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Abstract: Given the substantial correlation between early diagnosis and prolonged patient survival
in HCV patients, it is vital to identify a reliable and accessible biomarker. The purpose of this
research was to identify accurate miRNA biomarkers to aid in the early diagnosis of HCV and to
identify key target genes for anti-hepatic fibrosis therapeutics. The expression of 188 miRNAs in
42 HCV liver patients with different functional states and 23 normal livers were determined using
RT-qPCR. After screening out differentially expressed miRNA (DEmiRNAs), the target genes were
predicted. To validate target genes, an HCV microarray dataset was subjected to five machine
learning algorithms (Random Forest, Adaboost, Bagging, Boosting, XGBoost) and then, based on the
best model, importance features were selected. After identification of hub target genes, to evaluate
the potency of compounds that might hit key hub target genes, molecular docking was performed.
According to our data, eight DEmiRNAs are associated with early stage and eight DEmiRNAs are
linked to a deterioration in liver function and an increase in HCV severity. In the validation phase of
target genes, model evaluation revealed that XGBoost (AUC = 0.978) outperformed the other machine
learning algorithms. The results of the maximal clique centrality algorithm determined that CDK1 is a
hub target gene, which can be hinted at by hsa-miR-335, hsa-miR-140, hsa-miR-152, and hsa-miR-195.
Because viral proteins boost CDK1 activation for cell mitosis, pharmacological inhibition may have
anti-HCV therapeutic promise. The strong affinity binding of paeoniflorin (−6.32 kcal/mol) and
diosmin (−6.01 kcal/mol) with CDK1 was demonstrated by molecular docking, which may result
in attractive anti-HCV compounds. The findings of this study may provide significant evidence, in
the context of the miRNA biomarkers, for early-stage HCV diagnosis. In addition, recognized hub
target genes and small molecules with high binding affinity may constitute a novel set of therapeutic
targets for HCV.

Keywords: HCV diagnosis biomarker; machine learning algorithms; molecular docking; therapeutic
target

1. Introduction

Hepatitis C is a multifactorial disease, with a reported global prevalence of 56.8 million
hepatitis C virus (HCV) infections on 1 January 2020 (95% uncertainty interval (UI) 55.2–67.8).
Although this number is lower than in 2015, forecasts based on studies within 235 nations
and territories indicate that we are not on track to meet global elimination targets by 2030
due to COVID-19 [1]. Recently developed direct-acting antiviral agents (DAAs) targeting
viral NS3 protease and NS5A and NS5B polymerases are highly effective in curing patients
with HCV. However, global eradication of HCV remains complicated due to the lack of

Int. J. Mol. Sci. 2023, 24, 7207. https://doi.org/10.3390/ijms24087207 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24087207
https://doi.org/10.3390/ijms24087207
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-2027-0687
https://orcid.org/0000-0002-2359-2294
https://orcid.org/0000-0002-6191-7168
https://doi.org/10.3390/ijms24087207
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24087207?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 7207 2 of 14

a HCV vaccine, the possibility of drug-resistant mutations, progression of severe liver
disease in DAA-cured individuals, and other newly emerging problems. The pathogenic
mechanisms that sustain the liver damage in HCV infection may underlie even other liver
diseases, thus potentially becoming new effective early diagnostic markers and/or ther-
apeutic targets, even in non-infected patients [2]. Notably, genome expression alteration
occurs prior to histologic evidence of liver disease progression, suggesting that events that
develop during the acute phase of infection influence patients outcome. Further, histologi-
cal assessments may be biased, and interpretations of hepatic structural abnormalities vary
among pathologists [3]. Therefore, it is crucial to identify accurate biomarkers that can
detect liver damage early and precisely. Despite dysregulated host gene expression, there
is growing evidence that microRNAs (miRNAs) play a crucial role in the biological inter-
action between HCV and the host cell, which might be used by host cells to control viral
infection [4,5]. All those studies reveal the indispensable role of miRNAs in viral infection
and disease progression. MicroRNAs are small, non-coding RNAs that complement each
other non-precisely and bind to the 3′ untranslated regions of target mRNA, resulting in
mRNA dysregulation. Increasing evidence demonstrates that miRNAs are one of the cen-
tral factors in the interaction network between virus and host. However, the expression of
miRNAs for disease treatment has so far been a difficult task due to their variable nature in
different situations [6], but the same nature of being differentially expressed under different
conditions allows miRNAs to be used as biomarkers for diseases. Some special miRNAs
are highly correlated with the progression of liver-specific pathologies, and altered levels
of miRNAs are even more sensitive and specific than those of conventional proteins. Some
of them can therefore serve as novel, less invasive diagnostic and prognostic biomarkers
for HCV-infected patients with liver diseases. In addition, they are promising therapeutic
targets for the development of new anti-HCV agents.

The first aim of the present study was to assess whether the expression of miRNAs
correlated with different functional states of HCV in order to identify a non-invasive
diagnostic biomarker. Therefore, the expression of 188 miRNAs in 42 HCV livers at
different functional states and 23 normal livers was determined using RT-qPCR. These data
were further applied to screen out differentially expressed miRNAs (DEmiRNAs) in HCV
and normal liver tissues. Second, to discern the key genes that may serve as therapeutic
targets to hit with drugs, the potential target genes of DEmiRNA were predicted using
miRNet. To further validate target genes, we employed the GEO database to download
GSE34798—the HCV mRNA expression dataset. Then, five ensemble machine learning
algorithms (Random Forest, Adaboost, Bagging, Boosting, and XGBoost) were conducted
on the dataset. After evaluation of the models, important features were selected based
on the best model, and validated target genes were screened using Venny plot. To find
the hub target genes, after acquiring the PPI network, the hub target genes were screened
using MCODE (Cytoscape plug-in Molecular Complex Detection) and the cytoHubba
plug-in. To explore compounds that might hit the hub target gene, the structure of 18 small
molecules with anti-hepatic fibrosis action was downloaded, and molecular auto-docking
was performed using AutoDock Tool 1.5.6.

2. Results
2.1. Differentially Expressed miRNA

The result of ANOVA indicated that the expression of 34 miRNAs was significantly dif-
ferent in HCV patients compared to normal (8 upregulated and 26 downregulated). When
comparing normal livers to Child–Pugh class A, B, and C, we identified 28 (6 upregulated
and 22 downregulated), 19 (5 upregulated and 14 downregulated) and 28 (6 upregulated
and 22 downregulated) differentially expressed miRNAs, respectively (Supplementary
File S1). The result of theVenn diagram shows that 13 DEmiRNAs are common between
Child–Pugh class A, B, and C and 8 DEmiRNAs only in Child–Pugh class A but not in child-
B or C, which means that these miRNAs can be potential biomarkers for early diagnosis,
because their expression has changed specifically in the patients of functional stage A.
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Moreover, 8 DEmiRNAs were only in Child–Pugh class C but not in Child-A or B (potential
biomarkers for stage C). Our result did not show any particular DEmiRNAs only in Child–
Pugh class B, which means that the exact differentiation in moderate state (Child-B) can be
difficult based on miRNAs biomarkers (Figure 1 and Supplementary File S2). Our results of
the statistical analysis further show that the expression of hsa-miR-342-3p, hsa-miR-886-5p,
and hsa-miR-210 from healthy situation to functional stage A and B slowly increased (not
significantly), but at functional stage C it significantly increased (Supplementary File S3).
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Figure 1. The Venn diagram illustrates that 13 differentially expressed miRNAs (DEmiRNAs) are
shared by Child–Pugh classes A, B, and C, and could be used as biomarkers for HCV diagnosis but
not disease stage. However, the diagram also depicted 8 specific biomarkers for early diagnosis of
HCV, including hsa-miR-335, hsa-miR-140, hsa-miR-376c, hsa-miR-939, and 8 DEmiRNAs, which can
all be potential biomarkers for functional stage C.

2.2. Validated Target Genes Using Ensemble Machine Learning Algorithms

Generally, miRNAs perform posttranscriptional functions by base-pairing to the
mRNA 3′ untranslated regions. Therefore, the miRNet database was applied to predict the
target genes of up-regulated and down-regulated specific DEmiRNAs in functional stages
A and C, respectively (Supplementary File S4). Table 1 and Figure 2 represent features of
the network between DEmiRNAs and predicted target genes. Topological analysis of the
networks shows that hsa-mir-152 and hsa-mir-195 have the greatest number of connections
between down-regulated specific DEmiRNAs in Child–Pugh A. Moreover, in the network
of down-regulated specific DEmiRNAs in Child–Pugh C, hsa-mir-155 and hsa-miR-99a
have higher betweenness centrality, and in the network of up-regulated DEmiRNAs, hsa-
miR-886-5p and hsa-miR-342-3p play key roles. To validate the predicted target genes, five
ensemble machine learning algorithms were applied to 22,149 genes from 459 samples with
HCV and 459 samples without HCV obtained from the GSE34798 data set.

The predictive performance of five algorithms for classifying genes as DEGs or non-
DEGs was evaluated. Positive predictive value (PPV), recall (sensitivity), F-score (a har-
monic mean of sensitivity), precision, AUC, and Brier score (BS) were used to evaluate the
models. The results of the predictive performance comparison models are displayed in
Table 2. With an accuracy of 0.978, the XGBoost model demonstrated superior performance
across all evaluation criteria compared to the other machine learning algorithms.
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Table 1. The number of miRNAs and predicted target genes in Child–Pugh A and C, separately for
up-regulated and down-regulated DEmiRNAs.

Regulation Predicted Target Genes Key DEmiRNAs

Specific DEmiRNAs
in Child–Pugh A

Down 3722
hsa-mir-152,
hsa-miR-939,
hsa-mir-195,

Up 786 miR-27b

Specific DEmiRNAs
in Child–Pugh C

Down 4724 hsa-mir-155,
hsa-miR-99a,

Up 240 hsa-miR-886-5p,
hsa-miR-342-3p
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Figure 2. (a) Degree distribution graph for down-regulated specific DEmiRNAs in Child–Pugh A and
predicted target genes. The diameter of the network is 4, the average path length is 2.26, and the nodes
of hsa-mir-152 (158) and hsa-mir-195 (119) have the greatest number of connections; (b) Betweenness
distribution graph for down-regulated specific DEmiRNAs in Child–Pugh C and predicted target
genes. The diameter of the network is 5, the average path length is 2.01, and hsa-mir-155 (0.907471357)
and hsa-miR-99a (0.6527755) have higher betweenness centrality and the greatest number of shortest
paths, which indicates the key role of these nodes in the network.

Table 2. Comparison of prediction results of different machine learning models.

Model PPV Recall F1-Score Accuracy AUC BS MCC

Random Forest 0.961 0.973 0.973 0.973 0.973 0.030 0.946

XGBoost 0.967 0.978 0.978 0.978 0.978 0.023 0.957

AdaBoost 0.956 0.973 0.971 0.972 0.973 0.130 0.946

Bagging 0.956 0.967 0.967 0.967 0.967 0.032 0.935

Boosting 0.956 0.967 0.967 0.967 0.967 0.030 0.935

PPV—positive predictive value; BS—Brier score; MCC—Matthews correlation coefficient.

To assess the performance of the models on test sets, the AUC-ROC for each model
was calculated. The XGBoost has the best performance, with an AUC over 0.97 in the test
set (Figure 3a). The recall and PPV of the machine learning algorithms were also high, over
0.96. The precision–recall curve is represented in Figure 3b. In this curve, the XGBoost
model shows the best performance with a higher value (0.98).
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Next, XGBoost was chosen to extract the top features (important DEGs) that were sub-
jected to recursive feature elimination. Through recursive feature elimination, the least num-
ber of features were obtained (Supplementary File S5). Based on XGB feature importance
analysis, 970 DEGs were detected (620 up-regulated, 350 down-regulated). Previous studies
have shown a negative feedback relationship between miRNA and mRNA. Thus, a Venn di-
agram was utilized to obtain the intersection between down-regulated (up-regulated) DEGs
and target genes of up-regulated (down-regulated) DEmiRNAs (Supplementary File S6):

• Target genes of down-regulated DEmiRNAs in Child–Pugh A (3722) vs. up-regulated
DEGs (620) = 148 up-regulated genes

• Target genes of up-regulated DEmiRNAs in Child–Pugh A (786) vs. down-regulated
DEGs (350) = 52 down-regulated genes

• Target genes of down-regulated DEmiRNAs in Child–Pugh C (4724) vs. up-regulated
DEGs (620) = 195 up-regulated genes

• Target genes of up-regulated DEmiRNAs in Child–Pugh C (240) vs. down-regulated
DEGs (350) = 37 down-regulated genes

2.3. Screen Hub Target Genes

To further investigate the hub target genes, a PPI network for target genes in each
category was constructed using protein interaction data obtained from the STRING (Search
Tool for the Retrieval of Interacting Genes) database and then visualized using Cytoscape
(Supplementary File S7). A statistical summary of the networks is presented in
Supplementary File S8. For the target genes of down-regulated DEmiRNAs in Child–Pugh
A and C networks, we first employed the MCODE (Molecular Complex Detection) plugin
from Cytoscape to find the top clusters derived from them (Supplementary File S9), and
we then employed the cytoHubba to identify the hub genes from the top clusters using the
maximal clique centrality (MCC) algorithm, and the genes with the top MCC values were
considered hub genes. Due to the small size of the networks of down-regulated target genes
(Child–Pugh A and C), cytoHubba was directly applied to identify the top target genes. For
down-regulated DEmiRNAs in Child–Pugh A, the following target genes were identified:
STAT1, TGFBR1, PTEN, CUL3, FOS, BAP1, SLC12A4, GNPDA1, CDK1, for up-regulated
DEmiRNAs in Child–Pugh A: SMAD4, MELK, SRSF1, for down-regulated DEmiRNAs
in Child–Pugh C: ATXN1, CDKN1B, EGR1, RB1, CALR, FN1, UBE2Z, YWHAQ, ZEB1,
ITGA5, and for up-regulated DEmiRNAs in Child–Pugh C: MYC, ILK, GTF2A1, CDK2.
The results of the gene ontology enrichment analysis indicate that the majority of the most
abundant genes were enriched in biological regulation, cellular processes, developmental
processes, metabolic processes, and responses to stimulus signaling (Figure 4a). Moreover,
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these genes were mainly involved in pathways such as cancer, hepatocellular carcinoma,
hepatitis C, hepatitis B, and microRNAs in cancer and play key roles in some molecular
functions, including double-stranded DNA binding, protein-containing complex binding,
transcription cis-regulatory, RNA polymerase, and kinase binding (Figure 4b).
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2.4. Binding Affinity between Target Gene and Anti-Hepatic Fibrosis Small Molecules

After removing water and ligand from CDK1 (6GU6, pdb resolution 2.33 Å), polar
hydrogens were added using the Discovery Studio Visualizer tool. Ligand preparation
and docking between protein and ligands were performed using Autodock Vina (with
no change in rotatable bonds and active torsion for the ligand). All docked poses had
a root mean square deviation (RMSD) value below 2.0 Å. The result of the united atom
scoring function shows the highest binding affinities between CDK1 and paeoniflorin
(−6.32 kcal/mol) and diosmin (−6.01 kcal/mol). Figure 5 illustrates the visualization of the
docking of the paeoniflorin molecule on the CDK1 protein. Moreover, detailed information
for all 18 small molecules, including binding energy between CDK1 and natural small
molecules, chemical formula, and mechanisms, is provided in Table 3.
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Table 3. List of compounds, category, source, mechanisms, chemical formula, molecular weight, and binding affinity of 18 natural small molecule to CDK1.

Compound Classifications Source Mechanism Pubchem ID Molecular Weight
(g/mol) Chemical Formula Binding

Energy/(kcal/mol)

Berberine Minor alkaloid Coptis chinensis Inhibiting the AMPK pathway 2353 3.363.612 C20H18NO4 –4.57

Caffeine Minor alkaloid Coffea Dampening the
cAMP/PKA/CREB pathway 2519 1.941.906 C8H10N4O2 –5.27

Tetrandrine Minor alkaloid Stephania tetrandra
Inhibited TGF-β1-induced

α-SMA secretion and collagen
deposition

73,078 622.762 C38H42N2O6 –4.96

Capsaicin Minor alkaloid Capsicum annuum L.
Inhibiting the TGF-β1/Smad

pathway via PPAR-γ
activation

1,548,943 3.054.119 C18H27NO3 –3.44

Melatonin Minor alkaloid Juglans regia Inhibiting TGF-β1/Smad
Signaling Pathway 896 2.322.783 C13H16N2O2 –4.31

Oxymatrine Minor alkaloid Sophora flavescens

Modulation of
TLR4-dependent

inflammatory and TGF-β1
signaling inhibited NFkappaB

transcriptional activity,
TGF-β1 and α-SMA

expression

114,850 264.369 C15H24N2O2 –5.39

Puerarin Flavonoid
monomer Puerariae lobata

The regulation of NF-κB/IκBα,
p38 MAPK, and Bcl-2/Bax

signaling
5,281,807 4.163.781 C21H20O9 –5.51

Diosmin Flavonoid
monomer Bitter orange

Inducing the expression of
Nrf2 and its downstream

antioxidant factors
5,281,613 6.085.447 C28H32O15 –6.01

Myricetin Flavonoid
monomer Myrica rubra Inhibits the activation of HSCs 5,281,672 3.182.351 C15H10O8 –4.22
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Table 3. Cont.

Compound Classifications Source Mechanism Pubchem ID Molecular Weight
(g/mol) Chemical Formula Binding

Energy/(kcal/mol)

Hesperetin Flavonoid
monomer Citrus reticulata

Inhibiting TGF-β1/Smad
pathway-mediated
extracellular matrix

progression and apoptosis

72,281 3.022.788 C16H14O6 –5.21

Icaritin Flavonoid
monomer Herba Epimedium

Induce cell death in activated
HSCs through

mitochondria-mediated
apoptosis

5,318,980 368.385 C21H20O6 –4.87

Naringenin Flavonoid
monomer

Amacardium
occidentale

Blocking TGFβ-Smad3 and
JNK-Smad3 pathways 932 2.722.528 C15H12O5 –5.41

Silibinin Flavonoid
monomer Silybum marianum

Hepatoprotective, antioxidant,
free radical scavenging,

membrane stabilizing and
anti-fibrotic activity

31,553 482.441 C25H22O10 –4.62

Artesunate Monoterpene Artemisia
Inhibition of

LPS/TLR4/NF-κB signaling
pathway

6,917,864 384.425 C19H28O8 –5.27

Betulinic acid Monoterpene Betula platyphylla
Modulating the

TLR4/MyD88/NF-κB
signaling pathway

64,971 456.711 C30H48O3 –5.82

Paeoniflorin Monoterpene Paeonia lactiflora Regulating TGF-β1/Smads
signaling pathway 442,534 480.466 C23H28O11 –6.32

Curcumin Single phenol Curcuma longa
Inhibition of the activation of
HSCs and induction of their

apoptosis
969,516 3.683.799 C21H20O6 –4.15

Resveratrol Single phenol Veratrum nigrum

Reduced collagen-1, TGF-β,
NF-κB mRNA expression and

desmin and α-SMA protein
expression

445,154 2.282.433 C14H12O3 –4.75
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3. Discussion

More than half of HCV infected patients develop chronic infection. Therefore, early
detection is essential for preventing or delaying the disease progression [7]. miRNAs are
closely correlated with liver-specific disease progression, and the altered levels of miRNAs
have even higher sensitivity and specificity than proteins. Therefore, some of them can
serve as novel diagnostic biomarkers in HCV-infected patients. Thus, in the current
study, 188 miRNA expressions in HCV patients and normal livers was compared to find
DEmiRNAs as biomarkers in different functional states of HCV (A, B, and C). Our results
show that in liver tissues of HCV patients in the early stage, the expression of hsa-miR-335,
hsa-miR-939, hsa-miR-140, hsa-miR-376c, hsa-miR-203, hsa-miR-152, and hsa-miR-195 is
significantly decreased, whereas the expression of hsa-miR-27b is highly up-regulated
compared to the samples without liver disease, which can be potential biomarkers for the
diagnosis of HCV in the early stage. The miR-27b is involved in lipid regulatory pathways
and plays a crucial role in a self-inhibiting mechanism in HCV by downregulating the
genes engaged in lipid metabolism that are required for HCV replication [8]. Therefore,
an increase in miR-27b expression may serve as a potential marker for early-stage HCV
patients. Although some studies demonstrated that miR-335, hsa-miR-203, and hsa-miR-
152 can serve as biomarkers for the early diagnosis of HCV, but it is still debated [9–11].
Then, to discern the target genes that may serve as a therapeutic target in the early stage of
HCV, the potential of DEmiRNA target genes, using miRNet were predicted.

To further verify the target genes, the first five ensemble machine learning algo-
rithms (Random Forest, Adaboost, Bagging, Boosting, and XGBoost) were conducted on
22,149 genes of 459 samples with HCV, and 459 samples without HCV to find the best
model. Evaluation of models based on PPV, recall, F-score, accuracy, AUC, and BS indi-
cated that the XGBoost (AUC 0.978) model presented better performance in all evaluation
metrics than the other machine learning algorithms. The result of the intersection between
up-regulated DEGs (output of feature selection based on XGBoost) and target genes of
down-regulated DEmiRNAs in Child–Pugh A shows 148 validated up-regulated target
genes. To find hub target genes, after acquiring the PPI network, the hub target genes were
screened using MCODE and the cytoHubba plug-in. The results of the maximal clique
centrality algorithm indicate SLC12A4 (target genes for hsa-miR-939) and CDK1 (target
genes for hsa-miR-335, hsa-miR-140, hsa-miR-152, and hsa-miR-195) as key up-regulated
target genes in the early stage of HCV disease.

This transporter-related gene has been reported to be differentially expressed in HCV-
infected patients by a number of prior studies [12–14]. Solute carrier family 12 member
4 (SLC12A4) is one of the essential genes for HCV RNA replication; therefore, suppression
of this gene may result in inhibition of HCV replication. CDK1 is a key regulatory kinase of
the cell cycle in the CDK family. A previous study demonstrated that CDK1 is up-regulated
in HCV [15] and the viral protein increases the activity of the cyclin B1-CDK1 complex
through the MAPK p38 and JNK pathways [16]. As CDK1 activation is required for
common regulatory processes of the cell cycle, inhibition or interference by drugs has the
potential to be an effective method of HCV treatment and progression prevention. To assess
the potency of compounds that might hit CDK1, molecular auto-docking was performed.
The observed binding energy of natural compounds artesunate and betulinic acid for CDK1
indicates their promising anti-fibrotic effects. Likewise, peoniflorin (from Paeonia lactiflora)
targeting CDK1 demonstrates various effects on liver diseases. Investigation in clinical
trials shows that this small molecule plays a key role in inhibiting liver inflammation
through regulating multiple signaling pathways. Diosmin is a natural flavone that is
proved to promote vascular health, but only part of the experimental results indicates its
anti-inflammatory and antioxidant effects, which might be related to CDK1 activity.
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4. Materials and Methods
4.1. Patient Characteristics and Specimens

RT-qPCR was used to determine the expression of 188 miRNAs in the livers of 42 HCV
patients with different functional states (Child–Pugh class B (n = 11) and C (n = 7), as
well as Child–Pugh class A (n = 23), and 23 normal livers (control). Normal liver tissue
samples were obtained from patients without liver disease, undergoing resection of metas-
tases from colon cancer at a distance of at least 5 cm from the tumor site. Histological
examination verified the non-existence of pathological indicators in the collected tissues
(the samples were used as controls in the previously published study). During elective
liver transplantation, liver parenchymal tissue samples from patients with Hepatitis C
infection (as determined by the standard clinical criteria) were obtained. The stage of liver
dysfunction was categorized using the Child–Pugh score. The characteristics of the subjects
are presented in Table 4. Tissue biopsies were taken from livers (control and pathological)
under standard general anesthesia no later than 15 min after blood flow arrest. The liver
samples were immediately snap frozen in liquid nitrogen for protein analysis or immersed
in RNAlater (Applied Biosystems, Darmstadt, Germany) for RNA analysis, and then stored
at−80 ◦C. The study protocol was approved by the Bioethics Committee of the Pomeranian
Medical University.

Table 4. Characteristics of the subjects (mean ± SD).

Parameter/Disease Control
n = 22

HCV
n = 42

Ch–P A
n = 23

Ch–P B
n = 11

Ch–P C
n = 7

Sex
(male/female) 11/9 30/28 16/14 11/10 3/4

Age (years) 63 ± 10 56 ± 7 57 ± 7 55 ± 8 52 ± 9

Total bilirubin
(mg/dL) 0.59 ± 0.25 1.75 ± 1.26 1.03 ± 0.57 2.05 ± 0.84 3.62 ± 1.78

Albumin (g/dL) 3.89 ± 0.38 3.38 ± 0.57 3.67 ± 0.49 3.23 ± 0.45 2.71 ± 0.40
INR 1.14 ± 0.21 1.30 ± 0.28 1.20 ± 0.22 1.29 ± 0.17 1.71 ± 0.36

HCV—hepatitis C; Ch–P: A, B, C—Child–Pugh Class A, B, C; INR—International Normalized Ratio.

4.2. Micro-Ribonucleic Acids Expression and Statistical Analysis

From 40–50 mg of tissue samples, total RNA (including small RNA) was isolated
using the Direct-zol RNA Miniprep Plus Kit (Zymo Research, Irvine, CA, USA); RNA
concentration was then measured using a NanoDrop ultraviolet (UV) spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). Reverse transcription was performed using
a TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems, Darmstadt, Germany)
in two separate reactions, each containing a different pool of Megaplex RT Primers (Human
Pools A and B; Applied Biosystems, Darmstadt, Germany) and 500 ng of total RNA in
a reaction volume of 7.5 µl. Finally, quantitative PCR was performed using the TaqMan
Array Cards (TaqMan Array Human MicroRNA A + B Cards Set v3.0, Thermo Fisher
Scientific, Waltham, MA, USA) in a ViiA7 Real-Time PCR system (Thermo Fisher Scientific,
Waltham, MA, USA). Of the 754 analyzed miRNAs, 188 unique miRNAs that had a Ct value
below 32 were selected for further analysis (as recommended by protocol from the assay
provider). The relative quantity (RQ) of each miRNAs was calculated using the ∆Ct method
in relation to the mean expression of three endogenous controls (stably expressed small
noncoding RNAs: U6 snRNA, RNU44, and RNU48). To investigate differentially expressed
microRNAs (DEmiRNAs) between disease groups (in total and separately in different
functional states) and control groups, an ANOVA was performed using R version 4.1.3
(http://www.Rproject.org, accessed on 20 December 2022) on the number of normalized
microRNA counts. The Holm–Bonferroni method was used to correct for multiple testing,
and miRNAs with an adjusted p-value ≤ 0.05 were considered DEmiRNAs.

http://www.Rproject.org
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4.3. Prediction and Validation of Potential Target Genes

Based on liver tissue, the miRNet database (https://www.mirnet.ca/miRNet/home.
xhtml, accessed on 14 January 2023) was used to predict the target genes of the differentially
expressed miRNAs. Key DEmiRNAs were extracted based on a topological analysis of
miRNA-target gene networks. To further validate the screened target genes for DEmiRNAs,
we employed the GEO database to download the HCV mRNA expression datasets. We
predicted DEmiRNAs between 22,149 genes of patients with HCV and subjects without
HCV using the GSE34798 dataset to further verify the target genes.

4.4. Selection of the Best Classification Model and Validation Based on Machine
Learning Algorithms

To validate predicted target genes, microarray data were subjected to five of the
most frequently recommended machine learning models from prior research. In order
to prevent data overfitting, ensemble methods with high detection power were used to
build stable models for predicting significant genes. At this point, ensemble methods
including XGBoost, AdaBoost, Boosting, Bagging, and Random Forest were used to extract
effective genes in hepatitis C disease from gene expression data. To adjust the hyper
parameters, the random selection algorithm with ten-fold cross-validation was used, as
suggested by Bargstra and Bengio [17]. All the data analyses were carried out in the Python
programming language (v. 3.8) with the scikit-learn library. Results were visualized in
Matplotlib (v. 3.1.328, author: John D. Hunter) and Seaborn (v. 0.10.0, author: Michael
Waskom). To assess the performance of the models, well-known measures such as accuracy,
precision, or positive predictive value (PPV), recall (sensitivity), F-Score (a harmonic mean
of sensitivity), AUC, Brier score (BS), and Matthews correlation coefficient (MCC) were
analyzed. These criteria were obtained using the reports of each classifier’s learning
algorithm and the confusion matrix. Table 5a represents the confusion matrix and contains
four categories when the predictive scores are binary. The false-positive component (FP)
represents the number of DEGs incorrectly placed in the non-DEG category by the model.
True positive (TP) indicates the number of DEGs placed in this category by the model. False-
negative (FN) means the number of non-DEGs incorrectly placed in the DEGs category by
the model. True negative (TN) indicates the number of non-DEGs correctly placed in this
category by the model. The formula for the evaluation metric to assess the performance of
the models is represented in Table 5b.

Table 5. (a) Confusion matrix; (b) Formula for evaluation metrics.

(a) Confusion Matrix, contains 4 different values (FP, TP, FN, TN) for evaluating the performance
of classification models when the predictive scores are binary (represented as zeros and ones).

Actual

Positive (1) Negative (0)

Predicted
Positive (1) TP TN

Negative (0) FP FN

(b) Evaluation metric to assess the performance of the models using accuracy, precision (positive
predictive value—PPV), recall (sensitivity), and F-Score (a harmonic mean of sensitivity).

Evaluation Metric Formulation

Accuracy TP + TN
N

PPV TP
TP + FP

Recall TP
TP + FN

F-Score 2 ∗ TP
2 ∗ TP + FP + FN

Abbreviations: TP, True Positive; TN, True Negative; N, total number of genes in the database; FP, False Positive;
FN, False Negative; N, total number of samples.

https://www.mirnet.ca/miRNet/home.xhtml
https://www.mirnet.ca/miRNet/home.xhtml
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The BS was also utilized to evaluate the performance of the models. This criterion
evaluates the overall accuracy of the model, which is represented by the square of the
difference between the actual value and the predicted value; a smaller value is preferable.
MCC takes values between -1 and 1, and a high value means that both classes (DEGS and
non-DEGs) are predicted accurately. Furthermore, ROC (receiver operating characteristic)
and precision-recall plots were used to select the best model. The model that generated
the highest values for all metrics was chosen to extract the top features, which were
then subjected to recursive feature elimination. Subsequently, to find the boost potential
target genes and due to the negative feedback relationship between miRNA and mRNA, we
employed Venny 2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/, accessed on 25 January
2023) to intersect down-regulated (up-regulated) DEGs with target genes of screened up-
regulated (down-regulated) DEmiRNAs to obtain the boost potential target genes.

4.5. Construction and Topological Analysis Target Gene Networks

PPI networks were constructed using the Search Tool for the Retrieval of Interacting
Genes (STRING) database (http://string-db.org, accessed on 3 February 2023) with the
highest confidence threshold (0.900) to interpret the interactive relationships between
validated target genes. Each score is derived by benchmarking analysis and generally
corresponds to an estimate of the likelihood that a given association describes a functional
connection between two genes. Using the Network Analyzer plug-in, topological properties
were calculated for each node of the constructed networks in order to identify key target
genes. Top modules were screened using the Cytoscape plug-in Molecular Complex
Detection (MCODE, http://apps.cytoscape.org/apps/mcode, accessed on 6 February
2023). The following parameters were set for the Cytoscape analysis: degree cut-off = 2,
node score cut-off = 0.2, k-core = 2, and maximum depth = 100. Next, the cytoHubba
plug-in was utilized to identify the hub genes.

4.6. Functional and Pathway Enrichment Analysis

To figure out the potential functional role of key target genes, GO annotation and
KEGG pathway enrichment analyses were performed for each miRNA using its respective
target genes. Visualization of data was performed using the igraph package in R.

4.7. Functional and Pathway Enrichment Analysis

To explore compounds that might bind to a significant target gene, we downloaded
the structures of 18 small molecules with anti-hepatic fibrosis action in pdb format from the
PubChem database (https://pubchem.ncbi.nlm.nih.gov/, accessed on 7 January 2023), as
well as the crystal structure of CDK1 (6GU6) from the RCSB PDB (https://www1.rcsb.org/,
accessed on 7 January 2023). Small molecules that are compounds from natural products
and are from four different classes include alkaloids, flavonoids, terpenes, and phenols.
Molecular docking was performed using the Discovery Studio Visualizer tool and Auto
Dock Tools 1.5.6 and a rigid docking protocol that used a genetic algorithm to generate
binding poses of the protein–ligand complexes.

5. Conclusions

For the treatment and prevention of HCV, resistance to DAA and impediments to the
development of a vaccine continue to pose the major challenges. Here, robust potential
biomarkers to aid in the early diagnosis of HCV have been identified, along with potential
target genes and anti-hepatic fibrosis molecules for HCV therapy. Altogether, these data
support the idea that an alteration in hsa-miR-27b, hsa-miR-335, hsa-miR-140, hsa-miR-376c,
hsa-miR-939, hsa-miR-203, hsa-miR-152, and hsa-miR-195 is associated with HCV in the
early stage and hsa-miR-342-3p, hsa-miR-99a, hsa-miR-454, hsa-miR-886-5p, hsa-miR-155,
hsa-miR-210, and hsa-miR-193a-5p is associated with a deterioration in liver function and
an increase in HCV severity. Validated target genes were obtained from the intersection
between features selected based on the XGBoost model and predicted target genes based on

https://bioinfogp.cnb.csic.es/tools/venny/
http://string-db.org
http://apps.cytoscape.org/apps/mcode
https://pubchem.ncbi.nlm.nih.gov/
https://www1.rcsb.org/
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miRNet. The results of hub detection indicated that inhibition or interference of SLC12A4
and CDK1 by drugs may have potential as an effective method of HCV therapy and
progression prevention. Molecular docking revealed a strong affinity binding between
paeoniflorin and diosmin with CDK1, which may result in a promising anti-HCV molecule.
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