Table 4.
1st Author, Year | Research Aim and Design | Results | Risk of BIAS |
---|---|---|---|
Zhao, 2005 [44] |
Effect of neonatal swimming necklace (water therapy) during hospitalization on newborns’ clinical parameters. Clinical parameters (weight before discharge, time of first defecation, meconium turning yellow) were recorded via daily monitoring in newborns exposed to aquatic exercises helped by nurse, twice/day for 10–15 min using neonatal swimming necklace (N = 223) and control group who received normal bathing (N = 154). |
Weight at discharge: Spontaneous vaginal delivered infants (IG = 3.29 ± 0.35 kg; CG = 3.09 ± 0.38; p < 0.01); Caesareans delivered infants (IG = 3.51 ± 0.40 kg; CG = 3.17 ± 0.48; p < 0.01). Time of first defecation: Spontaneous vaginal delivered infants (IG = 7.03 + 4.80 h; CG = 8.53 + 5.06; p < 0.05); Caesareans delivered infants (IG = 6.54 + 3.59 h; CG = 8.13 + 4.16; p < 0.05) Time of meconium turning yellow: Spontaneous vaginal delivered infants (IG = 39.15 + 15.88 h; CG = 48.01 + 19.42 h; p < 0.01); Caesareans delivered infants (IG = 39.02 + 13.60 h; CG = 55.67 + 25.05; p < 0.05). Neonatal swimming necklace therapy promoted babies’ growth, earlier onset of first defecation and onset of meconium turning yellow in the early stage. |
* None |
Vignochi, 2010 [45] |
Effects of aquatic therapy on pain, sleep cycle and wakefulness on preterm infants.
|
Sleep-wakefulness cycle: before intervention = 6; during intervention = 4; end of intervention = 3; 30 min after = 1.5; 60 min after = 1 (p < 0.001). Pain: Compared with baseline, the mean of pain measure decreased during the intervention (p = 0.012), at the end, after 30 and 60 min (p < 0.001). No significant differences for mean blood pressure and body temperature before to after intervention. HR and RR were significantly lower (p = 0.001 and p < 0.001) and SaO2 significantly higher (p < 0.001) comparing baseline with 30 and 60 min after intervention. Aquatic therapy reduced pain and improved sleep quality in preterm infants. |
* Confounding Outcomes measurement |
Novakoski, 2018 [46] |
Effects of aquatic physiotherapy on physiological variables, sleep disturbances, wakefulness, and pain on preterm infants.
|
Pain reduction was observed between evaluation moments: before intervention = 3.68 ± 0.25; assessment 2 = 1.04 ± 0.12; assessment 3 = 0.40 ± 0.12 (p = < 0.001). Sleep and wakefulness improvement between evaluation moments: before intervention = 4.45 ± 0.30; assessment 2 = 3.54 ± 0.19; assessment 3 = 2.81 ± 0.21 (p = < 0.05). Body temperature decreased from first evaluation (36.52 °C ± 0.62 °C) to assessment 2 (36.24 ± 0.07 °C, p < 0.01); but was maintained from assessment 2 to assessment 3 (36.22 ± 0.06 °C, p = 1.0). HR rates decrease between first evaluation (154.27 ± 2.6 bpm) and third evaluation (143.72 ± 3.38 bpm, p = 0.003). SaO2 increased between evaluation 1 (94.50% ± 0.60%) and evaluation 2 (97.31% ± 0.36%, p = 0.001); gains were maintained in evaluation 3 (97.86% ± 0.33%). Aquatic therapy was effective in improving sleep, wakefulness and physiological parameters and reducing pain in preterm newborns. |
* Confounding Outcomes measurement |
Silva, 2017 [47] |
Effects of bucket aquatic therapy on physiological parameters in preterm newborns. Thirty preterm newborns were submerged in a bucket with warm water, up to the height of clavicles, during 10 min in two sessions in alternated days.
|
A significant reduction of HR between pre-test (152.23 ± 3.13) and follow-up test (146.53 ± 2.92) was observed (p < 0.05). No significant differences for RR and SaO2 between assessment moments was observed. Bucket aquatic therapy with warm water decreased HR in hospitalized premature newborns. |
** Confounding |
Quality analysis tool: * ROBINS-I and ** JBI.