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Abstract

Introduction

Many patients with growth hormone-secreting pituitary adenoma (GHPA) fail to achieve bio-

chemical remission, warranting investigation into epigenetic and molecular signatures asso-

ciated with tumorigenesis and hormonal secretion. Prior work exploring the DNA methylome

showed Myc-Associated Protein X (MAX), a transcription factor involved in cell cycle regula-

tion, was differentially methylated between GHPA and nonfunctional pituitary adenoma

(NFPA). We aimed to validate the differential DNA methylation and related MAX protein

expression profiles between NFPA and GHPA.

Methods

DNA methylation levels were measured in 52 surgically resected tumors (37 NFPA, 15

GHPA) at ~100,000 known MAX binding sites derived using ChIP-seq analysis from

ENCODE. Findings were correlated with MAX protein expression using a constructed tissue

microarray (TMA). Gene ontology analysis was performed to explore downstream genetic

and signaling pathways regulated by MAX.

Results

GHPA had more hypomethylation events across all known MAX binding sites. Of binding

sites defined using ChIP-seq analysis, 1,551 sites had significantly different methylation
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patterns between the two cohorts; 432 occurred near promoter regions potentially regulated

by MAX, including promoters of TNF and MMP9. Gene ontology analysis suggested enrich-

ment in genes involved in oxygen response, immune system regulation, and cell prolifera-

tion. Thirteen MAX binding sites were within coding regions of genes. GHPA demonstrated

significantly increased expression of MAX protein compared to NFPA.

Conclusion

GHPA have significantly different DNA methylation and downstream protein expression lev-

els of MAX compared to NFPA. These differences may influence mechanisms involved with

cellular proliferation, tumor invasion and hormonal secretion.

Introduction

Growth hormone-secreting pituitary adenoma (GHPA) cause significant clinical morbidity

and mortality [1, 2]. Despite advances in surgical technique and improvements in adjuvant

medical and radiosurgical therapies, between 20% and 40% of patients with GHPA fail to

achieve hormonal remission [3–5]. Nonfunctional pituitary adenoma (NFPA) portend a more

favorable outcome for patients but are the most common pituitary adenoma (PA) subtype.

Because these tumors often present following mass effect related symptoms, tumors have often

grown to encompass the carotid arteries or extend into the extrasellar spaces, thus making

them unamenable to complete surgical resection [6, 7]. Understanding the biochemical path-

ways and epigenetic modifications which govern GHPA and NFPA tumorigenesis and hor-

mone secretion (for GHPA) is an understudied problem with clear clinical applications for

patients with PA. However, in the literature, few mutations or pathways driving tumorigenesis

have been identified [8, 9].

Epigenetic changes have been implicated in cancer and the loss of cell growth control in a

variety of tumors, including PA [10, 11]. Our team previously showed that DNA hypermethy-

lation of the KCNAB2 promoter region is found in nonfunctional pituitary adenoma (NFPA)

[10, 12]. Transcription factors, which alter expression of numerous genes by binding regula-

tory elements such as promoters and enhancers, are a growing area of interest within PA

research and diagnostics [13]. Epigenetic modifications that contribute to GHPA tumorigene-

sis or drive tumor progression, particularly with regards to transcription factor activity, are

largely unstudied.

The transcription factor Myc Associated Factor X (MAX) is a key component of cell cycle

regulation. MAX mutations have been implicated in PA tumorigenesis as well as other neuro-

logical malignancies [14–17]. A prior exploratory analysis of the DNA methylome by our team

showed that MAX was widely differentially methylated between various subtypes of PA, partic-

ularly GHPA and NFPA [10]. Despite these studies indicating that MAX may be implicated in

neuroendocrine tumors, the role of MAX in PA biological behavior has not been validated.

To further classify the role of MAX modification in GHPA and how that may differ from

NFPA, we investigated DNA methylation patterns of MAX between surgically resected GHPA

and NFPA. We then correlated these findings with MAX protein expression between the two

cohorts and finally performed a gene ontology analysis to explore downstream genetic and sig-

naling pathways regulated by MAX.
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Materials and methods

Pathologic specimens from fifty-two patients (37 NFPA, 15 GHPA) who underwent endo-

scopic endonasal resection of histologically-validated PA at the Keck Hospital of USC by a sin-

gle surgeon were obtained [10]. Written informed consent protocol as outlined by our

institution was followed and the study was approved by the Institutional Review Board of the

University of Southern California. Following acquisition of the specimen, the following analy-

ses were performed: DNA methylation analysis and immunohistochemical tissue microarray

(TMA) development. Downstream gene characterization and statistical analyses were then

performed using the results of these studies. These methods are outlined in detail below.

DNA methylation analysis

PA samples were bisulfite converted using the Zymo EZ DNA Methylation kit (Zymo

Research, Irvine, CA), and DNA methylation levels were profiled using the Illumina Infinium

HumanMethylation (HM450) Beadchip array in the USC Epigenome Center. Transcription

factor binding sites for MAX were generated from 91 samples using the ENCODE database

(n = 103,739 binding sites) [18]. DNA methylation levels were normalized, and values under

0.7 were considered hypomethylation events based on methodologies used by our institutional

core laboratory and prior published cutoffs [10, 19].

Gene analysis

Genes with MAX binding sites within 2kb of transcription start sites (TSS) as defined by GEN-

CODE were identified as those who contain MAX binding sites in their promoter region [20,

21]. Using RCircos package, the location of these genes was plotted [22]. These sites are hypo-

methylated sites in GHPA compared to NFPA divided by all MAX binding sites, defined using

ENCODE ChIP-seq data. Gene ontology analysis was performed with the identified genes

using Gene Set Enrichment Analysis (GSEA) MsigDB compute overlaps tools, and the top 10

gene ontology categories ranked by–log(false discovery rate) were plotted (Fig 2B).

Immunohistochemistry

Following IRB approval for construction, 3 mm sections were obtained from our surgical

tumor bank (GH = 23, NFPA = 39, normal pituitary = 3). Normal pituitary gland obtained

from cadaveric specimens who died from non-pituitary related neurodegenerative disease was

used as a negative control. This data is provided in S1 Fig. For TMA construction, 2mm diam-

eter patient pituitary tumor specimens were placed on a charged slide and refrigerated within

24 hours of sectioning. Slides were air dried and stored at room temperature for the duration

of the study. Slides were baked in 60˚C oven for 60 minutes. Slides were stained for IHC using

the anti-MAX antibody (Abcam, ab101271) on the Leica Bond III Automated Stainer (Leica

Biosystems, Buffalo Grove, IL). A positive batch tissue control, sectioned at 4μm, was included

with each staining run, for a total of 2 staining runs. Protocols were provided by clinical USC

IHC lab. Primary antibody was MAX from AbCam (ab101271) at a 1:500 dilution. Scoring cri-

teria was defined as per Tucker et al. in 2018, where scores for strength of positivity (0–3) and

the percentage of cells positive (0 =<1%, 1 = 1–10%, 2 = 10–25%, 3 = 25–75%, 4 =>75%)

were added [23].

Statistical analysis

Statistical analyses were performed using GraphPad Prism 8 software (GraphPad Software, La

Jolla, California, USA). Significance between independent datasets was determined using
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Student T-Test for continuous data and chi-square tests for categorical data. Results were

deemed statistically significant if p<0.05. Methylation analyses were performed using R;

implementation details for the purpose of reproducibility are shown in the S1 Appendix.

Results

ENCODE derived MAX binding sites are hypomethylated in GHPA

By incorporating MAX ChIP-seq data from ENCODE, we identified 103,739 total transcrip-

tion binding sites for analysis. Epigenetic changes in binding sites of MAX were measured by

DNA methylation levels at these sites, and we found GHPA are globally hypomethylated com-

pared to NFPA (Fig 1A). In addition, 1551 specific binding sites were significantly (p<0.05)

hypomethylated in GHPA than NFPA (Fig 1B) [21]. Of these differentially methylated MAX

binding sites, 13 could be mapped to specific genes (Table 1).

Genes potentially regulated by MAX in GHPA

We identified 432 genes with promoter regions demonstrating differentially hypomethylated

MAX binding sites (Fig 2A) (S1 Appendix) [21]. Gene ontology categories most enriched as a

result of the differentially methylated sites included: response to oxygen containing com-

pounds, immune regulation, and cell proliferation (Fig 2B).

MAX expression is increased in GHPA compared to NFPA

We additionally performed an independent immunohistochemistry analysis on a previously

constructed tissue microarray of surgically resected patient samples of both NFPA and GHPA.

GHPA and NFPA cohort TMAs were stained for MAX protein expression (Fig 3A). Notably,

there was increased protein expression of MAX in the GHPA (n = 23) compared to the NFPA

(n = 39) cohort (9.2 ± 4.0 vs 7.0 ± 2.8, p = 0.02) (Fig 3B).

Fig 2. MAX binding sites are hypomethylated in GH-secreting PA compared to Non-functional PA. (A) Number of hypomethylated MAX binding sites in

NFPA (n = 37) vs GHPA (n = 15) (p<1.22e-10). (B) Heat map displaying loci of differentially methylated MAX binding sites between NFPA and GHPA

(p<0.05) (n = 13 probes).

https://doi.org/10.1371/journal.pone.0284949.g002
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Fig 1. Genes with differentially methylated MAX binding sites at their promoters. (A) Shown is a Circos plot showing the location of genes with

differentially methylated MAX binding sites. (B) Bar plot showing top gene ontology categories of differentially methylated MAX binding sites.

https://doi.org/10.1371/journal.pone.0284949.g001

Table 1. Differentially methylated MAX binding sites between NFPA vs. GHPA.

probeID geneID distToTSS p-value

cg22171607 RP11-431K24.1 50765 0.038554136

cg24661860 CASZ1 72343 0.029309093

cg11348165 SFN -360 0.017538046

cg22356428 RASSF5 6142 0.01056245

cg16745930 HPSE2 283020 0.001638185

cg04737124 VTI1A 137970 0.038140607

cg02793828 LOC400548 25360 0.001497124

cg17864646 SECTM1 -5228 0.016084048

cg07058988 SECTM1 -5238 0.023824799

cg21559943 PTPRH -415 0.007166712

cg02686793 WISP3 34944 0.040263505

cg11006453 AGO2 16803 0.009608558

cg14458315 GABBR2 392173 0.038619428

https://doi.org/10.1371/journal.pone.0284949.t001
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Discussion

Acromegaly caused by GHPA remains a challenging pathology with significant clinical impli-

cations, particularly for patients who fail to achieve hormonal remission following aggressive

surgical, radiosurgical, and/or pharmacologic therapy [1, 2, 4]. In this study, we confirm a

novel finding of differential epigenetic modification of MAX binding sites and associated pro-

tein expression of MAX between GHPA and NFPA. We further describe potential related

effects on downstream biological activity based on gene ontology analysis.

Role of MAX

The 2017 edition of the World Health Organization (WHO) classification of endocrine tumors

emphasized lineage-specific pituitary transcription factors to classify pituitary adenoma, spe-

cifically PIT1 (pituitary specific transcription factor 1) and TPIT (pituitary cell restricted fac-

tor) [13, 24]. Given this emphasis, investigation into other adenoma subtype specific

transcription factors is warranted and may be indicative of clinical characteristics such as

tumor aggression or possibility of recurrence.

The oncogenic transcription factor MAX is a key component of the cell cycle. MAX forms

homodimers and heterodimers with other transcription factors such as MYC, MXI1, MNT,

and MXD1. Multiple reports have highlighted the involvement of MAX and MYC genes in PA.

For example, germline MAX mutations are associated with neuroendocrine tumors including

prolactinomas and pheochromocytomas [14, 15, 17]. Additionally, c-MYC was overexpressed

Fig 3. MAX is overexpressed in GH-secreting PA compared to Non-functional PA. (A)Representative images of

MAX protein expression levels for GHPA and NFPA tissue utilizing IHC. (B) MAX protein expression is significantly

increased in GHPA when compared to NFPA (average score of 9.2 ± 4.0 vs 7.0 ± 2.8, p = 0.02).

https://doi.org/10.1371/journal.pone.0284949.g003
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in pituitary tumors that were classified as aggressive, larger in size, and diagnosed at a younger

age [25, 26]. No prior studies, however, have validated differences in the MYC/MAX pathway

when comparing NFPA and GHPA subtypes.

MAX hypomethylation and increased gene expression

DNA methylation is an epigenetic mechanism by which chromatin is made more accessible or

less accessible to transcription (hyper, hypo-methylation, respectively). In this study, we show

that MAX transcription factor binding sites are globally hypomethylated and demonstrate

increased accessibility for transcription factor binding in GHPA compared to NFPA. Using an

independent dataset, we also corroborated that MAX protein expression levels are elevated in

GHPA compared to NFPA, perhaps working as a component of a positive feedback loop.

These results also agree with the findings of Salomon et al., who reported differing methylation

profiles between PA subtypes [11]. More directly, Garcia-Martinez et al., demonstrated that

myc was differentially expressed in somatotroph adenoma compared to gonadotroph ade-

noma, and that degree of tumor invasion was correlated with degree of myc expression [27].

Our study complements these results, as hypomethylation events represent an amplification of

the downstream effects of the MAX transcription factor. Nonetheless, these authors urge fur-

ther validation of possible biomarkers and mechanisms for tumor invasion and subtype spe-

cific growth.

As transcription factors often act on promoter regions to regulate gene expression, we

investigated which hypomethylated MAX binding sites were in promoter regions; in total 432

were identified. Secondary analysis using gene ontology demonstrated that these genes regu-

lated by MAX binding sites are involved in responses to oxygen containing compounds,

immune regulation, and cell proliferation. Target genes of MAX in GHPA included known

genes involved in pituitary tumorigenesis. For example, tumor necrosis factor (TNF) has been

shown to have direct effects on cultured anterior pituitary cells, blunting the release of hor-

mones in response to hypothalamic factors [28]. MMP9, whose activation is correlated with

invasion of pituitary null cell adenoma, has a hypomethylated promoter with MAX binding in

GHPA [29]. DUSP1 is known to be involved in thyroid hormone-mediated apoptosis and

finally the gene SFN has been shown to have a hypermethylated promoter region in NFPA

compared to normal pituitary samples [30, 31]. A list of identified genes (S1 Appendix) as well

as identified molecular mechanisms involving MAX may provide new insights into under-

standing the biological behavior of PA subtypes is shown.

Future directions

Standard treatment for GHPA which fail surgical or radiosurgical therapy includes somatostatin

receptor therapy (SSRT), which activates a cellular pathway that ultimately inhibits GH secre-

tion. These medications (most commonly octreotide and lanreotide) have limited effectiveness,

as up to 10% of all patients have an innate resistance to medical therapy, and long-term

response is seen in only 17–41% of cases [32–35]. Other medical therapies such as pegvisomant

(GH receptor antagonist) and cabergoline (dopamine agonist) improve IGF-1 in a subset of

patients with medication resistant acromegaly, but rates of biochemical non-remission range

from 25–40% in this cohort [36–38]. Due to this high failure rate, novel therapeutic approaches

are needed, especially for patients who show resistance or are poor candidates for additional

surgical management. Castell et al. in 2018 reported a novel MYC:MAX dimerization inhibitor

which was able to inhibit tumor growth and induce apoptosis in both in vitro and a xenograft

model of neuroblastoma, a finding worth studying in PA given our results [39].
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Limitations

There are several limitations to the current study which coach our findings in exploratory anal-

ysis which warrant further study. Though we describe clear differences in areas of hypomethy-

lation and MAX protein expression between GHPA and NFPA the specific binding of these

transcription factors was not confirmed using CHIP-seq data. To further validate and confirm

these findings it is necessary to utilize other confirmatory methods, including CHIP-seq or

pyrosequencing, in a new cohort of data. It would be worthwhile to find patients whom pre-

serving normal pituitary gland during adenoma resection is not possible, which by then an

internal control of normal gland would be obtained. In addition, we lack tissue culture prolif-

eration assays showing differential aggressiveness in between NFPA and GHPA, though we

plan this for future studies. Finally, our gene ontology studies are preliminary and merely dem-

onstrate the potential for downstream, tissue and organ system-based effects to be seen by

changes to the cellular or epigenetic milieu. Despite these limitations, we believe our work

demonstrates the potential for further biological study into the epigenetic modifications of

MAX binding sites as a potential therapeutic target.

Conclusions

In this study, we validate molecular and epigenetic difference between NFPA and GHPA with

clear implications to downstream molecular pathways known to be involved in tumorigenesis.

Further studies are warranted to assess the role of targeted epigenetic and molecular therapeu-

tics for GHPA.
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