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Abstract

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that often

persists into adulthood. Core symptoms of ADHD, such as impulsivity, are caused by an

interaction of genetic and environmental factors. Epigenetic modifications of DNA, such as

DNA methylation, are thought to mediate the interplay of these factors. Tryptophan hydroxy-

lase 2 (TPH2) is the rate-limiting enzyme in brain serotonin synthesis. The TPH2 gene has

frequently been investigated in relation to ADHD, e.g., showing that TPH2 G-703T

(rs4570625) polymorphism influences response control and prefrontal signaling in ADHD

patients. In this (epi)genetic imaging study we examined 144 children and adolescents (74

patients, 14 females) using fMRI at rest and during performing a waiting impulsivity (WI) par-

adigm. Both, TPH2 G-703T (rs4570625) genotype and DNA methylation in the 5’ untrans-

lated region (5’UTR) of TPH2 were associated with wavelet variance in fronto-parietal

regions and behavioral performance, taking TPH2 genotype into account. In detail, compari-

sons between genotypes of patients and controls revealed highest wavelet variance and

longest reaction times in patients carrying the T allele [indicative for a gene-dosage effect,

i.e., the WI phenotype is a direct result of the cumulative effect of ADHD and TPH2 varia-

tion]. Regressions revealed a significant effect on one specific DNA methylation site in

ADHD patients but not controls, in terms of a significant prediction of wavelet variance in

fronto-parietal regions as well as premature responses. By the example of the TPH2 G-
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703T (rs4570625) polymorphism, we provide insight into how interactive genetic and DNA

methylation affect the ADHD and/or impulsive endophenotype.

Introduction

Attention-Deficit/Hyperactivity Disorder (ADHD) is the most prevalent neurodevelopmental

disorder [1], characterized by inattention, hyperactivity, and increased impulsivity [2]. Besides

the neurotransmitters dopamine and noradrenaline, serotoninergic neurotransmission seems

to play an important role in ADHD as genetic association studies identified serotonergic sys-

tem gene variants to be associated with ADHD phenotype [3, 4]. For example, in patients with

ADHD impulsive behavior [5] as well as neural functioning at rest and under task varied

between genotypes of serotonergic genes [6]. Additionally, pharmacological studies proved the

efficiency of serotonin-noradrenaline reuptake inhibitors in the treatment of ADHD [7]. How-

ever, the role of serotonin has often been discussed as indirect, e.g. via the interaction with

dopamine [3, 8], its higher impact in ADHD patients with comorbid depression [9], or in

terms of gene-by-environment / gene-by-brain interaction. For example, van der Meer and

colleagues (2017) compared functional connectivity of the resting-state networks fronto-parie-

tal executive control and default mode network (FPN, DMN) between ADHD patients report-

ing an (S-)allele-specific manifestation of stress exposure in terms of a decrease in FPN

connectivity/cognitive control and an increase in DMN connectivity /rumination with

increasing stress [6]. In an earlier study, we found that the influence of serotonin-synthesizing

tryptophan-hydroxylase-2 (TPH2) TPH2 G-703T polymorphism on the aggressive phenotype

was mediated by structure and function of the right prefrontal cortex (PFC) [10].

Gene expression is, furthermore, defined by TPH2’s DNA methylation levels [11, 12]. DNA

methylation is an epigenetic modification in which a methyl group is added to cytosine in

cytosine–phosphate–guanine (CpG) sites. This process can directly affect the activity and func-

tion of a gene without altering the DNA sequence, i.e., methyl-binding proteins may repress

gene expression. For the TPH2 gene, it was reported that methylation of a single CpG site in

the promoter region of TPH2moderates gene expression levels [9], with low methylation

resulting in high TPH2 activity and subsequently in high serotonin levels. First methylation

analyses revealed, that lower DNA methylation levels in serotonergic genes were associated

with more ADHD symptoms [13, 14] and a first epigenome-wide association study (EWAS)

with ADHD patients did not find any significant associations between ADHD subtypes, and/

or impulsive traits and CpG sites, which, however, might have been due to the small sample

size [15].

However, one hallmark in the characterization of pathological processing in ADHD is that

attention skills and/or impulsive behavior are not impaired per se but more inconsistent and

with higher variability compared to typically developing children (TDC). Increased variability

in ADHD patients has been found in reaction times [16], as well as resting-state fMRI (rs-

fMRI) brain signals as measured e.g., via multiscale entropy [17] or the so called mean-square

successive difference, a measure of moment-to-moment brain signal variability [18]. High var-

iability has been assumed to reflect occasional lapses in attention, linked to intrusions of dis-

tracting activity during task performance and/or reduced anti-correlation between regions in

the DMN and attention networks, as summarized in the default mode interference hypothesis
[19]. Empirical evidence of the latter, however, was inconclusive as hypo-connectivity as well

as hyper-connectivity were reported [20, 21], a combination of both [22] and any difference at
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all [23]. Therefore, Dajani et al. (2019) concluded that it is more likely the dynamics between

and within neural networks [i.e., the variability of network processing across time- and fre-

quency-scales], that are affected in ADHD, than functional connectivity [in terms of one coef-

ficient describing the (averaged) correlation between two regions over time]. Therefore, recent

studies introduced new approaches to quantify these dynamics such as dynamic functional

connectivity using temporal and frequency-specific information of fMRI timeseries [24].

FMRI timeseries are the intensity values of the BOLD signal of a certain voxel/region of

interest (ROI) at each data acquisition time point of the fMRI sequence. Thus, the graphical

representation of fMRI timeseries shows the changes of the BOLD signal over the course of the

scanning time. The BOLD signal, in return, reflects the underlying activity of neurons [25],

with its amplitudes indicating increases in neural activity. As brain function is characterized

by continuous cognitive processing, the BOLD signal of a certain ROI is the result of one or

multiple, simultaneously running processes. Simultaneous processing is possible e.g., by using

different frequency bands. For example, the conventional fMRI data acquisition bandwidth

covers frequencies from 0 to 0.25Hz. Functional components of the BOLD signal have been

divided into rs-fMRI-related low-frequency fluctuations [< .08Hz, 26] and cognitive-related

frequencies e.g., in attention networks [>0.8Hz, [27]]. In an earlier study we found that signals

emerging from prefrontal areas and going to parietal regions were at cognitive-related fre-

quencies (0.08–0.15Hz), whereas signals coming from parietal regions and going to prefrontal

areas, were associated with low frequencies (0.001–0.03Hz) [28]. Therefore, to isolate simulta-

neous processes based on their frequencies, the wavelet transform method is ideal for perform-

ing frequency band- or scale-based decomposition analyses [2.5 Eq (c)]. Wavelet variance

(wVar) determines the variance of the BOLD signal scale-specifically using the temporal and

frequency-specific information of fMRI timeseries [29, 30]. So, tracking the scale-based vari-

ance of the amplitude detects not only changes in the intensity of an activity as in comparing

rs-fMRI versus task-fMRI, but also reveals the process-specific timescale(s) of simultaneous

neural processes, i.e. brain dynamics [31]. Up till now, the dynamics of intrinsic neural net-

works have predominantly been studied at rest. Only one study addressed within-network var-

iance in the DMN under task processing reporting that it was significantly higher in patients

with ADHD. In a second step, DMN network variance was related to task performance reveal-

ing that low DMN variance was associated with high accuracy. The authors concluded that

patients were less able to sustain DMN suppression during performing the task [32]. Seroto-

nergic modulation of dynamic processes has not been studies, to date.

To summarize, the dynamic interplay between network regions is crucial in the pathology

of ADHD. In this paper, we introduce a novel marker, wVar, to quantify these dynamics. We

determined wVar at rest and under task in fMRI timeseries of the DMN and the FPN in three

different frequency bands: 0.02 to 0.04Hz, 0.04 to 0.08Hz and 0.08–0.16Hz. The paradigm was

the 4-choice serial reaction time task (4-CSRTT) [33], measuring waiting impulsivity (WI),

which combines sustained attention and action restraint and is defined as the ability to inhibit

a premature response in order to earn a reward. In a first step, we compared wVar coefficients

between fMRI conditions (task vs. rest) and groups (ADHD vs. TDC). Assuming highly varying

neural signaling at rest and low wVar during focused cognitive processing, we expected to find

In TDC

• in the cognitive frequencies of the FPN high wVar at rest and a decrease in wVar during

task.

• in the low frequencies 0.02–0.04Hz in the DMN a reverse pattern (rest> task).

• In ADHD
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• high wVar in the DMN during task processing based on the impaired DMN suppression in

ADHD [34]

• high wVar in the FPN during task processing based on general higher variability in cognitive

processing [16]

The relation between wVar and cognitive load was addressed to prove that wVar reflected

even immediate changes in cognitive processing. We expected to find an increase in wVar with

cognitive load predominantly in high frequencies of FPN regions accompanied by a potential

decrease in task performance across both groups [32]. Finally, correlations between wVar and

behavioral parameters were performed to directly link both parameters assuming significant

correlations between wVar and accuracy with the lower wVar the higher accuracy [32].

After proving the sensitivity of wVar towards functional alterations in ADHD, we examined

the effect of both, TPH2 G-703T genotype and 5’ untranslated region (5’UTR) methylation of

TPH2 on WI processing. Even though both, genetic variants and DNA methylation are being

studied in an (epi)genome-wide approach nowadays [15, 35], and large genome-wide associa-

tion studies have revealed only modest effects of single genetic variation for ADHD [36], we

use the candidate gene approach in this study to dedicate all analyses to the mechanism of how

(epi)genetic variation effects brain/behavior relation, i.e. to link (epi)genetic TPH2 G-703T
variation to the ADHD/WI phenotype in a fine-grained manner.

For genotype analyses 2x2 MANOVA models were defined. Based on the finding, the TPH2

expression is decreased in carriers of the T allele [37], we expected to find a gene-dosage effect
(GGTDC vs. T+

TDC vs. GGADHD vs. T+
ADHD), i.e. the WI phenotype is a direct result of the

cumulative effect of WI phenotype (ADHD>TDC) and genetically moderated TPH2 variation

(T+>GG). Finally, the effect of DNA methylation on WI was examined as suggested by Reuter

et al. (2020) [38] using multiple regressions taking TPH2 genotype as well as age and sex into

account. We predicted a positive relation between DNA methylation and wVar in terms of the

higher methylation, the higher wVar. Whether genetic effects were frequency-specific, i.e., pre-

dominantly in cognitive and/or rs-fMRI associated frequencies, was an exploratory question.

Materials and methods

Participants

In total, 144 children and adolescents with and without ADHD were examined (14 females),

comprising 70 patients with ADHD (8 females) and 74 typically developing children (TDC, 6

females). Six ADHD patients were excluded from statistical analysis as two patients did not finish

MRI scanning and four patients presented extensive motion artifacts. Remaining 138 subjects

were aged from 8 to 18 years. M = 12.8±2.3yrs, intelligence was screened via the "Culture Fair

Intelligence Test" (M = 105.0±15.0, range: 80–153) (for sample-specific information see S1

Table). Healthy participants were recruited within the Collaborative Research Center TRR-58,

and patients with ADHD were recruited from in/outpatient clinics of the Departments of Child

and Adolescent Psychiatry at the University Hospital Wuerzburg and the LVR Hospital Duessel-

dorf. All patients were diagnosed with ADHD according to the DSM-V by trained clinicians (dis-

ease duration: M = 4.2±2.6yrs). Thirty-six patients were medicated with methylphenidate (20

long-acting, daily dosage: M = 32±11.1mg; medication duration: M = 2.3±2.5yrs), three with Lis-

dexamphetamin (daily dosage: M = 50mg), and one with atomoxetine (daily dosage = 18mg).

Unmedicated patients were either medication naïve (n = 10) or stopped medication use for more

than a year (n = 14). Seventeen patients were diagnosed with comorbid oppositional defiant dis-

order (F91.3), seven patients with additional dyslexia (F81.0), three with comorbid obsessive-

compulsive disorder and one with Asperger syndrome. Affective comorbidities were diagnosed
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in nine patients [social phobia (F40.1): N = 1, childhood emotional disorder with social anxiety

(F93.2): N = 1, childhood emotional disorder with sibling rivalry (F93.3): N = 1, other childhood

emotional disorder (F93.8): N = 3, depression (F32.1): N = 3].

Medicated patients underwent a washout phase of min 48hrs prior to scanning. The study

was in accordance with the Declaration of Helsinki in its latest version and was approved by

the ethics committees of the Faculty of Medicine, University of Wuerzburg (No 238–14), and

of the Medical Faculty, Heinrich-Heine-University Duesseldorf, Germany (No 2018–306).

Participants and their parents/legal guardians gave written informed consent.

Genotyping and assessment of DNA methylation

Genomic DNA was extracted from whole-blood samples according to a standard desalting

protocol. Genotyping procedures were performed using PCR and gel electrophoresis. Geno-

typing for the TPH2 G-703T (rs4570625) polymorphism was performed according to pub-

lished protocols [39]. TPH2 G-703T distribution (TT = 4.5%; GT = 50%; GG = 48.5%; p

(Exact) = .7348) did not deviate significantly from the expected numbers calculated according

to the Hardy–Weinberg equilibrium using the program DeFinetti provided (https://wpcalc.

com/en/equilibrium-hardy-weinberg/). Based on the findings showing that TPH2 expression

is decreased in carriers of the T allele [37], we defined two groups, subjects homozygous for

the TPH2 G allele (GG) and carriers of at least one T allele (T+).

For DNA methylation assessment, aliquots of genomic DNA (250ng) were treated with

sodium bisulfite by means of the EZ-96 DNA Methylation Kit (ZymoResearch, Freiburg, Ger-

many). The Infinium MethylationEPIC Kit was used to quantify DNA methylation at ~865,000

sites (Illumina, San Diego, USA). Hybridization and processing were performed according to the

manufacturer’s instructions (for promoters, starter sequence and location of CpG sites, see Fig 1).

Paradigm

The used paradigm was an adapted version of the 4-CSRTT and has been described in detail in

an earlier publication [10]. In the task, subjects were instructed to indicate the position of a

briefly presented visual target after a waiting period and to respond as fast and as correct as

possible to earn a reward. The task consisted of 5 blocks of increasing task difficulty:

block 1: target presentation duration was 64ms, cue target interval was 2000ms across all

trials.

block 2 was so called baseline block, without rewarding and for motivation index/fatigue

measurement purposes only (motivation index = reaction times [baseline block2]–reaction

times [baseline block outside the scanner])

block 3: reduction of the target’s presentation duration from 64ms to 32ms;

block 4: short target presentation + variation of the cue-target interval between 2000ms and

6500ms; block 5: short target presentation + variation of the cue-target interval + inclusion of

distractor targets.

Fig 1. Sequence overview. Fig 1 represents the location of CpG sites, of which methylation was determined.

https://doi.org/10.1371/journal.pone.0282813.g001
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Based on the block design and hierarchical structure of the 4-CSRTT, we were able to deter-

mine wVar and behavioral performance for each block separately (for details see S1 Fig).

Data acquisition

Scanning was performed on a 3 Tesla TIM Trio Scanner at the Institute for Diagnostical and

Interventional Neuroradiology at the University Hospital Wuerzburg and on a 3 Tesla

PRISMA Scanner (Siemens, Erlangen, Germany) at the Department of Diagnostic and Inter-

ventional Radiology at the University Hospital Duesseldorf. Whole-brain T2*-weighted BOLD

images were recorded with a simultaneous multi-slice echo-planar imaging sequence (repeti-

tion time = 800ms, echo time = 37ms, 72 slices, 2mm thickness, flip angle = 52˚, rs-fMRI:

6:58min, 512volumes, task-fMRI: 14.5min, 1069 volumes).

Data processing

Data processing was performed using the Functional Connectivity Toolbox (https://www.nitrc.

org/projects/conn) as implemented in the Statistical Parametric Mapping Software Package

(SPM12, http://www.fil.ion.ucl.ac.uk/spm/). Data preprocessing included temporal and spatial

alignment (slice time correction, realignment and unwarping), spatial normalization into a stan-

dard stereotaxic space (MNI TPM template), resampling to an isotropic voxel size of 2×2×2mm3,

outlier detection via ART-based scrubbing and spatial smoothing with a Gaussian kernel of 8mm

full width at half maximum. The extraction of averaged timeseries was performed for regions of

the DMN and FPN defined from CONN’s ICA analyses of the HCP dataset (497 subjects):

• DMN [medial prefrontal cortex, DMN.MPFC (1,55,-3), bi-hemispheric lateral parietal cor-

tex, DMN.LP (-39,-77,33), (47,-67,29), and posterior cingulate cortex DMN.PCC (1,-61,38)]

• FPN [lateral prefrontal cortex, FPN.LPFC (-43,33,28), (41,38,30) and posterior parietal cor-

tex FPN.PPC (-46,-58,49) (52,-52,45)].

Timeseries were corrected for movement artifacts using realignment parameters as covari-

ates and extracted for each subject separately.

wVar

In this section we briefly introduce wavelet transform from a signal filtering perspective lead-

ing to the definition of the wVar quantity introduced by Percival (1995) [29], which is based

on wavelet transform coefficients. For detailed study and deeper theoretical insights of this

topic and its use in praxis please refer to [40].

Given a timeseries X � fXt : t ¼ 0; . . . ;N � 1g of length N and a set of mutually corre-

sponding high and low frequency filters (sometimes called split-band filters) ~hl and ~g l of even

length L, the circular linear filtering of X with f~hðj;lÞ : l ¼ 0; . . . ; Lj � 1g and

f~g ðj;lÞ : l ¼ 0; . . . ; Lj � 1g for j = 1,. . .,J0 where, J0<log2(N) and Lj� (2j−1)(L−1)+1, produces J0
series of wavelet coefficients of length N each [Eq (1)]

Wj;t ¼
XLj � 1

l¼0

~hj;lXt� lmodN ; t ¼ 0; . . . ;N � 1

~hj;l ¼ hj;l=2j=2j ¼ 1; . . . ; J0
hj;l : hj;0; hj;1; . . . ; hj;Lj � 2; hj;Lj � 1 ¼ h0; 0; . . . ; 0; h1; 0; . . . ; 0; hL� 2; 0; . . . ; 0; hL� 1

with ð2j� 1 � 1Þ zeros between consecutive elements

ð1Þ

8
>>>>>>>><

>>>>>>>>:
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and a single set of scaling coefficients of length N [Eq (2)]

VJ0 ;t ¼
XLJ0 � 1

l¼0

~g J0 ;lXt� lmodN ; t ¼ 0; . . . ;N � 1

~g J0 ;l ¼ gJ0 ;l=2J0=2

gJ0 ;l : gJ0 ;0; gJ0 ;1; . . . ; gJ0 ;LJ0 ; � 2; gJ0 ;LJ0 ; � 1 ¼ g0; 0; . . . ; 0; g; 0; . . . ; 0; gL� 2; 0; . . . ; 0; gL� 1

with ð2ðJ0 � 1Þ � 1Þ zeros between consecutive elements

ð2Þ

8
>>>>>>>><

>>>>>>>>:

~hj;l and ~g j;l are called the jth level maximal overlap discrete wavelet transform (MODWT),

wavelet and scaling filter respectively.

The new J0+1 timeseries represent theMODWT of X up to level J0 if the applied filters fulfill

the following criteria: given the notations h1,l� hl and g1,l� gl we have

XL� 1

l¼0

hl ¼ 0;
XL� 1

l¼0

h2
l ¼ 1

XL� 1

l¼0

hlhlþ2n ¼
X1

l¼� 1

hlhlþ2n ¼ 0

ð3Þ

8
>>>><

>>>>:

as well as

XL� 1

l¼0

gl ¼
ffiffiffi
2
p

;
XL� 1

l¼0

g2
l ¼ 1

XL� 1

l¼0

glglþ2n ¼
X1

l¼� 1

glglþ2n ¼ 0

ð4Þ

8
>>>><

>>>>:

for all nonzero integers n. That is, the filter coefficients must sum to zero, filter have the unit

energy and even shifts implementations are orthogonal.

{gl} is the quadrature mirror filter that corresponds to {hl} that is

gl � ð� 1Þ
lþ1hL� 1� l and the inverse relationship is given by hl ¼ ð� 1Þ

lgL� 1� l.

Let Uðf Þ ¼ jUðf Þjeyðf Þ be the transfer function of a filter, f the frequency and θ(f) the phase

function. Because the before mentioned conditions do not necessarily result in a unique set of

filters, although they are only different in their phase functions, additional constraints are

added to define a sub-class of filters making the interpretation of the resulting transform coef-

ficients and the associated j level filters meaningful:

• level j wavelet coefficients {Wj} are differences between weighted averages of X values local-

ized within scales (time windows) of length τj� 2j−1Δt (with Δt = 0.8sec, the repetition time

of fMRI sequence) and

• level j wavelet filters {hj} are good approximation to band-pass filters and therefore the filter

output coefficients are related to frequency bands 1=2jþ1; 1=2j
� �

1

Dt (see S2 Fig).

• the vector VJ0 contains the scaling coefficients associated with averages over lJ0 � 2J0Dt
scale, and

• the scaling filter fgJ0g covers the low-frequency range 0; 1=2J0þ1
� �

1

Dt (low frequency and

therefore the smoother appearance of VJ0 and accordingly the associated synthesized signal

A[J0 = 5] (see S2 Fig). For first-level relation between V1 and A[1], see S3 Fig central row).
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One class of such filters is the Daubechies-extremal phase filter [41] known as the mini-

mum delay filter because at the output, signals build up energy in shortest amount of time

compared to other filter realizations [42].

Another important class is the Least Asymmetric (LA) -filter. Filter with zero phase function

or a linear phase function are best suited for applications where the synthesized (filter output)

signals need to be aligned in time with signals at the filter input for better event occurrence (fea-

tures) interpretation. We can obtain an approximate zero phase filter from shifting LA filter

output. At higher scales j>2, {gj} and {hj} filters have better approximation to zero phase filters

if L/2 is even, therefore the choice of the LA(8) wavelet filter with length L = 8 in this study.

Higher L values on the other hand ensures that the resulting coefficients after filtering a sto-

chastic process X are to be considered stationary stochastic process realizations with sample

mean equals zero, if X is stationary or L>2d and X is d backward stationary. Stationarity is cru-

cial assessing statistical properties of a process and a sample mean that is zero ensures an unbi-

ased estimation of the sample variance (for first level MODWT-decomposition and

-reconstruction of X using LA(8) filters see S3 Fig).

Finally, MODWT coefficients {Wj} and fVJ0g are used for exact scale-based sample vari-

ance decomposition. Equation Eq (a) defines the sample variance, while (b) expresses the con-

tribution of each decomposition level (j) based on MODWT coefficients to the overall sample

variance. From this, it is now possible to identify scales that play a major role in the process

variance.

(a) ŝX
2 ¼ 1

N kXk
2
� �X

2
with �Xbeing the sample mean

(b) ŝX
2 ¼ 1

N

PJ0
j¼1
kWjk

2
þ 1

N kVJ0k
2
� �X

2
note that j denotes the level of decomposition.

In case of N ¼ 2J0 we have 1

N kVJ0k
2
� �X

2
¼ 0 otherwise, the term represents the sample var-

iance of the smoothed version VJ0 of the original timeseries X.

For the sake of completeness, the sample energy can also be expressed in terms of scale-

based decomposition coefficients:

(c) kXk2
¼
PJ0

j¼1
kWjk

2
þ kVJ0k

2
energy decomposition of X up to level J0.

kXk2
¼
P5

j¼1
kWjk

2
þ kV5k

2
is the energy decomposition up to level 5 (for a graphic

description of the decomposition levels and corresponding timeseries see S4 Fig).

As noted before, the sample variance of X is expressed as the sum of the scale-based sample

variances of {W1} to {W5} plus the sample variance of {V5}. Scales that mostly contribute to the

overall process variance are also the ones that are more interesting for scientific analysis (see

S4 Fig scale 3 for task, scales 4 and 5 for rest).

Although Eq (b) is the exact scale-based sample variance decomposition, it still needs

uncertainty estimation of the results. For each decomposition level (j), a new quantity referred

to as wavelet variance was defined. Wavelet variance ν2(τj) computes the scale-based variance

of random variables {Wj,t}, and its corresponding confidence intervals (see S4 Fig right). An

unbiased MODWT estimator calculation of wVar was performed. For the uncertainty estima-

tion of this estimator, we followed the recommendations by Percival and Walden [40, p.315]

and determined confidence intervals based on η3 (we chose the conservative approach because

timeseries were relatively short). Moreover, it was successfully applied to a wide spectrum of

stochastic processes including stationary, dth order backward difference stationary and nonsta-

tionary backward differenced locally stationary processes [30]. WVar was determined in three

different frequency bands: 0.02–0.04Hz, 0.04–0.08Hz and 0.08–0.16Hz [27, 28, 43, 44].
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Statistical analysis

To address differences in wVar between task- and rs-fMRI, 2x2 MANOVA models were

defined with the factors group (ADHD vs. TDC) and fMRI condition (task vs. rest) and ROI-

and scale-specific wVar coefficients as dependent variables. Within the MANOVA workflow,

post-hoc t-tests were included to identify significant effects between subgroups. The influence

of cognitive load on wVar was examined using repeated measures ANOVA models, with the

within-subject factor cognitive load (block 1 vs. block 3 vs. block 4 vs. block 5, Note. Block 2

was a baseline block without reward), the between-subject factor group (ADHD vs. TDC) and

ROI-and scale-specific wVar coefficients/behavioral performance measures (i.e., premature

responses, accuracy, reaction times) as dependent variables. Within the ANOVA workflow,

post-hoc t-tests were integrated to identify significant effects between conditions. In a final

step, behavioral performance was directly related to wVar via group-specific bivariate correla-

tions. To test for statistical significance of correlation coefficients (RADHD vs. RTDC), fisher-r-

to-z-transformations were calculated.

The influence of the TPH2 G-703T polymorphism was addressed via 2x2 MANOVA mod-

els with the factors group (ADHD vs. TDC) and TPH2 G-703T variant (GG vs. T+) and ROI-

and scale-specific wVar coefficients/behavioral parameters as dependent variables. Post-hoc t-

tests were performed to identify significant differences between subgroups. To address the

effect of DNA methylation of 6 CpG sites were calculated using linear multiple regression anal-

yses. As potential confounding variables age, sex and the TPH2 G-703T variation entered in

the first block (inclusion) and the remaining variables competed in the second block for inclu-

sion by using the stepwise algorithm. Dependent variables were ROI-and scale-specific wVar

coefficients/behavioral parameters.

In all MANOVA-models, sex and age entered as nuisance variables and results of all analy-

ses were reported on p< .05, corrected for multiple comparisons using false discovery rate

(FDR) correction. Additionally, post-hoc power analyses were performed using partial eta

squared with small effect size = 0.01; medium effect size = 0.06; large effect size = 0.14.

Results and discussion

In both groups, wVar coefficients did not vary in function of age nor differed between sexes.

The same was true for epigenetics; DNA methylation did not differ significantly between sexes

and was not correlated with age, neither in TDC nor in ADHD patients. Additionally, methyl-

ation levels did not differ significantly between ADHD and TDC (S1 Table).

The 2x2 MANOVA Models revealed significantmain effects of condition in the rs-fMRI-

associated low frequencies 0.02–0.04Hz in the FPN.r.LPFC with wVar being higher at rest

compared to task (no significant group effects). In return, significant group X condition inter-
actions were found in the cognitive-related high frequencies of 0.08–0.16Hz in medial and lat-

eral PFC regions of both networks (DMN.MPFC, FPN.l.LPFC, FPN.r.LPFC). WVar in TDC

decreased from rest to task, whereas ADHD patients showed a reverse pattern with higher

wVar at task compared to rest (see Table 1).

Post-hoc t-tests revealed that wVar in the high frequencies of FPN.r.LPFC under task was

significantly higher in ADHD compared to TDC (T = 2.5, p = .016) and in TDC, wVar in all

three regions was higher at rest compared to task in the cognitive frequencies (DMN.MPFC:

T = 3.1, p = .003, FPN.l.LPFC: T = 3.3, p = .002, FPN.r.LPFC: T = 3.0, p = .004) and uncor-

rected also in the low frequencies 0.02–0.04Hz (FPN.r.LPFC: T = 2.2, p = .034) (Fig 2). To rule

out, that differences in wVar between groups were based on differences in brain activation,

small volume corrected analyses (i.e., 10mm spheres around the regional maxima) of brain

activation maps were performed showing no overlap between group effects of wVar and neural
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activation (see S2 Table). Across both groups, wVar increased significantly with cognitive load

in the cognitive frequencies of FPN.r.LPFC; however, wVar was significantly higher in ADHD

patients compared to TDC across all blocks (Table 2). On the behavioural level, a U-shaped

effect in accuracy in TDC was revealed with an increase from block 1 to 3, followed by a signif-

icant decrease in the last two blocks (Fig 2). In ADHD patients, there was no significant effect

of task difficulty and no difference in accuracy across all blocks (S3 Table). Finally, wVar sig-

nificantly correlated with accuracy and number of errors in cognitive frequencies of FPN.r.

LPFC in ADHD patients but not TDC (accuracy: RADHD = -.388, p = .010, RTDC = -.053, p =

Table 1. Significant results of 2x2 MANOVA models using condition and group and ROI-and scale-specific wVar.

ADHDtask ADHDrest TDCtask TDCrest Fgroup Fcond FgroupXcond p_η2

[M(SD)] [M(SD)] [M(SD)] [M(SD)]

Scale 3

DMN.MPFC 0.052(.04) 0.044(.04) 0.039(.02) 0.067(.05) 0.5 2.0 6.7* .063

FPN.l.LPFC 0.041(.03) 0.027(.01) 0.030(.02) 0.056(.05) 2.9 1.2 12.9* .095

FPN.r.LPFC 0.047(.03) 0.034(.02) 0.034(.02) 0.056(.05) 0.6 0.8 9.4* .073

scale 5

FPN.r.LPFC 0.040(.02) 0.029(.02) 0.037(.04) 0.062(.06) 4.9 6.9* 1.2 0.75

Note. DMN: default mode network, DMN.MPFC: medial prefrontal cortex; FPN: fronto-parietal network, FPN.r.LPFC/FPN.l.LPFC: right and left lateral PFC;

frequency bands: scale 3 = 0.08–0.16Hz, scale 5 = 0.02–0.041Hz.

*: significant with pFDR<q = .011; p_eta2: partial eta squared with small effect size = 0.01; medium effect size = 0.06; large effect size = 0.14.

https://doi.org/10.1371/journal.pone.0282813.t001

Fig 2. Brain dynamics as measured using wVar. Fig 2 presents differences of wVar between rs-fMRI and task-fMRI (upper row) and the influence of

cognitive load on wVar (lower row) at the example of FPN.r.LPFC. Error bars represent 1SE.

https://doi.org/10.1371/journal.pone.0282813.g002
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.699. Z = 1.7, p = .044; # of errors (excl. misses): RADHD = .371, p = .014, RTDC = .075, p = .583.

Z = 1.5, p = .067).

TPH2 G-703TMANOVA models on behavioral performance revealed significant group

differences in reaction times (Fgroup = 8.5, p = .005, FTPH2 = 1.0, n.s.; Fint = 0,1, n.s.). Post-hoc

t-tests showed that only the T-allele carriers significantly differed between groups with ADHD

T+ presenting the longest reaction times (GGADHD = 467(96), GGTDC = 415(46), T+
ADHD =

486(90), T+
TDC = 433(51), GGTDC<GGADHD: Trt = 2.0, p = .056, GGTDC<T+

ADHD: Trt = 2.8, p

= .009; T+
TDC<T+

ADHD: Trt = 2.2, p = .041).

On the neural level, similar patterns were found in the low frequencies 0.02–0.04Hz of the

right hemispheric FPN network regions (i.e. FPN.r.LPFC, FPN.r.PPC) and in the cognitive fre-

quencies in DMN.l.LP. Post-hoc t-tests revealed (trend to) significant differences between

GGTDC and T+
ADHD (GGTDC<T+

ADHD: TFPN.r.LPFC = 3.5, p = .002; TFPN.r.PPC = 3.4, p = .002;

TDMN.l.LP = 2.2, p = .034) as well as T-allele carriers of both groups (T+
TDC<T+

ADHD: TFPN.r.

LPFC = 2.2, p = .036; TFPN.r.PPC = 2.0, p = .057; TDMN.l.LP = 1.8, n.s.) with highest variance in

ADHD T+ (see Table 3 and Fig 3).

CpG3 methylation significantly predicted behavioral as well as wVar coefficients, however,

in ADHD patients but not TDC. On the behavioral level, CpG3 methylation predicted prema-

ture responses (Fmodel = 3.7, R2 = 0.234). On the neural level, multiple regressions revealed a

significant influence of CpG3 methylation and low frequency fluctuations in right FPN regions

(i.e. FPN.l.LPFC: Fmodel = 3.3, R2 = 0.397 and FPN.l.PPC: Fmodel = 4.4, R2 = 0.405) with higher

methylation/lower serotonin being correlated with higher wVar (see Table 4 and Fig 3). Post-

hoc power analyses using G*Power determined for an assumed low to moderate effect size

(H1 p2 = 0.23) a power of 0.85 and a critical R2 = 0.234.

Table 2. Significant results of 2x4 repeated measures MANOVA models using cognitive load and group, and wVar.

ROI block ADHD TDC FcogLoad Fgroup Fint p-η2 p-η2

[M(SD)] [M(SD)] [cogLoad] [group]

Scale 3

FPN.r.LPFC block1 .03(.02) .02(.01) 22.7* 5.1* 0.2 .190 0.05

block3 .05(.04) .03(.02)

block4 .05(.05) .04(.03)

block5 .05(.05) .04(.02)

Note. FPN: fronto-parietal network, FPN.r.LPFC: right lateral PFC; frequency bands: scale 3 = 0.08–0.16Hz, scale 5 = 0.02–0.041Hz.

*: significant with pFDR< q* = .004; p-η2: partial eta squared with small effect size = 0.01; medium effect size = 0.06; large effect size = 0.14.

https://doi.org/10.1371/journal.pone.0282813.t002

Table 3. Significant results of 2x2 MANOVA models using TPH2 genotype and group, and ROI- and scale-specific wVar.

GGADHD T+
ADHD GGTDC T+

TDC FTPH2 Fgroup Fint p-η2

[M(SD)] [M(SD)] [M(SD)] [M(SD)] [group]

scale 3

DMN.l.LP .03(.02) .03(.02) .02(.01) .03(.01) n.s. 5.7* n.s. .087

scale 5

FPN.r.LPFC .04(.07) .05(.03) .02(.01) .03(.02) n.s. 4.5* n.s. .069

FPN.r.PPC .02(.02) .03(.02) .02(.01) .02(.01) n.s. 5.4* n.s. .082

Note. DMN: default mode network, DMN.LP: lateral parietal cortex; FPN: fronto-parietal network, FPN.r.LPFC: right lateral PFC, FPN.r.PPC: right posterior parietal

cortex; frequency bands: scale 3 = 0.08–0.16Hz, scale 5 = 0.02–0.041Hz. *: significant with pFDR<q* = .033; η2: partial eta squared with small effect size = 0.01; medium

effect size = 0.06; large effect size = 0.14.

https://doi.org/10.1371/journal.pone.0282813.t003
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Across all analyses, there was any significant effect in scale 4, the (intermediate) frequencies

0.04–0.08Hz.

To check for a potential influence of comorbid affective disorders on genetic effects, MAN-

OVA models were performed with affective comorbidity as covariate of interest showing no

significant influence (see S4 Table).

For an external validation of group comparisons in wVar at rest, we determined wVar in

rs-fMRI timeseries of a subsample of the Child Mind Institute data set (Functional Connec-

tomes Project International Neuroimaging Data-Sharing Initiative http://dx.doi.org/10.15387/

CMI_HBN (2017)). The Child Mind Institute has launched the Healthy Brain Network, with

participants aged from 5–21yrs including psychiatric phenotypes and multimodal brain imag-

ing (e.g., rs-fMRI, morphometric MRI). Based on the specificity of the used task and genetic

data, we were only able to validate comparisons of wVar at rest between ADHD patient

(N = 124) and control subjects (i.e., ‘no diagnosis given’, N = 126). Results replicated our find-

ings in terms of no significant groups differences in wVar at rest in combination with similar

or lower absolute values in ADHD patients compared to control subjects (see S5 Table).

In line with our hypotheses, we found that in TDC/normal processing, wVar in the cogni-

tive frequencies of the FPN.LPFC was significantly higher at rest compared to task. In the

recent years of research on resting-state networks [45, 46], the frequently used terms to

describe resting-state neural activity were “intrinsic”, “endogenous,” and “spontaneous,” indi-

cating that resting-state network function is produced within the brain itself and can, thus, be

understood as “self-organized” [47]. In this case, a task-induced stimulation can be understood

as an intervention from the external environment leading to a reduction/rearrangement of

these dynamics. Empirical evidence using wVar in this context is lacking to date, however ear-

lier studies have shown higher fMRI variance at rest compared to task before. For example, He

et al (2011) showed a significant decrease in fMRI signal variance during a visual detection

Fig 3. Serotonergic modulation. Fig 3 shows the results of the TPH2 G-703T variants on FPN.r.LPFC wVar and behavioural performance

(upper row) as well as methylation on behavioural performance (lower row).

https://doi.org/10.1371/journal.pone.0282813.g003
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task compared to rs-fMRI in resting state networks such as default and attention networks

[48], i.e., in networks, where also wVar showed a significant condition effect in our analysis.

Thus, findings of the current study can be interpreted in this line of argumentation and extend

earlier findings by showing that this pattern was disturbed in pathological brain function in

the example of ADHD.

Abnormal processing in ADHD, in return, was characterized by higher wVar under task

compared to rest in both networks and across cognitive and rs-associated frequencies. Accord-

ing to the default mode interference hypothesis, “generalized task-non-specific cognition dur-

ing rest can persist or intrude into periods of active task-specific processing, producing

periodic fluctuations in attention that compete with goal-directed activity” [34]. Thus, higher

wVar in ADHD patients in the cognitive frequencies of DMN.MPFC during task processing

might reflect the described impaired DMN suppression [32], and interaction between task-

specific (FPN) and unspecific (DMN) activation [34]. When interpreting higher wVar during

Table 4. Prediction of WI (ROI- and scale-specific wVar and behavioral performance): Results of the multiple stepwise regression analysis.

Model B Std Beta T Sig.

Premature Responses

1 (Constant) 4.304 1.523 2.8 .006

TPH2 -.654 .388 -.214 -1.7 .096

age -.090 .079 -.147 -1.1 .262

sex .182 .539 .043 0.3 .737

2 (Constant) 4.926 1.479 3.3 .001

TPH2 -.576 .373 -.189 -1.5 .127

age -.016 .082 -.026 -0.2 .845

sex .219 .517 .051 0.4 .674

CpG3 1.088 .418 .363 2.6* .012

FPN.l.LPFC scale5

1 (Constant) .029 .035 0.8 .404

TPH2 .006 .008 .139 0.7 .471

Age -4.418E-5 .002 -.005 -0.1 .982

Sex -.013 .012 -.220 -1.1 .292

2 (Constant) .022 .032 0.7 .500

TPH2 .002 .007 .058 .3 .744

age -.003 .002 -.294 -1.4 .183

sex -.019 .011 -.321 -1.7 .103

CpG3 .021 .008 .522 2.6* .015

FPN.l.PPC_scale5

1 (Constant) .092 .034 2.7 .012

TPH2 .013 .007 .301 1.8 .087

age -.004 .002 -.403 -2.3 .034

sex -.023 .012 -.357 -2.0 .061

2 (Constant) .084 .031 2.7 .012

TPH2 .010 .007 .229 1.5 .155

age -.007 .002 -.659 -3.5* .002

sex -.029 .011 -.446 -2.6* .014

CpG3 .020 .008 .463 2.6* .015

Note. FPN: fronto-parietal network, FPN.l.LPFC: left lateral PFC, FPN.l.PPC: left posterior parietal cortex; frequency band: scale 5 = 0.02–0.041Hz. *: significant with

pFDR<q* = .015. Post-Hoc power = 0.85, critical R2 = 0.234.

https://doi.org/10.1371/journal.pone.0282813.t004
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task in ADHD patients not as ‘moment-to-moment variability of spontaneous brain signals’

but rather in terms of attempts to adjust or fine-tune brain function to complete the task (i.e.

processes of self-organization), findings of higher wVar in the cognitive frequencies of the

FPN.r.LPFC, might reflect the intense concentration on the task and/or coping with task diffi-

culty, as it significantly increased with cognitive load and was correlated with performance

accuracy. Coping with increasing task difficulty have been reported in terms of individuals dis-

engaging when they reached their limits [49], or shifting strategies, e.g. the recruitment of dif-

ferent brain regions [50]. Load-induced increase in wVar, on the other hand, revealed that

ADHD patients neither seemed to shift their strategy nor to disengage completely, but instead

kept changing their modulation attempts within the same region to perform the task, resulting

in significantly higher wVar in ADHD patients compared to TDC across all blocks. Interest-

ingly, we furthermore found that only in TDC these modulations did indeed lead to the

expected U-shaped behavioural performance (see Fig 2 right side line plots). Thus, an increase

in wVar in ADHD patients did not necessarily result in the maintenance of behavioural per-

formance but rather reflected the effort to do so [51].

Interpreting the dynamics we found in our study from a signal processing perspective,

wVar is rather specific to input than outcome as it varies in function of cognitive load and not

behavioral performance. As soon as task difficulty changes, the block-specific task (input)

demands a new signalling pattern from the target region (in our case the FPN.r.LPFC), e.g., in

terms of shifting strategies. This increase in cognitive processing is reflected by the increase in

wVar. What differentiates normal from abnormal brain dynamics is, that these dynamics

result in predictable outcome (i.e., an inverted U-shaped curve of behavioral performance) in

TDC and a random curve in behavioral performance in ADHD patients. This signal process-

ing interpretation, thus, links the two assumptions regarding the influence of cognitive load

(disengage or shift of region) together, namely, in normal processing, it can only come to a dis-

engagement of activation or the recruitment of further regions after the assigned region has

been able to respond to the challenge with an appropriate signalling pattern. However, ADHD

patients seemed to be unable to use neither one of these strategies as no adequate signalling

pattern was found to cope with increasing task difficulty. Thus, we can summarize, that wVar

was able to detected even immediate changes in network dynamics during WI processing and

that it is a highly sensitive marker towards ADHD-specific alteration in brain dynamics.

Finally, correlations between wVar and behavioral performance were only significant in

ADHD but not in TDC, which might be related to the ongoing attempt of the task-stimulated

region to adapt to the new demands in ADHD patients while in TDC such adaptation was not

necessary. The most robust findings of highly variable processing in ADHD have been pub-

lished on reaction times, where ADHD patients showed higher individual variability compared

to TDC [52]. A meta-analysis by Kofler et al. (2013) revealed that children and adolescents

(Hedges’ g = 0.76) and adults (g = 0.46) with ADHD demonstrated greater variability relative

to control groups (results were corrected for measurements of unreliability and publication

bias) [16]. However, recent studies also introduced dynamic functional connectivity as a

promising biomarker in the context of ADHD, suggesting new parameters to quantify the

dynamics within and between networks such as recruitment rate, topology of specific synergies

between resting-state networks and synergetic cooperation patterns [24] as well as using the

sliding window approach in terms of time-varying covariance of interregional neural signals

[53]. A wavelet-based parameter like wVar, thus, adds valuable information to the current sci-

entific debate to rather focus on dynamics in fMRI than static parameters in ADHD patients.

Furthermore, wVar can be determined in both, fMRI timeseries at rest and under task and

can, therefore, be directly linked to cognitive processes via behavioral performance. Lacking

relation between performance and wVar in TDC might be explained by the fact, that wVar is
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supposed to reflect input-induced processes and is not necessarily related to behavioral out-

come. Therefore, wVar in ADHD patients with good performance was also low, similar to

TDC. In patients with poor performance, in return, wVar increased indicating ongoing

attempts to find the optimal modulation of ROI-specific signaling.

The (epi)genetic influence was found predominantly in the rs-fMRI-associated frequencies

in regions of the FPN. The lateral PFC has robustly been reported being part of the serotoner-

gic system, in the rodent [54] as well as the human brain [55, 56]. That mainly low frequencies,

i.e., basic neural functioning, were modulated hints towards a serotonergic influence on a very

general level and independent of cognitive processing and/or external stimulation. In line with

earlier findings, we found a gene-dosage effect with highest wVar and longest reaction times in

ADHD T-allele carriers (pathology + reduced serotonin) [57]. Interestingly, there are some

hints towards the G-allele being associated with ADHD. For example, higher transmission fre-

quencies of the G-allele were shown in ADHD families [58] and decreased PFC activation dur-

ing response inhibition was reported in ADHD patients with the rs4570625 GG genotype in

an EEG-study [55]. Ambiguous findings might support the introduced indirect effect of sero-

tonin in the context of ADHD and vary in terms of the dependent variables. For example, in

this study, we quantified not brain activation/functional connectivity like Baehne et al. (2009)

but ADHD-relevant variability, which might be more sensitive to serotonin. This assumption

is supported by the significant gene-dosage effect in reaction times. As reaction time variability

was the first dimension, where an increased variability in ADHD patients has been docu-

mented [52], it would be interesting to replicate serotonergic modulation of ‘neural/behavioral

variability’ also in the context of affective disorders, where serotonin has been proven to play a

significant role [59].

Finally, an ADHD-specific positive linear effect between CpG3 methylation and fronto-

parietal wVar and impulsivity/premature responses was found. An ADHD-specific relation

between DNA methylation and reaction time variability in a motivational Go/NogoTask has

been reported before [13], supporting the influence of DNA methylation on both, variability

and impulsivity. DNA methylation has been linked to personality traits/endophenotypes such

as aggression [60], and the ability to recognize mental states [38] as well as in the context of

affective disorders [12, 61] to rs-fMRI-related PFC activity [62].

Conclusions

The candidate gene approach has been challenged in the context of the genetic basis of neuro-

psychiatric disorders. Thus, the use of (epi)genetic variation in a single gene in this study should

be understood as a methodological approach to go deeper into the mechanism of how genotype

and DNA methylation manifests itself in the brain. However, to combine both approaches, e.g.,

reporting an EWAS in clinical samples [35] with subsequent regression analyses between DNA

methylation and representative endophenotypes would be of high interest in future studies. In

this paper, we stated that the influence of serotonin in ADHD might be stronger in those

patients with comorbid depression and/or anxiety. Therefore, we performed genetic analyses

with additional ‘comorbid with affective disorder’ covariate. There was no effect in any analysis,

strengthening our interpretation that serotonin modulates the FPN and impulsivity on a very

basic level. Finally, we found that methylation effects were only at CpG3, however, on the basis

of the earlier findings, a functional interpretation remains speculation. Therefore, we decided to

postpone this to future studies, replicating or extending the current findings.

In sum, in this study, we were able to show that wVar is a sensitive marker towards altered

neural processing in ADHD and that both, the genotype and methylation levels of the TPH2
G-703T polymorphism modulate the same on the neural and behavioral level.
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Supporting information

S1 Fig. The four choice serial reaction time task. On the left side an exemplary trial is pre-

sented. On the right side, block-specific task difficulty manipulation is depicted.

(TIF)

S2 Fig. Scale-based decomposition. S2 Fig presents an overview of the relationship between

decomposition levels (j) up to level (J0 = 5), timescales τj and corresponding frequency bands

in case of fMRI timeseries Δt = 0.8sec. X = D1+D2+D3+D4+D5+A5 multiresolution analysis

of X. Note. D[j] and A[J0] are defined in S3 Fig., *: definition of λ5 and its corresponding fre-

quency band, see 2.5.

(TIF)

S3 Fig. Decomposition filters. S3 Fig shows LA(8)-filter applied to X at level 1, decomposition

filters (dec) compute the wavelet and the scaling coefficientsW1 and V1. At the output of the

reconstruction filters (rec), D1 and A1 are the zero-phase synthesized signals, representing the

high and low frequency portion (Detail and Approximation, respectively) of the signal X. dec

HF: LA(8) decomposition high-pass filter (dec HF) coefficients: {-0.0322, -0.0126, 0.0992,

0.2979, -0.8037, 0.4976, 0.0296, 0.0758} LA(8) decomposition low-pass filter (dec LF) coeffi-

cients: {-0.0758, -0.0296, 0.4976, 0.8037, 0.2979, -0.0992, -0.0126, 0.0322} LA(8) reconstruction

high-pass filter (rec HF) coefficients: {-0.0758, 0.0296, 0.4976, -0.8037, 0.2979, 0.0992, -0.0126,

-0.0322} LA(8) reconstruction low-pass filter (rec LF) coefficients: {0.0322, -0.0126, -0.0992,

0.2979, 0.8037, 0.4976, -0.0296, -0.07577}.

(TIF)

S4 Fig. Multiresolutional analysis of fMRI timeseries. S4 Fig left shows condition-specific

multiresolution analysis of exemplary fMRI timeseries. During task, higher frequencies (lower

scales) contribute the most to the overall fluctuation and variance of the signal. At rest, lower

frequencies (higher scales) are the dominant contributors. Right, wVar and its corresponding

CI are plotted. Dots represent the wVar for task (blue) and rest (green), lines indicate CI inter-

vals (blue dashed = task, green solid = rest). For the wavelet variance estimation, there are

fewer data points at rest compared to task (scale1: 443 vs. 1056, scale2: 429 vs. 1042, scale3: 401

vs. 1014, scale4: 345 vs. 958, scale5: 233 vs. 846), hence wider Cis.

(TIF)

S1 Table. Sample description. ADHD: Attention Deficit/Hyperactivity Disorder, TDC: typi-

cally developing children, IQ: intelligence quotient, M = Mean, SD = standard deviation,

Accuracy = ((misses+errors)/total number trials)*100; CpG: cytosine–phosphate–guanine site;

*: significant with pFDR<q = .011.

(DOCX)

S2 Table. Group differences between ADHD patients and TDC in ROI activation. DMN:

default mode network, DMN.MPFC: medial prefrontal cortex, DMN.LP: lateral parietal cor-

tex, DMN.PCC: posterior cingulate cortex; FPN: fronto-parietal network, FPN.LPFC: lateral

PFC, FPN.PPC: posterior parietal cortex.

(DOCX)

S3 Table. Effects of cognitive load on behavioral performance. ADHD: Attention Deficit/

Hyperactivity Disorder, TDC: typically developing children, cogLoad: cognitive load, scale

3 = 0.0781–0.1562Hz. *: significant with pFDR < .004.

(DOCX)
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S4 Table. Significant results of 2x2 MANCOVA models. DMN: default mode network,

DMN.LP: lateral parietal cortex; FPN: fronto-parietal network, FPN.r.LPFC: right lateral PFC,

FPN.r.PPC: right posterior parietal cortex; frequency bands: scale 3 = 0.08–0.16Hz, scale

5 = 0.02–0.041Hz. *: significant with pFDR<q* = .033; η2: partial eta squared with small effect

size = 0.01; medium effect size = 0.06; large effect size = 0.14.

(DOCX)

S5 Table. External validation results of univariate ANOVA models using group as indepen-

dent factor and ROI-and scale-specific wVar from rs-fMRI timeseries only as dependent

variable (ADHD: N = 124, no diagnosis given: N = 145). Note. DMN: default mode network,

DMN.MPFC: medial prefrontal cortex; FPN: fronto-parietal network, FPN.r.LPFC/FPN.l.

LPFC: right and left lateral PFC; frequency bands: scale 3 = 0.08–0.16Hz, scale 5 = 0.02–

0.041Hz. p_eta2: partial eta squared with small effect size = 0.01; medium effect size = 0.06;

large effect size = 0.14.

(DOCX)

S1 Methods.

(DOCX)
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