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Abstract: Infectious diseases still threaten global human health, and host genetic factors have been
indicated as determining risk factors for observed variations in disease susceptibility, severity, and
outcome. We performed a genome-wide meta-analysis on 4624 subjects from the 10,001 Dalmatians
cohort, with 14 infection-related traits. Despite a rather small number of cases in some instances, we
detected 29 infection-related genetic associations, mostly belonging to rare variants. Notably, the list
included the genes CD28, INPP5D, ITPKB, MACROD2, and RSF1, all of which have known roles in the
immune response. Expanding our knowledge on rare variants could contribute to the development
of genetic panels that could assist in predicting an individual’s life-long susceptibility to major
infectious diseases. In addition, longitudinal biobanks are an interesting source of information for
identifying the host genetic variants involved in infectious disease susceptibility and severity. Since
infectious diseases continue to act as a selective pressure on our genomes, there is a constant need for
a large consortium of biobanks with access to genetic and environmental data to further elucidate the
complex mechanisms behind host–pathogen interactions and infectious disease susceptibility.

Keywords: genome-wide association study; rare variant; infection; hepatitis; meningitis; pneumo-
nia; tuberculosis

1. Introduction

Despite the extensive research on infectious diseases, we still face major limitations in
understanding their pathogenesis. Uncertainties arise from a pathogen’s adaptability to
modify or adapt to a new environment, different mechanisms of host–pathogen interactions,
host genetics and possibly even random effects arising from interactions between a host and
pathogen [1–3]. Recent studies often focus on the host’s genetic profile, which is suggested
to be a determining factor in variations in disease occurrence and treatment outcome [4].

Previous studies often used candidate genes that are involved in the innate or adap-
tive immune response and play a role in a spectrum of infectious disease-associated out-
comes [5]. Such studies achieved numerous positive results, with IL4, TLR2 and CCL5
validated in a large-scale systematic review and meta-analysis of respiratory infectious
diseases [6]. The same study suggested numerous methodological barriers present in
primary studies, suggesting that improvements are needed before translatable knowledge
can be developed [6].

One frequently used study design in this situation is a hypothesis-free genome-wide
association study (GWAS). The advantage of this design includes the possibility of dis-
covering genes that were not previously implicated in disease pathogenesis, and thus
understanding a much broader set of predictors for infectious diseases [7–9]. This study
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design can be especially effective in isolated populations, where allele frequencies might
have drifted [10,11], as well as in the meta-analytic design [12,13], where the analysis of
rare variants can also help to provide a better understanding of disease mechanisms [14].
Although the most common GWAS approach is still a univariate model where a single
phenotype is associated with genetic variants, multivariate GWAS approaches that rely
on associating several highly correlated phenotypes with genetic variants are recently
gaining attention and could be used in addition to univariate models to increase their
power [15–17]. In addition, to better understand better a particular genetic variant carries
the risk for disease prediction, instead of the traditional GWAS approach, which focuses on
each single genetic variant, there is an increased trend toward the use of various machine
learning approaches, which is well suited for high-dimensional data and allows for the
detection of the epistatic or non-linear effects among genetic variants with a particular
phenotype [18]. However, there are only a few univariate GWA studies available for
bacterial and viral infectious diseases, most of which are for tuberculosis, with modest
replications between them [6,19–27]. The emergence of COVID-19 prompted even more
research interest [28,29], promising possible new diagnostic and treatment options based
on these discoveries [30–33]. Therefore, the aim of this study was to apply genome-wide
meta-analysis to gain insight into bacterial and viral infectious disease pathogenesis and
the possible role of host genetics in disease development.

2. Results

A total of 4624 participants were included in this study. No specific inclusion or
exclusion criteria were established, except for age > 18 years. A substantial number of
differences between the sub-cohorts were observed, both in the infection-related traits and
in confounding variables, e.g., there were more women in the Korčula sub-cohort, slightly
younger participants in the Split sub-cohort and participants in the Vis sub-cohort had in
general a lower socioeconomic status and fewer years of schooling (Table 1). Due to the
observed differences, demographic characteristics were used as confounding variables in
the GWAS models.

Table 1. Demographic and phenotypic characteristics of study populations.

Vis Korčula Split TOTAL p *

N 960 2698 966 4624

Gender, women; n (%) 558 (58.12) 1712 (63.45) 587 (60.77) 2857 (61.79) 0.010 KV

Age in years, median (IQR) 56 (24.00) 55 (23.00) 52 (21.00) 55 (22.25) <0.001 KV, KS, VS

Years of schooling; n (%)

Elementary school [0–8] 390 (40.63) 711 (26.35) 62 (6.42) 1163 (25.15)

<0.001 KV, KS, VSHigh school [9–12] 413 (43.02) 1461 (54.15) 473 (48.96) 2347 (50.76)

University [≥13] 157 (16.35) 526 (19.50) 431 (44.62) 1114 (24.09)

Socioeconomic status; n (%)

1st quartile [0–8] 350 (36.46) 662 (24.54) 134 (13.87) 1146 (24.78)

<0.001 KV, KS, VS

2nd quartile [9–10] 254 (26.46) 769 (28.50) 200 (20.70) 1223 (26.45)

3rd quartile [11–12] 224 (23.33) 737 (27.32) 301 (31.16) 1262 (27.29)

4th quartile [≥13] 132 (13.75) 530 (19.64) 331 (34.27) 993 (21.48)

Infectious disease count; n (%)

None 576 (60.00) 1677 (62.16) 622 (64.39) 2875 (62.18)

0.114One 293 (30.52) 752 (27.87) 277 (28.68) 1322 (28.59)

Two 77 (8.02) 231 (8.56) 61 (6.31) 369 (7.98)
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Table 1. Cont.

Vis Korčula Split TOTAL p *

Three 11 (1.15) 33 (1.22) 6 (0.62) 50 (1.08)

Four 3 (0.31) 5 (0.19) NA 8 (0.17)

Recurrent pneumonia cases;
n (%) 9 (0.94) 16 (0.59) 1 (0.10) 26 (0.56) 0.047 VS

Infectious traits; n (%)

Tuberculosis 12 (1.25) 16 (0.59) 6 (0.62) 34 (0.74) 0.110

Pneumonia 105 (10.94) 235 (8.71) 27 (2.80) 367 (7.94) <0.001 KS, VS

Hepatitis 26 (2.71) 30 (1.11) 20 (2.07) 76 (1.64) 0.002 KV

Meningitis 7 (0.73) 16 (0.59) 7 (0.73) 30 (0.65) 0.854

Respiratory infections 161 (16.77) 535 (19.83) 111 (11.49) 807 (17.45) <0.001 KS, VS

Gastrointestinal infections 39 (4.06) 55 (2.04) 33 (3.42) 127 (2.75) 0.002 KV

Systemic infections 26 (2.71) 36 (1.33) 25 (2.59) 87 (1.88) 0.005 KV, KS

Bacterial infections 186 (19.38) 571 (21.16) 134 (13.87) 891 (19.27) <0.001 KS, VS

Viral infections 74 (7.71) 66 (2.45) 42 (4.35) 182 (3.94) <0.001 KV, KS, VS

Appendectomy 69 (7.19) 169 (6.26) 74 (7.66) 312 (6.75) 0.273

Tonsillectomy 168 (17.50) 491 (18.20) 160 (16.56) 819 (17.71) 0.517

Infectious burden

0 576 (60.00) 1677 (62.16) 622 (64.39) 2875 (62.18)

0.001 KS, VS

0.5 151 (15.73) 385 (14.27) 168 (17.39) 704 (15.22)

1 149 (15.52) 388 (14.38) 116 (12.01) 653 (14.12)

1.5 41 (4.27) 164 (6.08) 38 (3.93) 243 (5.25)

2 26 (2.71) 48 (1.78) 19 (1.97) 93 (2.01)

2.5 8 (0.83) 22 (0.81) 2 (0.21) 32 (0.69)

3 8 (0.83) 7 (0.26) 1 (0.10) 16 (0.35)

3.5 1 (0.11) 3 (0.11) NA 4 (0.09)

4 NA 4 (0.15) NA 4 (0.09)

Annual cold frequency,
survey response 244 771 NA 1015

Several times per year 67 (27.46) 160 (20.75) NA 227 (22.36)

0.274
Once a year 83 (34.01) 305 (39.56) NA 388 (38.23)

Less than once a year 67 (27.46) 229 (29.70) NA 296 (29.16)

Never or almost never 27 (11.07) 77 (9.99) NA 104 (10.25)

Influenza frequency in the last
10 years, survey response 197 655 NA 852

Every year 9 (4.57) 16 (2.44) NA 25 (2.93)

0.857
Several times 48 (24.37) 178 (27.18) NA 226 (26.53)

Once 57 (28.93) 180 (27.48) NA 237 (27.82)

Never 83 (42.13) 281 (42.90) NA 364 (42.72)

* post-hoc pairwise comparisons (K—Korčula; V—Vis; S—Split). Abbreviations: IQR—interquartile range; NA—
not applicable.

The genome-wide meta-analysis of all three sub-cohorts showed 28 Bonferroni cor-
rected genome-wide significant associations (p < 3.57 × 10−9) with hepatitis (six loci),
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meningitis (eight loci), systemic infections (seven loci) and tuberculosis (seven loci), while
one locus showed suggestive association (p < 5 × 10−8) with pneumonia (Table 2). Manhat-
tan and QQ plots for these traits are shown in Figure S1, and the regional LD plots for each
identified locus are shown in Figure S2.

Table 2. Significant results after GWA meta-analyses (filtered for the top leading SNP in ±500 kb
window, Bonferroni corrected associations were significant when p < 3.57 × 10−9 or suggestive when
p < 5 × 10−8, SNPs were considered not to suffer from heterogeneity based on I2 statistics when
p > 0.05, with same effect direction, variants annotated to protein-coding genes and variants present
in meta-analysis for all three sub-cohorts (N = 4624)).

Trait SNP Location Alleles * EAF OR (95% CI) p Gene Variant Type

Hepatitis rs188290902 11:131868501 G/A 0.006 1.13 (1.09–1.16) 9.05 × 10−12 NTM Intron

rs72936092 2:159097061 A/G 0.004 1.16 (1.11–1.20) 8.68 × 10−11 CCDC148 Intron

rs17077736 13:33251708 A/G 0.017 1.06 (1.04–1.08) 3.19 × 10−10 PDS5B Intron

rs34447953 1:94730687 A/C 0.006 1.12 (1.08–1.15) 7.99 × 10−10 ARHGAP29 Intron

rs78111295 4:126203327 T/C 0.031 1.04 (1.03–1.06) 1.21 × 10−9 FAT4 Upstream

rs145607180 18:3452913 T/C 0.004 1.15 (1.10–1.19) 2.97 × 10−9 TGIF1 Intron

Meningitis rs13358188 5:155325029 G/A 0.005 1.10 (1.08–1.13) 8.46 × 10−13 SGCD Intron

rs17587821 1:226820605 C/T 0.013 1.06 (1.04–1.08) 4.14 × 10−12 ITPKB 3′-UTR

rs189257688 2:204544219 T/C 0.013 1.06 (1.04–1.07) 1.31 × 10−11 CD28 Upstream

rs188530871 15:76781806 T/C 0.006 1.08 (1.06–1.10) 7.57 × 10−11 SCAPER Intron

rs61878814 11:32119462 C/T 0.026 1.05 (1.03–1.06) 1.41 × 10−10 RCN1 Intron

rs116886525 11:116671391 T/C 0.006 1.09 (1.06–1.12) 2.29 × 10−10 APOA5 Upstream

rs35608792 1:8450425 G/A 0.023 1.04 (1.03–1.05) 4.87 × 10−10 RERE Intron

rs116306652 1:181673900 T/G 0.014 1.05 (1.04–1.07) 1.46 × 10−9 CACNA1E Intron

Pneumonia rs187624194 12:7775204 C/T 0.009 1.15 (1.10–1.20) 2.15 × 10−8 APOBEC1 Downstream
Systemic
infections

rs146072725 11:77519509 T/C 0.008 1.13 (1.09–1.16) 7.50 × 10−13 RSF1 Intron

rs142441889 20:16052044 T/G 0.006 1.13 (1.09–1.17) 1.63 × 10−10 MACROD2 Downstream

rs76931343 5:119876729 G/A 0.005 1.14 (1.10–1.18) 3.70 × 10−10 PRR16 Intron

rs58219087 19:48061409 C/T 0.004 1.20 (1.14–1.26) 7.57 × 10−10 ZNF541 Upstream

rs138336976 2:234090697 A/G 0.010 1.10 (1.07–1.12) 1.26 × 10−9 INPP5D Intron

rs192437130 2:85840200 T/C 0.004 1.21 (1.15–1.27) 1.34 × 10−9 USP39 Intron

rs6565193 16:30600260 C/T 0.028 1.05 (1.04–1.07) 2.38 × 10−9 ZNF785 Upstream

Tuberculosis rs554596237 9:6953063 G/T 0.006 1.09 (1.07–1.12) 2.06 × 10−11 KDM4C Intron

rs145254894 14:24683304 A/C 0.011 1.07 (1.05–1.09) 1.17 × 10−10 MDP1 Missense

rs570545343 5:65171990 A/G 0.015 1.06 (1.04–1.07) 1.24 × 10−10 NLN Downstream

rs117768315 12:47562000 A/G 0.010 1.06 (1.04–1.07) 1.48 × 10−10 PCED1B Intron

rs182320411 19:45821257 A/G 0.011 1.08 (1.05–1.10) 9.69 × 10−10 CKM Intron

rs140511699 8:102628803 C/A 0.008 1.07 (1.05–1.10) 2.37 × 10−9 GRHL2 Intron

rs140782448 8:100743166 C/T 0.004 1.10 (1.07–1.13) 2.99 × 10−9 VPS13B Intron

* Alleles: risk allele (effect allele)/other allele (non-effect allele). Abbreviations: EAF—effect allele frequency.

The identified variants explained only a small proportion of the phenotype variance,
ranging from 0.058% for hepatitis to 0.113% for meningitis (Table S6). Out of these identified
variants, 16 (55%) are rare variants with an MAF below 1%, and we show the number of
individuals with certain genotypes in Table S1. Some of the associations may be misleading,
as there are a few situations where the controls have both rare alleles and some cases have
none (minor homozygotes, e.g., rs78111295 (FAT4), rs116306652 (CACNA1E), rs116886525
(APOA5), rs17587821 (ITPKB), rs117768315 (PCED1B) and rs570545343 (NLN)).
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Gene descriptions and their involvement in biological pathways are described in
Tables S2 and S3, respectively, highlighting the transcriptome-associated pathways as the
most significantly enriched pathways with systemic infections and cell cycle processes for
hepatitis. In addition, these genes seem to have a role in the immune response or other cell
functions related to infection susceptibility. We also checked for the association of identified
loci with other traits from previously published GWA analyses, and the results are shown
in Table S4, where these SNPs have been implicated in various other complex traits and
diseases (e.g., atopic dermatitis, rheumatoid arthritis, Alzheimer’s disease, coronary artery
disease and bone mineral density). A graphic summary of the significantly associated
loci with functional enrichment and association with other complex traits is depicted in
Figure 1. At the same time, detailed protein–protein interaction (PPI) partners are shown in
Figure S3 for each infection-related trait for which significant GWAS loci were identified.
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Figure 1. Pleiotropic network of identified loci (light grey oval shaped) with various infectious traits
(dark grey octagon shaped) after a genome-wide meta-analysis of 4624 participants from the 10,001
Dalmatians biobank. Associations with various complex traits from other published GWA scans are
shown in rounded rectangles, and KEGG pathway enrichment with an FDR cutoff of 1% for each
of the infectious traits is depicted outside of the curved line (WHR—waist-to-hip ratio; BMI—body
mass index; LDL—low-density lipoprotein; eGFR—estimated glomerular filtration rate).

We investigated whether any of the previously implied variants from a meta-analysis
of candidate gene studies or GWA studies on susceptibility to various bacterial and viral
infectious diseases were replicated in our analyses. COVID-19 studies were excluded
for this stage of the analysis, considering that for the purpose of this study, we did not
have information on the COVID-19 status of the participants. The replication results
are summarized in Table S5, where we show all the replicated variants with a p-value
below 0.05.
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We did not detect any significant results for the self-reported common cold or influenza
frequency, probably due to the relatively small sample sizes (Table S7).

To evaluate the potential effect of these candidate rare variants, we first searched
the GEO database to find publicly available RNA-seq datasets to identify differentially
expressed genes (DEGs) in any of our infectious diseases for which we identified candidate
SNPs—hepatitis, meningitis, tuberculosis or pneumonia. Only two RNA-seq datasets
were identified as relevant based on our search criteria under the accession numbers
GSE196399 (patients with severe community-acquired pneumonia vs healthy controls)
and GSE94438 (tuberculosis patients vs household contacts). We supplemented this with
an additional RNA-seq dataset focusing on transcriptome changes in COVID-19 patients
(GSE223885). Of the 29 candidate GWAS loci, 23 were identified as DEGs in pneumonia
cases, 11 in tuberculosis cases, and 7 in COVID-19 cases (Table S8). Only three genes
overlap between the three studies, with CACNA1E being overexpressed, whereas CD28
and PCED1B had lower expression levels in patients with infectious disease (Figure 2). As
none of the candidate GWAS variants showed eQTL in whole blood based on the GTEx
data, we carried out evaluations at the gene level and identified several other SNPs in the
CACNA1E, CD28 and PCED1B gene, all demonstrating lower expression in individuals
with minor homozygote genotypes.
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Figure 2. Validation of GWAS candidate loci using differentially expressed genes (FDR < 0.05)
from publicly available RNA-seq studies (GEO accession IDs: pneumonia GSE196399, tuberculosis
GSE94438 and COVID-19 GSE223885).

3. Discussion

The results of this study suggest that GWAS in biobanks may serve as a potential
approach for hypothesis generation in infectious disease susceptibility. Furthermore, these
results contribute to the hypothesis that the host genetic susceptibility to bacterial and
viral infections in adults is polygenic and comprises common variants with low explained
variance and/or “unfortunate” combinations of multiple rare variants [4,34].

Despite the small number of cases, we found several significant associations with
infectious disease susceptibility, where pathway analysis revealed significant enrichment in
genes and pathways involved in immune response as expected, but also in genes outside of
the immune system. Most genes associated with hepatitis have been previously implicated
in the pathogenesis of various liver diseases. For example, TGIF1 (TGFB-induced factor
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homeobox 1) is shown to be up-regulated in patients with hepatitis C virus infection [35,36],
but down-regulated in fibrotic liver patients [37]. A study of patients with hepatitis B virus
(HBV)-associated hepatocellular carcinoma showed that the FAT4 (FAT atypical cadherin 4)
gene might act as a tumor suppressor gene, which is inactivated in cases with hepatocellular
carcinoma, but also in various other human cancers [38,39]. Although the results should be
taken with care, one study showed the association of hepatitis with gastric cancer [40], and
the link between the two might involve the Rho GTPase activator ARHGAP29, which has
been previously associated with gastric cancer [41], and associated with hepatitis in this
study. Most interestingly, hepadnavirus integrates into the host genome within the gene
NTM (neurotrimin) 1 h after infection [42].

Several genes that were significantly associated with meningitis in this study are
involved in various neurological disorders, which is in line with ongoing and controver-
sial studies showing that various bacterial and viral pathogens are risk factors for some
neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple
sclerosis, amyotrophic lateral sclerosis, and autism spectrum disorders [43–45]. Here, we
report APOA5 to be associated with meningitis, while previous studies implicated various
other apolipoproteins, such as APOA1 and APOE, are involved in meningitis [46,47], as
well as various bacterial or respiratory infections [47–49], both in human and mouse studies.
Additionally, the APOA1–APOC3–APOA4 gene cluster has been associated with the risk
of Alzheimer’s disease [50]. CACNA1E, as identified in this study, and other voltage-gated
calcium channel subunit genes have been previously associated with various neuropsychi-
atric disorders, such as schizophrenia, autism, and bipolar disorder [51], but also linked
to the development of cortical lesions in patients with multiple sclerosis [52]. Previously
performed GWA studies on other common traits also showed a significant association of
the loci identified in this study with Alzheimer’s disease and schizophrenia (Table S4). We
also show the association of meningitis with two genes with well-known functions in the
immune response. CD28, a component of the immune system that is involved in T-cell
activation, induction of cell proliferation and cytokine production and promotion of T-cell
survival, was used in several animal and in vitro studies to show that CD28-deficient mice
develop experimental autoimmune meningitis [53] or that the blockade of CD28 improves
experimental autoimmune encephalomyelitis [54]. ITPKB (inositol-trisphosphate 3-kinase
B), a well-known gene associated with the immune response, showed in animal studies
its significant role in the thymocyte differentiation function of peripheral T-cells [55,56].
Functional enrichment analysis of the loci in this study associated with meningitis also
showed significant enrichment in the immune response network and pathways associated
with T-cell signaling (Table S3).

A single gene associated with pneumonia was APOBEC1, a member of the cytidine
deaminases family, which was previously reported to play a central role in innate and adap-
tive immunity interplay [57], or in the delayed development of pneumocystis pneumonia
in AIDS patients [58] and clearance of pneumococcal pneumonia [59].

We also identified several genes that might contribute to susceptibility to systemic
infections in this study, most of which seem to have a distinct role in the immune response.
RSF1 (human remodeling and spacing factor (1)) was shown to interact with SP100, which
is known to have an important role in regulating the immune response to intracellular
pathogens [60]. In addition, one study showed that the HBV viral protein pX interacts with
RSF1 and as a result, HBV transcription is increased [61], suggesting that this gene might
have a role in the life cycle of viruses whose expression is regulated at the transcription
level. The role of MACROD2 (MACRO domain containing (2)) could be explained through
its interaction with ARTD10, which is inducible by inflammatory and immunogenic stimuli
and enhances the NF-κβ signaling pathway to increase inflammation, the innate immune
response, cell survival and proliferation [62]. INPPD5, also known as SHIP1, was pre-
viously analyzed in numerous studies, and is also implicated to have a role in immune
response [63]. The role of this gene is closely linked to IL10 and several important path-
ways [64], resulting in modifying effects in the case of the clearance of S. aureus and S.
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pneumoniae [65], as well as in the pathogenesis of Pseudomonas aeruginosa [66], Epstein–Barr
virus [67], cytomegalovirus [68–70], or even immunity to helminth infection in mice [71].

We found a significant association between tuberculosis and KDM4C, a lysine demethy-
lase that was also shown to be significantly associated with non-small cell lung carci-
noma [72]. Another gene associated with the risk of tuberculosis was MDP1, magnesium-
dependent phosphatase 1, which has also been proposed to have a role in gastric cancer [73].
This could be part of the larger pathway that explains the relationship between tuberculosis
and carcinogenesis involving the CCL7-CCL2-CCR2 axis, which has a role in the immune
response, tumor regulation and the WT1 gene associated with the susceptibility to tuber-
culosis [6]. In line with this, the KEGG pathway revealed significant enrichment in the
viral carcinogenesis pathway (Table S3). Lastly, we found that PCED1B is associated with
tuberculosis, in line with another recent study [74].

As most of the significantly associated variants identified in this study are rare, this
finding could lead to the prediction of individualized infection disease risk based on the
accumulation of such rare variants. Infections are amongst the strongest known selective
pressures on our genomes [75], acting as a purifying selective pressure during childhood
and historically removing the most susceptible individuals from the population [76]. On
the contrary, recent generations are exposed to mandatory vaccinations, improved san-
itary conditions, better pathogen control and more effective clinical treatment, so the
disease-associated deleterious variants are retained and accumulate in populations. Under
the assumption that the (re-)emerging epidemics will utilize similar susceptibility and
pathogenesis mechanisms, identifying rare variants with strong clinical effects could be-
come an invaluable tool for predicting an individual’s risk of being infected with specific
pathogens [77].

The results of this study were obtained based on very small sample sizes for each
disease in a very heterogeneous population sample, thus requiring replication in indepen-
dent populations. This could partially be explained by the response bias to the voluntary
participation in the 10,001 Dalmatians biobank. However, the differences might also emerge
because the two sub-cohorts are isolated island populations, while the third cohort is a
more heterogeneous population on the mainland. Therefore, we consider this report the
initial stage for a larger scale, cross-ethnical meta-analysis to measure the effects of these
and other rare variants associated with infectious disease risk. Besides the small sample
size representing a major limitation, this study may also suffer from the imprecision of
the traits, which were registered based on clinical examinations and hospital admittance
records, or via surveys and thus relying on patient memory. The use of electronic health
records with diagnosed and validated pathogens is a possible step forward, especially in
biobanks that have good links with the clinical records, in order to overcome the major
issues of genetic studies in the field of infectious disease susceptibility regarding sample
size, harmonization of study protocols, patient characterization and improvement in the
use of appropriate analytic methods [6]. Due to the pathophysiological differences be-
tween bacterial and viral infections and the limitations mentioned above (small sample
sizes and trait imprecision), we opted not to include multivariate GWAS models in this
study. However, future studies should build upon these initial efforts, and larger biobanks
should incorporate both univariate and multivariate GWAS approaches to progress our
understanding of the role of host genetic factors in host–pathogen interaction. In addition,
the mechanisms described here may be population-specific, thus having a limited role in
the general population. These population-specific differences are already noticeable in
the demographic characteristics, with significant differences among cohorts. Due to the
nature of isolated island populations, there may also be a genetic difference, which might
represent bias; however, we tried to overcome this by using a meta-analysis approach and a
more stringent adjusted p-value threshold. Nevertheless, some of the obtained rare variants
in this study may provide interesting targets for future functional studies if replicated in
other populations with larger sample sizes and clinically verified traits.
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A potential way forward in understanding the host genetics involvement in infectious
diseases susceptibility and pathophysiology could be the continuous collection of samples
and data in observational studies, which could build upon the existing initiatives across
Europe and elsewhere. Although the COVID-19 pandemic showed us that we are still far
from fully understanding complex host–pathogen interactions, elucidating the involvement
of host factors in infectious disease pathogenesis should be labelled as a high research
priority, aiming to contribute to a better understanding and a possibility for the quicker
translation of knowledge into clinical care.

4. Materials and Methods
4.1. Study Populations

This study is based on the Croatian biobank 10,001 Dalmatians [78,79], the most
comprehensive research resource for investigating genetic, environmental and social deter-
minants of health and disease in Croatia. The study included various measurements with
over 250 disease-related quantitative traits, including medical examination, anthropometry,
clinically relevant analyses, cognition, smell, taste and hearing thresholds, diet, and general
lifestyle. Here, we used the data from three sub-cohorts for which we had bacterial and
viral infections disease data—Korčula (N = 2833), Vis (N = 1039) and Split (N = 1012). While
the first two are isolated island populations, the third originates from the second-largest
city in Croatia. The data were collected in several phases, starting in 2003 up to 2014.
Additionally, a follow-up postal survey was sent to participants from the sub-cohorts of
Korčula and Vis in 2016, with 1082 responses (28% response rate).

The project has been approved by the Ethical Boards of the Medical Schools at the
University of Zagreb and the University of Split. All participants were given information
on the study aims and goals and provided informed consent before entering the study. In
addition, all the methods and activities related to human subjects were performed following
the relevant guidelines. Because the study took place in isolated island communities, where
the identification of subjects might be easier than in the general population, a stricter
personal information protection plan was utilized. This meant that we devised separate
collection, storage, and management protocols of all the personal records, with exclusive
access to these data only granted to the PI, who enrolled all the participants and had
exclusive access to these data.

4.2. Genotyping and SNP Imputation

DNA was extracted from venous blood leukocytes using Nucleon BACC3 kits (Tepnel,
Manchester, UK). Genotyping employed Illumina HumanHap300 v1 (Vis: 317,509 single-
nucleotide polymorphisms, SNPs) and Illumina HumanHap370CNV-Quad (Korčula phase
1: 346,034 SNPs, Korčula phase 2: 719,487 SNPs; Split phase 1: 320,406 SNPs, Split phase
2: 646,888 SNPs). Illumina GenomeStudio Software v3.0 (Vis, Korčula) or v3.1 (Split) was
used for genotype calling. Participants with less than 95% (Vis) or 97% (Korčula, Split)
genotyping rates were removed from further analysis. SNPs with a call rate below 98%,
minor allele frequency (MAF) below 1% and 0.01% for Exome Chip Markers (Korčula, Split)
and p-value for Fisher’s exact test of the Hardy–Weinberg equilibrium (HWE) below 10–6
were also removed to remove low-quality SNPs. In addition, samples with excessive auto-
somal heterozygosity or gender inconsistency (based on the sex chromosomes genotypes)
were also removed. This left us with a final sample size of 960 in Vis, 2700 in Korčula and
966 in Split, contributing to the total sample size of 4624 participants in this study.

Genotype data were phased using SHAPEIT v2.r873 [80] and the duohmm func-
tion [81], and imputed to the reference panel HRC v1.1 [82] using the Sanger Imputation
Service. Both the phasing and imputation steps were performed separately for each geno-
typing platform and sub-cohort. SNPs with an imputation quality score (INFO) below
0.4 and monomorphic variants were excluded, leaving 12,468,939 SNPs for Vis, 12,382,856
SNPs for Korčula and 11,400,586 SNPs for Split available for downstream analysis.
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4.3. Trait Definition

A total of 14 traits were used in these analyses, defined through an extensive ques-
tionnaire that catalogued the participants’ history of diseases and hospitalizations and the
available medical records on these events. The following three groups of variables were
identified: binary variables, binary-derived variables, and ordinal variables. The binary
group was based on specific diagnoses in the subjects’ medical histories. The diagnoses
investigated included tuberculosis, pneumonia, hepatitis, or meningitis. The second group
consisted of derived traits that were of a broader scope, including various respiratory infec-
tions (pooled pneumonia and tuberculosis), gastrointestinal infections (pooled hepatitis
and other gastrointestinal diseases), systemic infections, bacterial infections (respiratory
infections and bacterial meningitis), and viral infections (hepatitis and viral meningitis). We
also included appendectomy and tonsillectomy in the second group, as they are associated
with infection-related traits.

The final group consists of an estimate of the infectious burden and two traits added
in the follow-up survey—annual common cold frequency and influenza frequency over the
last ten years. The infectious burden was defined as an individual’s burden of infectious
diseases up to the date of the questionnaire and was calculated for each participant (cases
coded as 1, controls coded as 0) using the following equation:

Infectious burden = (tuberculosis × 1) + (pneumonia × 1) + (hepatitis × 1) + (meningitis × 1) + (respiratory

infections (tuberculosis and pneumonia cases excluded) × 1) + (gastrointestinal infections (hepatitis cases

excluded) × 1) + (systemic infections × 1) + (appendectomy × 0.5) + (tonsillectomy × 0.5)

The cases of appendectomy and tonsillectomy were multiplied by 0.5, as their origin
can be very heterogeneous. If a subject had the same infectious disease two or more times,
their infectious burden score was multiplied by 2, to give more strength to individuals
with recurrent infections, which were assumed to happen in highly susceptible individuals.
The total score of infectious burden divided participants into groups coded from 0 to 4.
Most participants had none or one infectious disease event, while a small number had
two or more different infectious diseases during their life. Cold and influenza frequency
divided participants into groups coded from 0 to 3 based on the following possible answers
of having a cold/influenza: several times per year/every year in the last ten years, once
a year/several times in the last ten years, less than once a year/once in the last ten years,
never or almost never/never.

4.4. Statistical Analyses
4.4.1. Genome-Wide Association Analyses

Each infection-related trait was firstly adjusted for age, gender, the first three principal
components, years of schooling (ranging from 0 to 26, where elementary school is defined
as 0–8, high school as 9–12, and higher education and university as higher than 13 years),
socioeconomic status (measured as the total sum of the items a subject had in possession,
such as plumbing, heating, phone, computer, etc., ranging from 0 to 16), number of reported
different infections (in order to penalize for multiple infections), and for all respiratory
infection traits (pneumonia, respiratory infections, cold frequency and influenza frequency),
we additionally adjusted the model to penalize for recurrent pneumonia cases. The vari-
ables years of schooling and material status were transformed into categorical variables
(3 categories for years of schooling and 4 categories for material status), in line with our
previous studies [83–85]. Missing data were imputed based on the median value depending
on the cohort, gender, and age group. For the latter purpose, participants were divided into
the following age groups: 18–39, 40–64, and ≥65. To account for the population structure
and familial relatedness, we calculated the kinship matrix using the ibs function from the
GenABEL R package [86].

We used a logistic regression model for binary and binary-derived variables and
a linear regression model for ordinal variables [87]. As the analyses were performed
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on imputed genetic data, we used imputed allelic dosages. All the models assumed an
additive allelic effect, and the environmental residuals used for the association analysis
were derived from the polygenic function in the GenABEL R package [86]. All association
analyses were performed using RegScan v0.2 software [88]. Summary statistics (effect
sizes, standard errors, and p-values) of each sub-cohorts were adjusted by the genomic
control method based on GRAMMAR-gamma factors [89] (genomic inflation factor lambda
and unbiased estimate of the regression coefficient) from the polygenic function in the
GenABEL R package in order to account for the relatedness and population stratification.

4.4.2. Meta-Analyses

Before meta-analysis, GWAS summary statistics were cleaned using the standardized
QC protocol for EasyQC software v9.2 [90]. SNPs with mismatching alleles across all three
sub-cohorts were excluded. We performed a fixed effect inverse-variance meta-analysis
using METAL software version 2011-03-25 [91]. The genome-wide significance threshold
was defined as 3.57 × 10−9 (standardized GWA threshold 5 × 10−8 divided by the number
of traits analyzed) after Bonferroni correction for testing several infection-related traits,
as some are highly correlated (e.g., respiratory infections and pneumonia), while the
suggestive threshold was set to 5 × 10−8.

4.4.3. Proportion of Phenotypic Variance Explained by SNPs

This was calculated for each of the identified SNPs according to the formula below
(β is the β coefficient, MAF is the minor allele frequency and phvar is the phenotype
variance) [92].

Phenotypic variance = β2 × ((2 ×MAF × (1 −MAF))/phvar)

Phenotype variance was calculated based on the sample residuals adjusted for covari-
ates. To obtain the total proportion of phenotypic variance explained by all the identified
SNPs for each infection-related trait, the individual variance in each SNP was summed.

4.4.4. SNP Function Annotation

SNPs within a 500 kb window around the leading SNP were extracted to annotate the
region. Several tools were used, including the online tool HaploReg v4.1 (http://archive.
broadinstitute.org/mammals/haploreg/haploreg.php accessed on 1 September 2022) [93]
and Bioconductor biomaRt R package v2.36.1 [94,95].

To check whether the leading significant SNPs were previously associated with un-
related traits, we used the online tool PhenoScanner v1.1 (http://www.phenoscanner.
medschl.cam.ac.uk/ accessed on 1 September 2022) [96] to examine the published GWAS
associations. We reported the identified associations using a p-value threshold of 0.05 and
queried for proxy SNPs with an r2 of 1.

4.4.5. Pathway Analysis

We performed pathway analysis using the online tool STRING v10.5 (https://string-
db.org/ accessed on 1 March 2023) [97] for significant infection-related traits using the
genes associated with top leading SNPs. To create a network, the following default and
suggested STRING settings were used: minimum required interaction score of medium
confidence (0.4) and the maximum number of interactions used to limit the output to
the ten best-scoring hits (both for direct and indirect interactions). We used functional
enrichments for Gene Ontologies (GO) and Kegg pathways, also using STRING v10.5 with
option analysis, and we reported the most significant pathways with an FDR below 1% and
with a minimum of 5 genes from the network in the pathway. Networks were visualized
using Cytoscape v3.7.2 [98] with GeneMANIA plugin v3.5.1 [99].

http://archive.broadinstitute.org/mammals/haploreg/haploreg.php
http://archive.broadinstitute.org/mammals/haploreg/haploreg.php
http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
https://string-db.org/
https://string-db.org/
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4.4.6. Validation with RNA-Seq Data

The Gene Expression Omnibus database (GEO; https://www.ncbi.nlm.nih.gov/geo/
accessed on 1 March 2023) was searched for relevant publicly available RNA-seq data using
the following search criteria: (1) RNA-seq data performed on human whole-blood samples;
(2) studies that investigated pneumonia, hepatitis, meningitis, or tuberculosis; (3) studies
published in the last year; (4) minimum ten samples per group. In addition, we searched
for RNA-seq studies on COVID-19 with the same restriction search criteria. Differential
gene expression analyses were performed using R package DESeq2 v1.28.1 [100]. From
each included RNA-seq study, raw counts were first pre-filtered to remove genes with
less than 10 read counts, normalized via DESeq2 variance stabilizing transformation and
differentially expressed genes (DEGs) were identified if the false discovery rate (FDR)
adjusted p-value was less than 0.05. Finally, the GTEx database (https://gtexportal.org/
home/ accessed on 5 March 2023) was used to identify the potential eQTLs in whole blood.

5. Conclusions

This study identified several novel rare variants associated with susceptibility to
hepatitis, meningitis, tuberculosis, and systemic infections. In turn, this demonstrates that
biobanks can present a valuable resource for host genetic studies in identifying susceptibility
variants to infectious diseases, despite imprecise traits and small sample sizes, which were
also the main limitations of this study. Thus, we propose creating a large consortium
of biobanks with access to genetic data and data on infectious diseases, ideally linked
with electronic health records, to develop an extensive resource for investigating host
genetics as a risk factor for susceptibility to infections. Data collection and identification
of possible bias and confounders in various cohorts should be standardized across the
consortium to allow for proper future analysis, and more emphasis should be given on the
identification of appropriate controls (e.g., susceptible but unexposed controls, controls with
undiagnosed, latent or mild infection and information on vaccination status). A harmonized
consortium could identify highly penetrant rare variants that have accumulated in the
modern human population. In conclusion, these efforts could elucidate a fine interplay
between monogenic and polygenic effects and develop a new frontier for understanding
and predicting emerging infections and epidemics.
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