followed by Sanger sequencing, revealed a novel missense variant in
KIAA0825 (c.3572C>T: p.Pro1191Leu) in family A. In silico analysis of the variant demon-
strated major structural and interactional changes in the mutant KIAA0825 protein. WES
and Sanger analyses of family B revealed a nonsense variant in GLI1 (c.337C>T: p.Arg113*).
This is the second Pakistani family with this nonsense GLI1 variant with variable phe-
notypes. In silico analysis showed significant structural and interactional changes in the
mutant GLI1 protein.

2. Materials and Methods
2.1. Study Approval and Subjects

The institutional review boards (IRBs) of Gomal University, Pakistan, approved the cur-
rent genetic study. Written informed consent was obtained from the study participants and
guardians of the family for the research experiments, molecular analysis, and publication
of the data. In this study, two unrelated families from different regions of Pakistan were re-
cruited. Family A was recruited from Dera Ismail Khan, a district of Khyber Pakhtunkhwa,
and family B from Bhakkhar, a district of Punjab. Both families presented non-syndromic
PAPA. Detailed family histories and pedigree analyses revealed an autosomal recessive
inheritance pattern of the disease in both families. Clinical examinations of all the patients
were carried out in the local government hospital. Blood samples from all participants were
collected, and genomic DNA extraction was performed by standard laboratory protocol.

2.2. Whole-Exome Sequencing and Data Analysis

Genomic DNA samples of one affected member from each family underwent whole-
exome sequencing. An Agilent SureSelect Exome V6 Capture Library kit was used to
prepare the exome library. Barcoded libraries were pooled, and sequencing was performed
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on an Illumina HiSeq with an average on-target coverage of 87×. Read alignment with
human assembly hg19 (GRCh37) was done via Burrows-Wheeler Aligner (BWA v0.7.5),
and variant calling was performed by different tools, including Samtools (v0.1.18), Picard
(v2.26.10), and GATK (v4.2.0.0). The VCF file of SNVs and small indels was annotated
by an offline version of ANNOVAR (July 2017). The variants were filtered with a minor
allele frequency (MAF) ≥0.005 in gnomAD, a CADD_PHRED score of ≥20, and a Kaviar
allele count of ≤10. The list of variants was further restricted to the genes in OMIM,
which are associated with polydactyly. Since there was a clear autosomal recessive pattern
of inheritance by pedigree analysis, we focused on rare homozygous and compound
heterozygous variants.

2.3. Pathogenicity Index and Protein Stability

The biological pathogenicity of the variants was determined using several online bioinfor-
matics tools, such as MutationTaster2021 https://www.genecascade.org/MutationTaster2021/
(accessed on 1 March 2023) [14], Combined Annotation Dependent Depletion (CADD)
https://cadd.gs.washington.edu/ (accessed on 1 March 2023) [15], Polymorphism Phe-
notyping V2 (PolyPhen-2) http://genetics.bwh.harvard.edu/pph2/ (accessed on 1 March
2023) [16], Sorting Intolerant From Tolerant (SIFT) http://sift.bii.a-star.edu.sg/ (accessed
on 1 March 2023) [17], fathmm http://fathmm.biocompute.org.uk/ (accessed on 1 March
2023) [18], and some others. The MAF of the variants was determined using gnomAD,
ExAC and 1000 genomes, and dbSNP. The evolutionary rate of an amino (or nucleic) acid
position is strongly dependent on its structural and functional importance. Clustal Omega
https://www.ebi.ac.uk/Tools/msa/clustalo/ (accessed on 1 March 2023) [19] was used
for the conservational analysis of the variants. As web-based tools, I-Mutant3.0 http://
gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi (accessed on 1 March
2023) [20] and MUpro http://mupro.proteomics.ics.uci.edu (accessed on 1 March 2023) [21]
were used to predict the stability of the mutant KIAA0825 protein.

2.4. Sanger Sequencing

Sanger DNA sequencing was used to determine the segregation of the KIAA0825 and
GLI1 variants in the affected families. Primer3web (version: 4.1.0) https://primer3.ut.ee/
(accessed on 15 August 2022) was used to design the primers [22]. KIAA0825 and GLI1
were bidirectionally sequenced using the di-deoxy chain termination method. Sequence
analysis was done with UGENE (version 41.0) and BioEdit (version 7.0.5) software [23,24].

2.5. Modeling and Interaction Studies

Wildtype and mutant 3-D models of KIAA0825 and GLI1 were obtained using I-
TASSER https://zhanggroup.org/I-TASSER/ (accessed on 10 December 2022) [25], and
the models with the highest confidence score (C-score) were selected for further interaction
analysis. STRING https://string-db.org/ (accessed on 10 December 2022) [26] was used to
predict the close interactors of KIAA0825 and GLI1. The docking analysis of wildtype and
mutant KIAA0825 and GLI1 proteins with their close interacting proteins was performed
using ClusPro 2.0 https://cluspro.bu.edu/login.php (accessed on 18 December 2022) [27].
Chimera 1.13.1 [28] and LigPlot+ (Version 2.1) [29] were used for molecular visualization.

3. Results
3.1. Clinical Description

Family A includes two affected members (IV-2 and IV-3) with PAP, syndactyly, and
clinodactyly in a recessive pattern (Figure 1A). Family A demonstrated intra-familial
phenotypic differences. The affected individual IV-2 presented PAPA in both hands and
feet, fused second and third digits in both feet and clinodactyly in both hands (Figure 1B)
(Table 1). The other affected individual, IV-3 (not shown in the figure), had only PAPA
in both hands. Family B also comprises two affected members (IV-2 and IV-5) presenting
with autosomal recessive PAPA with an intra-familial phenotypic difference (Figure 1C).

https://www.genecascade.org/MutationTaster2021/
https://cadd.gs.washington.edu/
http://genetics.bwh.harvard.edu/pph2/
http://sift.bii.a-star.edu.sg/
http://fathmm.biocompute.org.uk/
https://www.ebi.ac.uk/Tools/msa/clustalo/
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
http://mupro.proteomics.ics.uci.edu
https://primer3.ut.ee/
https://zhanggroup.org/I-TASSER/
https://string-db.org/
https://cluspro.bu.edu/login.php
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The affected member IV-2 presented PAPA in the left hand and feet, clinodactyly of the
sixth finger, 5/6 cutaneous syndactyly in the right foot, a sandal gap, and an abnormal
shape of the big toe (Figure 1D). The affected individual IV-5 demonstrated a bilateral
PAPA in the hands (Figure 1D) and had normal feet (Table 1). No facial dysmorphism,
dental abnormalities, hearing problems, or heart defects were observed in any of the family
members. Developmental delays were not observed, and all of the affected members from
each family had a normal skull, nails, eyesight, weight, and height.
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affected males and females, respectively. A diagonal line over the “square” and “circle” indicates 
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marriage. (D) Images of the hands and feet of individual IV-2 of family B showing PAPA in the left 
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strating bilateral PAPA in hands. 

Figure 1. Pedigrees and images of family A and family B. (A) Pedigree of family A showing autosomal
recessive inheritance. Blank “Square” and “circle” presents normal males and females while shaded
“square” and “circle” presents affected males and females, respectively. A diagonal line over the
“square” and “circle” indicates deceased individuals. Double lines between “square” and “circle”
shows the consanguineous marriage. (B) Images of affected member IV-2 of family A displaying
PAPA in both hands and feet, 2/3 cutaneous syndactyly in both feet and clinodactyly in both hands.
(C) Pedigree of family B presenting autosomal recessive inheritance. Blank “Square” and “circle”
presents normal males and females while shaded “square” and “circle” presents affected males and
females, respectively. A diagonal line over the “square” and “circle” indicates deceased individuals.
Double lines between “square” and “circle” shows the consanguineous marriage. (D) Images of the
hands and feet of individual IV-2 of family B showing PAPA in the left hand and both feet, sixth finger
clinodactyly in the right hand, 5/6 cutaneous syndactyly in the right foot, sandal gap, and abnormal
big toe shape. (E) Image of individual IV-5 from family B demonstrating bilateral PAPA in hands.

Table 1. Clinical presentation of the affected members in two unrelated families.

Family
Clinical Examinations

Gene/
MutationSubject Polydactyly Syndactyly Clinodactyly Brachydactyly Other

Anomaly

A

IV-2
(Male)

Bilateral PAPA
of hands and
bilateral PAPA
of feet

Bilateral 2/3
cutaneous
syndactyly of feet

Bilateral
clinodactyly
of hands

−
Sandal gap

abnormal big
toe shape

KIAA0825
c.3572C>T

p.Pro1191Leu
IV-3

(Male)
Bilateral PAPA
of hands − − − −

B

IV-2
(Male)

Unilateral PAPA
of hand and
bilateral PAPA
of feet

− − − − GLI1
c.337C>T
p.Arg113*

IV-5
(Female)

Bilateral PAPA
of hands − − − −
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3.2. Molecular Findings

DNA samples from affected individuals IV-2 (family A) and IV-2 (family B) were sub-
jected to whole-exome sequencing. Variant filtering in family A revealed a novel missense
variant (c.3572C>T: p.Pro1191Leu) in exon 19 of the KIAA0825 gene (Tables 1 and 2). Ac-
cording to ACMG classification, the identified KIAA0825 variant is classified as a variant of
uncertain significance. In gnomAD, there are nine heterozygotes of this variant found in the
South Asian region. However, the variant is absent in South Asian population databases like
GenomeAsia100k, IndiGenomes, and South Asian Genome and Exome (SAGE). The segre-
gation analysis of family A confirmed the co-segregation of the missense KIAA0825 variant
with the disease phenotype. The mutation analysis demonstrated IV-2 as being mutation
homozygous affected and IV-4 as wildtype homozygous unaffected in family A (Figure 2A).
The mutation was novel and had not previously been described.

Table 2. Detail of the variants and in silico pathogenicity predictions.

Gene Zygosity
Genomic
Position
(hg19)

mRNA
Transcript

cDNA
Change

Amino Acid
Change

gnomAD
Allele Count

gnomAD
All

gnomAD
South
Asian

K
IA

A
08

25

Homozygous 5:93,721,994 NM_
001145678 c.3572C>T p.Pro1191Leu 9 Heterozy-

gote 0.00005731 0.0003953

Tools CADD_phred Mutation
Taster

Mutation
Assessor M-cap Sift Polyphen-2 FATHMM Provean

Predictions 33 Disease
causing Medium Damaging Damaging Damaging Damaging Damaging

G
LI

1

Zygosity
Genomic
position
(hg19)

mRNA
Transcript

cDNA
change

Amino acid
change

gnomAD
allele count

gnomAD
All

gnomAD
South
Asian

Homozygous 12:57,858,599 NM_005269 c.337C>T p.Arg113* 1 Heterozy-
gote 0.00000397 0.0000326

Tools CADD_phred Mutation
Taster FATHMM

Predictions 36 Disease
causing Damaging
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Figure 2. Sequence chromatogram of exon 19 of KIAA0825. Panel (A) presents individual IV-2 as 
homozygous affected and IV-4 as homozygous wild type. Arrow highlights the position of the 
substitution mutation (c.3572C>T: p.Pro1191Leu). Panel (B) presents a schematic diagram of the 
KIAA0825 gene structure showing exons. Red arrows indicate the position of mutations reported in 
polydactyly to date. Variant found in the present study is marked in black square.  

 

Figure 2. Sequence chromatogram of exon 19 of KIAA0825. Panel (A) presents individual IV-2 as ho-
mozygous affected and IV-4 as homozygous wild type. Arrow highlights the position of the substitution
mutation (c.3572C>T: p.Pro1191Leu). Panel (B) presents a schematic diagram of the KIAA0825 gene
structure showing exons. Red arrows indicate the position of mutations reported in polydactyly to date.
Variant found in the present study is marked in black square.
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In family B, a variant analysis revealed a previously reported nonsense variant
(c.337C>T: p.Arg113*) in exon 4 of the GLI1 gene (Tables 1 and 2) [30]. The Sanger analysis
confirmed the co-segregation of the nonsense GLI1 variant with the disease phenotype. The
mutation analysis demonstrated IV-2 and IV-5 as mutation homozygous affected and IV-4
as wildtype homozygous unaffected (Figure 3A).
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the mutant KIAA0825 protein with decreased stability, having a confidence score of −0.5. 

Figure 3. Sequence chromatogram of exon 4 of GLI1. Panel (A) presents individuals IV-2 and IV-
5 as homozygous affected and IV-4 as homozygous wild type. Arrow highlights the position of
the substitution mutation (c.337C>T: p.Arg113*). Panel (B) presents the coding areas of GLI1 and
anticipated domains, and the arrows indicate the reported mutations in polydactyly to date. (DN/DC:
degron degradation signals, SU: SUFU binding domains, ZN: a zinc finger domain, NLS: nuclear
localization signal, TAD: transactivation domain).

3.3. Pathogenicity Validation and Protein Stability

The predicted biological pathogenicity of the identified variants is presented in
Table 2. Multiple sequence alignments through Clustal Omega revealed high conservation
of Pro1191 (KIAA0825) and Arg113 (GLI1) across several species (Figure 4). I-Mutant3.0.
predicted the decreased stability of the mutant (p.Pro1191Leu) KIAA0825 protein with a
reliability index of 2 and a DGG value prediction of 0.16Kcal/mol. Mupro also predicted
the mutant KIAA0825 protein with decreased stability, having a confidence score of −0.5.

3.4. Modeling and Docking Analysis

Three-dimensional structures of the wildtype and mutant KIAA0825 were mod-
eled by I-TASSER (Figure 5A,B). By structure comparison, the wildtype and mutant
KIAA0825 showed 0.71 percent identity and failed to completely superimpose on each
other (Figure 5C). The docking analysis revealed a significant interaction alteration be-
tween the wildtype and mutant KIAA0825 proteins with the close interactor C1orf16. Four
residues of the wildtype KIAA0825 made an interaction with five residues of C1orf167 via
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three hydrogen bonds and two salt bridges, while eight residues of the mutant KIAA0825
interacted with nine residues of C1orf167 via seven hydrogen bonds and two salt bridges
(Figure 6A,B) (Table S1).
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The wildtype and mutant 3-D models of GLI1 were also generated by I-TASSER
(Figure 7A,B). The wildtype and mutant GLI1 failed to superimpose on each other (Figure 7C)
and showed 9.82 percent identity. Interactions of the wildtype and mutant GLI1 proteins with
close interactor (SUFU) demonstrated interactional changes. Five residues of the wildtype
GLI1 interacted with six residues of SUFU via three hydrogen bonds and three salt bridges,
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while four residues of each mutant GLI1 and SUFU interacted via four hydrogen bonds
(Figure 8A,B) (Table S1).

1 
 

 
 
 

Figure 6. Interactions of wildtype and mutant KIAA0825 with close interactor C1orf167.
(A) Four residues (chain A) of the wildtype KIAA0825 interacting with five residues (chain B)
of C1orf167 via three hydrogen bonds and two salt bridges. (B) Eight residues (chain A) of the
mutant KIAA0825 interacting with nine residues (chain B) of C1orf167 via 7 hydrogen bonds and
two salt bridges.
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4. Discussion

The present study reports two unrelated consanguineous Pakistani families with
autosomal recessive PAPA with intra- and inter-familial phenotypic variations. Family
A included two affected members who inherited PAPA with a recessive inheritance pat-
tern. The individual IV-2 of family A presented PAPA in both hands and feet, cutaneous
syndactyly in both feet, and clinodactyly in both hands, while individual IV-3 of fam-
ily A had PAPA in both hands but no other hand or feet abnormalities. WES of family
A revealed a novel missense variant (c.3572C>T: p.Pro1191Leu) in the KIAA0825 gene.
The identified variant co-segregated with the disease phenotype. The KIAA0825 gene is
mapped on chromosome 5q15 and encodes a 553 amino acids protein. So far, the function
of the KIAA0825 protein has not been characterized. A few studies have been performed
on the mouse orthologous gene 2210408I21Rik. The expression of 2210408I21Rik was ob-
served in the developing limb buds from E11.5 to E15, and a homozygous knock-out
mouse (2210408I21Riktm1b(EUCOMM)Wtsi) demonstrated several skeletal irregularities affect-
ing growth, body size, and reduction in bone mineral density [13]. To date, a total of
six other pathogenic variants in KIAA0825 have been reported in subjects with PAP.
Four pathogenic variants [p.(Gln198Thrfs*21), p.(Lys725*), p.(Leu17Ser), and p.(Cys48Serfs*28)]
were reported in Pakistani families [7,8,31] as well as two splice site variants [c.-1-2A>T
and c.2247-2A>G] in a Chinese fetus (Table 3) [32].

A phenotypic comparison between the present study and the previous reports of
KIAA0825 is summarized in Table 4. KIAA0825 consists of a long isoform that includes
1275 amino acids and a small isoform that includes 324 amino acids. The variant identified
in our study affects only the long isoform.
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Table 3. Description of previously reported mutations in KIAA0825 in association with PAP.

Study Phenotype Mutation
Type Nature cDNA Amino Acid Change Ethnicity

Yao et al., 2022 [32] PAPA Splice site HET c.-1-2A>T − Chinese
Yao et al., 2022 [32] PAPA Splice site HET c.2247-2A>G − Chinese
Bilal and Ahmad, 2021 [8] PAPA Frameshift HZ c.143delG p. 28Cys>Ser48fs* Pakistani
Hayat el at., 2020 [7] PAPA Missense HZ c.50T>C p. 17Leu>Ser Pakistani
Ullah et al., 2019 [31] PAPA/B Frameshift HZ c.591dupA p. 21Gln>Thr198fs* Pakistani
Ullah et al., 2019 [31] PAPA/B Nonsense HZ c. 2173A>T p. Lys 725* Pakistani

Present study
PAPA with
cutaneous
syndactyly

Missesnse HZ c. 3572 C >T p.1191Pro >Leu Pakistani

PAP: Postaxial polydactyly, HZ: Homozygous, HET: Heterozygous, *: Terminated.

Table 4. Phenotypic comparison of the patients in the present study with previously reported patients
with pathogenic variants in KIAA0825.

Study Subject

Phenotypes

PAPA PAPB Syndactyly Camptodactyly Clinodactyly

Hands Feet Hands Feet Hands Feet Hands Feet Hands Feet

Present study IV-2 ++ ++ − − − ++ − − ++ −
IV-3 + − − − − − − − − −

Yao et al., 2022 [32] Fetus II-2 ++ ++ − − − − − − − −

Bilal, 2021 [8]
IV-2 ++ ++ − − − ++ − − − −
IV-3 + ++ − − − − − − − −

Hayat et at., 2020 [7] IV-1 ++ ++ − − − − − ++ − −

Ullah et al., 2019 [31]
V-1 ++ ++ − − − − − − ++ −
V-2 + ++ + − − − − − ++ −

++: bilateral, +: unilateral, −: Absent, PAPA: Postaxial polydactyly type A, PAPB: Postaxial polydactyly type B.

Family B is the second Pakistani family with PAP, having a previously reported
nonsense variant (c.337C>T: p.Arg113*) in the GLI1 gene. The WES of family B revealed a
known nonsense variant (c.337C>T: p.Arg113*) in the GLI1 gene, and the identified variant
was co-segregated with the disease phenotype. We are unable to assess the segregation
of the variant in the parents. In the presence of two homozygous siblings in the family,
parents can be considered obligate carriers of the variant. GLI1 acts as a pathway mediator
for hedgehog signaling. When the hedgehog molecule binds to its receptor, the GLI
proteins become active, resulting in the transcription of target genes involved in bone
formation and patterning. GLI1 is mapped on chromosome 12q13.3 and encodes an 1106
amino acid protein [33]. Several domains are present in the GLI1 protein, including
degron degradation signals (amino acids Dn 77–116 and Dc 464–469), SUFU binding
domains (amino acids SU 111–125 and C-terminus), a zinc finger domain (ZF amino acids
235–387), nuclear localization signal (NLS 380–420 amino acids), and the transactivation
domain (1020–1091 amino acid) [33]. Previously, Palencia-Campos et al. (2017) reported
the same stop gain GLI1 variant (p.Arg113*) in a Pakistani family with non-syndromic
PAPA [30]. Their affected individuals had presented bilateral PAPA in feet, and one
individual (patient 7) with additional PAP in the left hand. The affected member (IV-2)
of the present Family B displayed the same phenotype as patient 7 of the Palencia report.
However, additionally, clinodactyly of the sixth finger and 5/6 cutaneous syndactyly
in the right foot were also observed in the same individual (IV-2) of the present study.
Individual IV-5 presented PAPA only in the hands, while the feet were normal. This
shows a considerable phenotypic difference in the present study in comparison to the
previous findings by Palencia. So far, four Pakistani and two Turkish families showing
intra-and inter-familial phenotypic variations in polydactyly due to mutation in GLI1
(Table 5) have been reported. A phenotypic comparison between the present study and
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the previous reports of GLI1 is summarized in Table 6. The identified variant p.(Arg113*)
in family B, located in the degron degradation signals domain, results in the truncation
of the protein before the Zinc finger domains. Previously, two variants, p. (Thr355Asn)
and p.(Ser378Leu), were reported in the ZF motif region, and three others [p.(Leu506Gln);
p.(Gln644*); p.(Trp780*)] were mapped between the transactivation domain and the nuclear
localization signal.

Table 5. Description of previously reported pathogenic GLI1 variants associated with PAP.

Study Phenotype Mutation Type Nature cDNA Amino Acid
Change Ethnicity

Bakar et al., 2022 [33] PAPA/B Missense HET c.1133C>T p.378Ser>Leu Pakistani
Yousaf et al., 2020 [34] PAPA/B Missense HET c.1064C>A p.355Thr>Asn Pakistani
Ullah et al., 2019 [35] PPD Missense HZ c.1517T>A p.506Leu>Gln Pakistani
Palencia et al., 2017 [30] PAPA Nonsense HZ c.337C>T p.Arg113* Pakistani

Palencia et al., 2017 [30]
Ranging from
simple PAP to
EVC syndrome

Nonsense HZ c.2340G>A p.Trp780* Turkish

Palencia et al., 2017 [30]
Ranging from
simple PAP to
EVC syndrome

Nonsense HZ c.1930C>T p.Gln644* Turkish

Present study PAPA Nonsense HZ c.337C>T p.Arg113* Pakistani

PAP: Postaxial polydactyly, PPD: Preaxial polydactyly, HZ: Homozygous, HET: Heterozygous, *: Terminated.

Table 6. Phenotypic comparison of the patients in the present study with previously reported patients
with pathogenic variants in GLI1.

Study Member

Phenotypes

PPD PAPA PAPB Syndactyly Camptodactyly Clinodactyly

Hands Feet Hands Feet Hands Feet Hands Feet Hands Feet Hands Feet

Present study IV-2 − − + ++ − − − + − − + −
IV-5 − − ++ − − − − − − − − −

Bakar et al., 2022 [33]

III-2 − − ++ ++ − − − − − − − −
III-9 − − − − ++ − − − − − − −
IV-3 − − ++ ++ − − − − − − − −
IV-4 − − ++ ++ − − − − − − − −
IV-14 − − − ++ − − − − − − − −

Yousaf et al., 2020 [34]

III-4 − − + − − − − − − − − −
IV-2 − − − ++ − − − ++ − − − −
IV-3 − − − − + − − − − − − −
IV-6 − − + + − − − − − − − −
IV-8 − − − − + − − + − − − −

Ullah et al., 2019 [35] VI-4 + − − − − − − − − − − −
VI-5 ++ − − − − − − − − − − −

Palencia et al., 2017 [30]

Patient
1With EVC − − ++ ++ − − − − − − − −

Patient 2 − − ++ − − − − − − − − −
Patient 3 − − ++ − − − − − − − − −
Patient 4 No confirmed phenotype

Patient 5
With EVC − − ++ ++ − − − − − − − −

Patient 6
With EVC − − ++ ++ − − − − − − − −

Patient 7 − − + ++ − − − − − − − −
Patient 8 − − − ++ − − − − − − − −
Patient 9 − − − ++ − − − − − − − −
Patient 10 − − − ++ − − − − − − − −

++: bilateral, +: unilateral, −: Absent, PPD: Preaxial polydactyly, PAPA: Postaxial polydactyly type A,
PAPB: Postaxial polydactyly type B, EVC: Ellis-van Creveld syndrome.
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5. Conclusions

We present two unrelated Pakistani families having PAPA with intra- and inter-familial
phenotypic variability. These two different families harbor the two different genetic variants
in KIAA0825 and GLI1 underlying the disease. We have identified the seventh novel variant
in KIAA0825 causing polysyndactyly and clinodactyly. The novel variant in KIAA0825
expands the mutational spectrum and demonstrates new molecular signaling cascades
required for proper limb orientation and growth. A known variant of GLI1 was found in a
second Pakistani family in a different region with phenotypic variability with respect to
previous findings. As a transcription factor, the presence of a truncated/abnormal GLI1
protein can disrupt the function of the downstream genes responsible for limb development.
The present study will also aid in genetic counseling of affected families with polydactyly.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14040869/s1, Table S1: Protein-Protein interaction of the
wildtype and mutant KIAA0825 with C1ORF167 and the wildtype and mutant GLI1 with SUFU.
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