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Abstract: Metabolic reprogramming is an established hallmark of multiple cancers, including pancre-
atic cancer. Dysregulated metabolism is utilized by cancer cells for tumor progression, metastasis,
immune microenvironment remodeling, and therapeutic resistance. Prostaglandin metabolites
have been shown to be critical for inflammation and tumorigenesis. While the functional role of
prostaglandin E2 metabolite has been extensively studied, there is a limited understanding of the
PTGES enzyme in pancreatic cancer. Here, we investigated the relationship between expression
of prostaglandin E synthase (PTGES) isoforms and the pathogenesis and regulation of pancreatic
cancer. Our analysis identified higher expression of PTGES in pancreatic tumors compared to normal
pancreatic tissues, suggesting an oncogenic function. Only PTGES1 expression was significantly
correlated with worse prognosis of pancreatic cancer patients. Further, utilizing cancer genome atlas
data, PTGES was found to be positively correlated with epithelial-mesenchymal transition, metabolic
pathways, mucin oncogenic proteins, and immune pathways in cancer cells. PTGES expression
was also correlated with higher mutational burden in key driver genes, such as TP53 and KRAS.
Furthermore, our analysis indicated that the oncogenic pathway controlled by PTGES1 could be
regulated via DNA methylation-dependent epigenetic mechanisms. Notably, the glycolysis pathway
was positively correlated with PTGES and may fuel cancer cell growth. PTGES expression was also
associated with downregulation of the MHC pathway and negatively correlated with CD8+ T cell
activation markers. In summary, our study established an association of PTGES expression with
pancreatic cancer metabolism and the immune microenvironment.

Keywords: pancreatic cancer; PTGES; metabolism; glycolysis; immune regulation

1. Introduction

Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United
States, having a poor prognosis. The median survival is merely six months, and the five-
year survival rate of pancreatic ductal adenocarcinoma (PDAC) patients is a dismal 11% [1].
Due to the lack of improved therapeutic outcomes, PDAC is predicted to become the
second leading cause of cancer mortality by 2030 [2]. The poor prognosis of pancreatic
cancer can be attributed to various factors, including late diagnosis, absence of specific
biomarkers, and resistance to currently available targeted therapies [3]. In addition, large-
scale genomic studies have revealed genetic alterations in the KRAS, TP53, SMAD4, and
CDKN2A genes as key drivers of PDAC progression [4–7]. KRAS mutations, observed in
more than 90% of pancreatic cancer patients, initiate tumorigenesis and drive neoplastic
progression [8]. Altered KRAS signaling results in regulation of phospho-signaling path-
ways, the fibro-inflammatory microenvironment, immune cell remodeling, autophagic
induction, and cell-intrinsic metabolic rewiring [9,10]. While therapeutic efforts to in-
hibit KRAS have failed in the past, there is renewed hope with KRAS G12C- and KRAS
G12D-specific inhibitors [8,11,12]. Since these new inhibitors are still in the initial phase
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of development, identifying and targeting downstream metabolic nodes have emerged as
attractive approaches for novel PDAC therapy.

The PDAC tumor microenvironment (TME) is highly complex, with augmented
metabolic interactions among cancer, stromal, and immune cells that facilitate tumor
progression [13–15]. Interestingly, these metabolic changes are closely associated with
molecular abnormalities in PDAC, including hyperactivated growth factor signaling, epi-
genetic regulation, dysregulated gene expression, and abnormal posttranslational modifica-
tions [16]. A principal barrier to pancreatic cancer treatment is the dense fibrotic stroma
and hypoxic microenvironment. Due to the reduced vasculature, pancreatic cancer cells
depend on dysregulated metabolic programming to convene their energetic and biosyn-
thetic demands [17,18]. Pancreatic cancer cells exhibit broad metabolic plasticity and utilize
distinct substrates via the Warburg effect, reverse Warburg effect, glutaminolysis, and
lipid-dependent carbon sources. Additionally, symbiotic metabolic interactions between
cancer and other cells of the TME support pancreatic cancer metabolism and growth. The
metabolites directly exchanged between cancer and immune cells can trigger signaling
pathways, resulting in impairment of antitumor immunity [19].

Prostaglandins (PGs) and other eicosanoids are bioactive lipids that influence can-
cer progression by altering the adhesive, migratory, and invasive behavior of cells [20].
Biochemically, PGs are derived by cyclooxygenase (COX)-mediated conversion of the
20-carbon chain fatty acid arachidonic acid into an endoperoxide intermediate that is
further metabolized to PGs, such as PGE2, PGD2, PGF2α, prostacyclin (PGI2), and throm-
boxane A2, through PG synthases [21]. The resulting PGE2 binds to and activates G-
protein-coupled prostaglandin receptors that further mediate interactions with the ECM
through Src and focal adhesion kinase (FAK) [20]. PGE2 triggers inflammation, angiogen-
esis, and metastasis and suppresses antitumor immunity. Moreover, inhibition of PGE2
secretion by COX inhibitors is associated with reduced risk of multiple cancers, including
breast, prostate, lung, ovarian, and gastric cancers [22]. Prostaglandin pathway metabolites,
including PGE2, were elevated in pancreatic cancer tissues and associated with cancer
progression [19]. In this study, we evaluated the prognostic significance and function of
PGE2 synthesizing PTGES isoforms in regulating multiple aspects of pancreatic cancer
progression using meta-analysis of publicly available datasets.

2. Results
2.1. PTGES Expression Is Increased in PDAC Patients

PTGES is required for the synthesis of PGE2 metabolites, which support epithelial
tumor aggressiveness. PG metabolites have been shown to be elevated in multiple cancers,
including pancreatic cancer [23]. PTGES is a critical enzyme that catalyzes the conversion
of prostaglandin H2 into a prostaglandin E2 metabolite that is exported out of the cell
(Figure 1A). In this study, we assessed the expression of the three PTGES isoforms in PDAC
patient samples utilizing publicly available datasets. All three isoforms were found to be
expressed more in PDAC cancer tissue samples than in the matched normal tissues from
the GDS4013 study (Figure 1B). However, another study comprising a larger patient cohort
showed only the PTGES isoform to be significantly increased in pancreatic cancer tissues
compared to normal pancreatic tissues (Figure 1C). Further, the mRNA expression of all the
three PTGES isoforms was significantly increased in pancreatic cancer tissues from The Can-
cer Genome Atlas (TCGA) study, compared to the normal pancreatic tissues from the GTEx
study. Notably, the maximal difference in expression between cancerous and normal tissue
was observed for the PTGES gene (Figure 1D). To further validate our transcription-based
changes, we evaluated the expression of PTGES proteins in pancreatic tumors and normal
pancreatic tissue sections from the protein atlas database. PTGES protein expression was
found to be significantly higher in pancreatic tumor sections compared to normal pancre-
atic tissue sections (Figure 1E,H). A similar expression pattern was noted for the PTGES2
protein in pancreatic tumors (Figure 1F,I). We noted higher PTGES protein expression in
multiple pancreatic tumor sections. However, we could not compare the expression with
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normal pancreatic tissue due to the non-availability of normal pancreatic tumor sections
in the Protein Atlas Database (Figure 1G,J). These data from multiple databases suggest
higher expression of PTGES proteins in pancreatic tumors, and specifically, PTGES protein
may have oncogenic functions.
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Figure 1. Prostaglandin E synthase expression in pancreatic cancer. (A) Schematic illustration of
the prostaglandin metabolic pathway. The metabolites are shown in black and the enzymes in blue.
(B) The relative mRNA expression of the PTGES, PTGES2, and PTGES3 genes in 39 paired normal
pancreas and PDAC tumor tissues from the GDS4103 microarray study. (C) The relative mRNA
expression of the PTGES, PTGES2, and PTGES3 genes in normal pancreas (n = 105) and PDAC tumor
tissues (n = 324) from the GENT U133A microarray study. (D) The relative mRNA expression of the
PTGES, PTGES2, and PTGES3 genes in normal pancreatic tissues from the GTEx study (n = 171) and
PDAC tumor tissues (n = 179) from the TCGA PAAD samples. (E–G) Representative immunohisto-
chemical images of PTGES (E), PTGES2 (F), and PTGES3 (G) proteins in tissue sections of normal and
pancreatic tumor tissues with inset of zoomed images. The scalebar is 200 µm. (H–J) The composite
histoscores of PTGES (H), PTGES2 (I), and PTGES3 (J) protein expression in normal pancreas tissue
and PDAC tumor tissues from the Protein Atlas Database. The p-values are denoted by * < 0.05,
** < 0.01, and *** < 0.001, ns not significant.
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2.2. PTGES Expression Is Associated with Poor Survival of PDAC Patients

Since PTGES expression was higher in pancreatic cancer tissues, we next evaluated
whether any of the PTGES isoforms could predict the prognosis of pancreatic cancer pa-
tients. We performed quartile stratification of pancreatic cancer patients based on PTGES
expression in a PAAD cohort of TCGA patients. Higher expression of the PTGES gene was
significantly associated with worse prognosis in the overall survival of PDAC patients,
whereas PTGES2 expression was significantly associated with better prognosis of PDAC
patients (Figure 2A,B). PTGES3 gene expression was not correlated with overall survival of
PDAC patients (Figure 2C). We further checked whether the PTGES genes were correlated
with disease-free survival of pancreatic cancer patients. As expected, PTGES gene expres-
sion was significantly associated with worse prognosis in disease-free survival of PDAC
patients, whereas PTGES2 expression showed a trend toward better prognosis, which was
not significant (Figure 2D,E).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 18 
 

 

2.2. PTGES Expression Is Associated with Poor Survival of PDAC Patients 
Since PTGES expression was higher in pancreatic cancer tissues, we next evaluated 

whether any of the PTGES isoforms could predict the prognosis of pancreatic cancer pa-
tients. We performed quartile stratification of pancreatic cancer patients based on PTGES 
expression in a PAAD cohort of TCGA patients. Higher expression of the PTGES gene 
was significantly associated with worse prognosis in the overall survival of PDAC pa-
tients, whereas PTGES2 expression was significantly associated with better prognosis of 
PDAC patients (Figure 2A,B). PTGES3 gene expression was not correlated with overall 
survival of PDAC patients (Figure 2C). We further checked whether the PTGES genes 
were correlated with disease-free survival of pancreatic cancer patients. As expected, 
PTGES gene expression was significantly associated with worse prognosis in disease-free 
survival of PDAC patients, whereas PTGES2 expression showed a trend toward better 
prognosis, which was not significant (Figure 2D,E). 

 
Figure 2. Prostaglandin E synthase-based prediction of pancreatic cancer patient survival. (A–C) 
Kaplan–Meier survival plots showing overall survival of pancreatic cancer patients based on ex-
pression of PTGES (A), PTGES2 (B), and PTGES3 (C) mRNA in upper and lower quartiles from the 
TCGA PAAD patient data. (D–F) Kaplan–Meier survival plots showing disease-free survival of pan-
creatic cancer patients based on quartile expression of PTGES (D), PTGES2 (E), and PTGES3 (F) 
mRNA from the TCGA PAAD patient data. (G) The relative fold change in expression of the PTGES 
gene in tumor tissues compared to normal tissues in multiple cancers from the TCGA database. The 
dashed line represents a fold change value of 3. The cancer type with fold change >3 is highlighted 
in red. (H) Volcano plot showing the significant oncogenic function of PTGES in PAAD cancer (red 
dot) compared to other cancers from the TCGA database. The Cox coefficient of PTGES survival is 
plotted with the q-value significance. 

The PTGES3 gene was not associated with disease-free survival of PDAC patients 
(Figure 2F). Based on tissue expression and survival analysis, only the PTGES gene was 
significantly increased in pancreatic cancer patients and associated with worse prognosis 
of patients. We further tested whether PTGES could act as an oncogene in other types of 
cancers. Comparison of PTGES expression between normal tissues and cancer patient 

Figure 2. Prostaglandin E synthase-based prediction of pancreatic cancer patient survival.
(A–C) Kaplan–Meier survival plots showing overall survival of pancreatic cancer patients based
on expression of PTGES (A), PTGES2 (B), and PTGES3 (C) mRNA in upper and lower quartiles
from the TCGA PAAD patient data. (D–F) Kaplan–Meier survival plots showing disease-free sur-
vival of pancreatic cancer patients based on quartile expression of PTGES (D), PTGES2 (E), and
PTGES3 (F) mRNA from the TCGA PAAD patient data. (G) The relative fold change in expression of
the PTGES gene in tumor tissues compared to normal tissues in multiple cancers from the TCGA
database. The dashed line represents a fold change value of 3. The cancer type with fold change > 3
is highlighted in red. (H) Volcano plot showing the significant oncogenic function of PTGES in PAAD
cancer (red dot) compared to other cancers from the TCGA database. The Cox coefficient of PTGES
survival is plotted with the q-value significance.

The PTGES3 gene was not associated with disease-free survival of PDAC patients
(Figure 2F). Based on tissue expression and survival analysis, only the PTGES gene was
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significantly increased in pancreatic cancer patients and associated with worse prognosis
of patients. We further tested whether PTGES could act as an oncogene in other types
of cancers. Comparison of PTGES expression between normal tissues and cancer patient
tissues of multiple cancers revealed significantly higher expression (>3-fold change) of
PTGES mRNA in cholangiocarcinoma, diffuse large B cell lymphoma, glioblastoma, pan-
creatic cancer, and thymoma (Figure 2G). We then compared the expression of the PTGES
gene with overall survival in multiple cancers. Although the PTGES gene was shown to
be oncogenic in multiple cancers, only pancreatic cancer had a significant q-value Cox
coefficient (Figure 2H). In summary, our data indicated that PTGES has an oncogenic
function and is associated with poor prognosis in pancreatic cancer patients.

2.3. RNA-Seq Identifies Association between PTGES Expression and Metabolic and
Immune Pathways

To explore the role of PTGES in mediating oncogenic signaling in pancreatic cancer,
we analyzed differentially expressed genes between PTGESHigh and PTGESLow patient
groups. The stratification of pancreatic cancer patients for RNA-Seq analysis was performed
using quartile-based overall survival, and PTGES expression was significantly different
between the groups (Figure 3A). RNA-Seq analysis identified 834 significantly upregulated
genes and 982 downregulated genes with a two-fold change in cut-off value and q-value
significance of <0.05 in the PTGESHigh group compared to the PTGESLow group (Figure 3B).
To identify the PTGES-altered pathways in PDAC, we performed Gene Set Enrichment
Analysis (GSEA) between the two groups. While many pathways were positively enriched
with high PTGES expression, only a few pathways were negatively enriched (Figure 3C).

Since we predicted that PTGES could be an oncogene, we therefore focused on posi-
tively enriched pathways. Our analysis identified epithelial-mesenchymal transition (EMT)
as the top enriched pathway, suggesting a role of PTGES in metastasis (Figure 3D). In-
terestingly, we observed a variety of metabolic pathways, including hypoxia, glycolysis,
and MTORC1 signaling, that were positively enriched in the PTGESHigh group (Figure 3E).
Both hypoxia and glycolysis are well known to support proliferation of cancer cells and
induce oncogenic survival [24,25]. Further, we also identified a variety of immune response
pathways, including TNFα signaling via NF-κB, interferon gamma response, inflammatory
response, interferon alpha response, and TGF beta signaling, to be significantly enriched in
the PTGESHigh group (Figure 3F). Moreover, mucin (MUC) proteins were among the top
upregulated proteins in the analysis. Mucin proteins are a group of heavily glycosylated
proteins that are oncogenic in nature [26]. Studies have shown the critical role of mucins
in pancreatic cancer pathogenesis [27]. MUC16, MUC4, and MUC21 proteins showed
significant, positive correlations with PTGES expression (Figures 3G,H and S1A). We fur-
ther correlated the expression of glycolytic pathway enzymes with PTGES expression and
found many of the glycolytic genes to be positively correlated. SLC2A1, LDHA, PGK1,
ENO1, PGAM1, GAPDH, TPII, PGM1, HK1, and ALDOA were significantly correlated
with PTGES expression (Figures 3I and S1B–L). Further, we validated the gene expres-
sion regulation by PTGES in another pancreatic adenocarcinoma patient cohort from the
GSE57495 study (Figure 3J). Consistently, similar oncogenic pathways were found to be
positively associated with higher PTGES expression (Figures 3K and S1M–O). However,
very few pathways were negatively enriched in PDAC patients with higher PTGES ex-
pression. Notably, pancreatic beta cells and oxidative phosphorylation pathways were
significantly regulated (Figure S1P,Q). Overall, our data here propose that PTGES could be
a key regulator of metabolic and immune pathways in pancreatic cancer.
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sion. (A) Boxplot showing the expression of PTGES in PTGESHigh (n = 45) and PTGESLow (n = 44)
pancreatic cancer patients from the TCGA database. (B) Volcano plot of differentially expressed
genes between PTGESHigh and PTGESLow patient samples. A total of 834 significantly upregulated
genes are shown in red, while 982 significantly downregulated genes (fold change cut-off > 2 and
q-value < 0.05) are shown in green. (C) Barplot of significantly enriched hallmark pathways based
on GSEA analysis between the PTGESHigh group and the PTGESLow group. (D) GSEA plot of the
epithelial-mesenchymal transition pathway. (E) GSEA plots of metabolic pathways (hypoxia, gly-
colysis, and MTORC1 signaling) enriched in PTGESHigh patient data. (F) GSEA plots of immune
pathways positively correlated with PTGES expression in pancreatic cancer patients. (G,H) Spear-
man’s rank correlation plots of MUC16 (G) and MUC4 (H) oncoproteins with PTGES expression
in pancreatic cancer patients. (I) Volcano plot of Spearman’s rank correlation of glycolytic enzyme
expression with PTGES expression in pancreatic cancer samples from the TCGA PAAD database.
(J) Volcano plot of differentially expressed genes between PTGESHigh (n = 15) and PTGESLow (n = 15)
pancreatic cancer patient samples from GSE57495. A total of 354 significantly upregulated genes are
shown in red, while 91 significantly downregulated genes (fold change cut-off > 2 and q-value < 0.05)
are shown in green. (K) Barplot of positively enriched hallmark pathways based on GSEA analysis
between the PTGESHigh group and the PTGESLow group from GSE57495. The q-value significant
(<0.05) pathways are shown in red. The p-values are denoted by *** < 0.001
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2.4. PTGES Expression Is Associated with a Higher Mutation Burden in Key Driver Genes

The P53 pathway and KRAS signaling pathways were two other pathways positively
correlated with higher PTGES expression (Figure 4A). Mutations in KRAS and P53 are
two common drivers of pancreatic cancer pathogenesis and progression [5,6]. Interestingly,
when we compared the mutational burden between the two groups, the PTGESHigh group
had a significantly higher mutational load. We postulated that the mutational burden is
enriched in the key genes harboring driver mutations. KRAS, TP53, CDKN2A, SMAD4,
TTN, and MUC16 are key genes that are frequently mutated in pancreatic cancer patients
and are critical for cancer progression [6]. Consistent with our hypothesis, we observed
higher mutations in key driver genes in patients with higher PTGES expression compared
to patients with low PTGES expression (Figure 4B). Interestingly, the trend of higher
mutational burden in key genes was specifically associated with the PTGES gene only
and was not correlated with PTGES2 and PTGES3 gene expression (Figure 4C,D). Further
analysis revealed that, while a number of genes were significantly enriched between the
two groups, only the P53 gene mutational burden was altered based on q-value significance.
Many of the P53 mutations found in the PTGESHigh patient group were cancer hotspot
mutations and enriched in missense mutations (Figure 4E). Next, we compared p-value
significant mutated genes with significantly downregulated genes in RNA-Seq analysis to
identify the genes impacted by mutations. To our surprise, the expression of a very small
subset of genes was impacted by mutations (Figure 4F). The identified 24-gene signature,
predicted to be a group of tumor suppressor genes, did not form a strong, inter-connected
interaction network (Figure 4G).

However, quartile-based expression of this 24-gene signature was associated with
better prognosis of pancreatic cancer patients. The gene signature was significantly associ-
ated with overall and disease-free survival of patients (Figure 4H,I). We further evaluated
whether mutational burden in pancreatic cancer patients could predict their prognosis.
Although PTGES expression was associated with higher mutational burden, quartile-based
stratification of PTGES expression was significantly associated with worse prognosis in
PDAC patients (Figure S2). Our data here identify a link between higher mutational burden
in key driver genes for pancreatic cancer and PTGES expression.

2.5. PTGES Is Correlated with Glycolytic and Immune Pathways in PDAC Patients Potentially via
DNA Methylation

Epigenetic reprogramming is a well-known paradigm of pancreatic cancer cells that
facilitates pancreatic cancer development and progression. In particular, DNA methylation
negatively regulates gene expression and is often observed in the CpG islands located
in the promoters of tumor suppressor genes [28,29]. We hereby investigated the role of
PTGES in DNA-methylation-regulated gene expression. A total of 402 genes were signif-
icantly hypermethylated, and 409 genes were significantly hypomethylated in patients
with higher expression of PTGES (Figure 5A). Pathway enrichment analysis of DNA-
methylation-regulated genes revealed a total of 22 pathways to be negatively enriched
with higher PTGES expression (Figure 5B). Since we focused on oncogenic pathways,
we were interested in analyzing negatively enriched hypomethylated pathways. To find
methylation-regulated oncopathways, we compared significantly enriched positive path-
ways from RNA-seq data with negatively enriched methylated pathways. Interestingly, the
majority of [18] pathways were regulated by methylation (Figure 5C). The EMT pathway,
metabolic pathways, immune-related pathways, and cell cycle pathways were among the
commonly regulated pathways. Metabolic pathways, such as hypoxia and glycolysis, and
immune-related pathways, such as TNFα signaling via NF-κB, interferon-gamma response,
interferon alpha response, and IL2-STAT5, were among the major hypomethylated path-
ways (Figure 5B,D). Further, we identified methylation-upregulated genes by comparing
significantly upregulated genes (fold change > 2) from RNA-Seq data with significantly
hypomethylated genes. A total of 11.7% (130) of genes were regulated by DNA methylation
(Figure 5E). Among the regulated genes, genes belonging to glycolysis, immune pathways,
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and MUC4 were notable. However, we could not find genes belonging to the DNA methy-
lation pathway in this analysis (Figure 5F,G). Our data here reveal a possible epigenetic
mechanism for PTGES-regulated oncopathways.
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Figure 4. The mutational landscape of pancreatic cancer patients based on PTGES expression.
(A) GSEA plots from the RNA-seq data based on GSEA expression showing positive enrichment of
the P53 pathway and KRAS signaling pathway. (B–D) The mutational profiles of key driver genes
(KRAS, TP53, CDKN2A, SMAD4, TTN, and MUC16) in pancreatic cancer between the patients with
high and low expression of PTGES (B), PTGES2 (C), and PTGES3 (D) in pancreatic cancer patients
from the TCGA cohort. (E) The mutational landscape of the P53 gene between the PTGESHigh and
PTGESLow patient groups showing the location and higher incidences of mutations in the PTGESHigh

group. Additional tracks show the cancer hotspot mutations. (F) Venn diagram shows 24 genes,
the expression of which is impacted by the mutations. (G) The String gene network showing the
subset of genes impacted by mutations. (H) The prognostic impact of the 24-gene signature on overall
survival of pancreatic cancer patients stratified by quartile expression. (I) The prognostic impact
of the 24-gene signature on disease-free survival of pancreatic cancer patients stratified by quartile
expression. The p-values are denoted by *** < 0.001.

2.6. PTGES Expression Is Correlated with Immune Infiltration in PDAC Patients

The immune microenvironment is critical for supporting oncogenesis, and the in-
teraction of cancer cells with immune cells is pivotal for tumor progression [30]. Since
immune-regulated pathways were prominent in our RNA-Seq and methylation analyses,
we investigated whether PTGES could reprogram the immune microenvironment in pan-
creatic cancer. We determined an immune subtype population from bulk RNA-sequencing
data of pancreatic tumors with high and low expression of PTGES in the PAAD cohort from
TCGA using QuantiSeq software and Cibersort analysis using LM22 signature. Multiple
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immune cells were altered between the groups. We observed a substantial decrease in
the M1 macrophage population, whereas an increase in the M2 macrophage population
was observed in the PTGESLow group. The macrophage population shift was contrary to
the known function of tumor burden regulation. However, an increase in the CD8+ T cell
population was correlated with lower expression of PTGES, indicating a cytotoxic function
of CD8+ T cells in reducing tumor burden (Figure 6A,B). The immune score prediction
using xCell software suggested a significant association between increased immune cell
infiltration in tumors and low PTGES expression (Figure 6C).
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PTGES expression. (A) Volcano plot and (B) barplot showing GSEA pathway enrichment analysis
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in pancreatic cancer patients. (C) Venn diagram of GSEA hallmark pathways between positively
enriched pathways in RNA-Seq data and negatively enriched pathways in methylation data correlated
with high PTGES expression. (D) GSEA plots of selected common regulated pathways. The plots
shown are negatively enriched pathways with PTGES expression from methylation data. (E) Venn
diagram shows the genes regulated by methylation. The upregulated genes in RNA-Seq data
are compared with hypomethylated genes from the methylation analysis. (F) Heatmap showing
methylation status of the commonly identified 130 genes between the PTGESHigh and PTGESLow

patient groups. The color key shows the percentage methylation change. (G) Heatmap showing
expression changes of the commonly identified 130 genes between the PTGESHigh and PTGESLow

patient groups. The color key shows log2 fold changes in expression.
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(A) The percentage distribution of six immune cells between the PTGESHigh and PTGESLow patient
groups based on QuantiSeq analysis from the Cancer Immunome Database. (B) The percentage
distribution of multiple immune cells between the PTGESHigh and PTGESLow patient groups based
on CIBERSORT analysis using the LM22 signature from the Cancer Immunome Database. (C) The
total immune score calculated through xCell software between PTGESHigh and PTGESLow PDAC
patients. (D,E) Kaplan–Meier survival plots of overall survival differences between upper and lower
quartiles of PTGES expression in PDAC patients with enriched (D) or decreased (E) macrophage
populations. (F) Heatmap showing Spearman’s rank correlation of MHC I and II gene expression with
PTGES expression in pancreatic cancer patients from the TCGA PAAD data. The p-value significance
of correlations is shown inside the cells. (G,H) Kaplan–Meier survival plots of overall survival
differences between upper and lower quartiles of PTGES expression in PDAC patients with enriched
(G) or decreased (H) CD8 T cell populations. (I–M) Spearman’s rank correlation plots of the CD8A
gene and other marker genes (CD69, GZMM, GZMA, and ZAP70) activated in CD8+ T cells with
PTGES expression in PDAC patients. The p-values are denoted by * < 0.05, and ** < 0.01.

Further, we investigated how PTGES expression influences the prognostic outcomes
in overall survival of pancreatic cancer patients in multiple immune cells with enriched
or depleted microenvironments. Higher expression of PTGES was a better predictor of
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worse prognosis of PDAC patients in multiple immune cell-depleted samples compared
to macrophages, B cells, and CD4+ T cell-enriched samples (Figures 6D,E and S3A–D).
In contrast to these immune subtypes, PTGES expression predicted worse prognosis of
PDAC patients in eosinophil-enriched samples, whereas no apparent trend was seen in
eosinophil-diminished samples (Figure S3E,F). To further understand the significance of
increased M1 macrophage populations in PTGES-high tumors, we checked the correlation
of PTGES with major histocompatibility complex (MHC) I and II pathway genes. Linear
regression analysis showed a negative correlation in most of the HLA genes in pancreatic
cancer samples (Figure 6F). This outcome suggests that PTGES could downregulate the
MHC pathway to decrease antigen presentation and may aid tumor progression. We
further assessed the role of increased CD8+ T cells in PTGES-low tumors and their role in
the prognosis of PDAC patients. Similar to previous findings, higher PTGES expression
predicted a worse prognosis of PDAC patients with decreased CD8+ T cell infiltration
compared to samples with enriched CD8+ T cells (Figure 6G,H). Furthermore, a CD8+ T
cell marker, CD8A, was negatively correlated with higher PTGES expression, revealing
an increase in CD8+ T cells in PTGES-low samples (Figure 6I). The CD8+ T cell activation
markers CD69, GZMM, GZMA, GZMK, GZMH, and ZAP70 also showed a significant,
negative correlation with PTGES expression (Figures 6J–M and S3G,H). In conclusion, our
data suggest that the smaller tumor burden in PTGES-low tumor samples is associated
with higher infiltration and activation of cytotoxic CD8+ T cells.

3. Discussion

The prostaglandin metabolic pathway is critical for inflammation, tissue homeosta-
sis, angiogenesis, migration, invasion, and tumorigenesis. Dysregulated prostaglandin
metabolism has been reported in multiple cancers [22,31]. Prostaglandin pathway metabo-
lites, especially PGE2, were elevated in tumor tissues from mouse models and pancreatic
cancer patient samples [19]. The cyclooxygenase enzyme is a well-studied enzyme in
cancer that converts arachidonic acid into prostaglandin H2, which is further converted
into five primary prostanoids [32]. Clinical trials using NSAID inhibitors for the COX
enzyme have yielded limited benefits due to higher risks of myocardial infarction and
gastrointestinal toxicity [33,34]. For this reason, the focus has shifted to identifying new
targets in the prostaglandin metabolic pathway. Prostaglandin E2, a product of PTGES, is
secreted by cancer cells and binds to G protein-coupled receptors on cancer cells and other
cells of the TME [35]. Among all cancer types, PTGES is prominently associated with worse
prognosis in pancreatic cancer. We therefore emphasized finding the significance of the
PTGES gene in pancreatic cancer. PTGES expression is specifically increased in pancreatic
tumor tissues compared to normal pancreatic tissue. In a recent study, PTGES was identi-
fied as one of six metabolism-related gene-based prognostic signatures in PDAC patients
correlated with worse outcomes. The prognostic signature-based differential expression
analysis identified alterations in the metabolic pathways critical for tumor proliferation
and survival [36].

Alterations in metabolic pathways support cancer cell growth in nutrient-limiting
conditions such as hypoxia [17]. The Warburg effect is a well-established mechanism
supporting the bioenergetic demands of a proliferating cancer cell [37]. Interestingly, our
analysis identifies associations between PTGES and glycolytic metabolism and hypoxia
signaling. Cancer cells activate HIF-1α signaling to manage hypoxic stress in the TME and
directly regulate glycolysis [38,39]. Previously, PTGES was shown to be an HIF-inducible
gene in esophageal cancer. Moreover, PGE2 production was enhanced in an HIF-1α-
dependent manner under hypoxia [40]. HIF-2α signaling was also implicated in activation
of the prostaglandin pathway in colon carcinoma [41]. Based on these data, we speculated
on the possibility of a positive feedback loop between PTGES and HIF signaling in a
hypoxic microenvironment. In addition to hypoxia-mediated regulation of PTGES isoforms,
miR-155-mediated upregulation of PTGES has also been reported in triple-negative breast
cancer [42]. Apart from regulating metabolism, hypoxia also regulates migration, invasion,
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and metastasis [43]. Accordingly, we observed that EMT was one of the top regulated
pathways by PTGES in our analysis. Recently, PTGES was identified as a candidate gene
in a proteogenomic screen for pancreatic cancer. Knock-down of PTGES in AsPC1 and
PANC1 PDAC cells was shown to regulate spheroid growth, migration, and invasion
in vitro [44]. In conclusion, we propose that PTGES may support oncogenic transformation
and metastasis by modulating cancer cell metabolism and hypoxia signaling.

Pancreatic cancer tumorigenesis is linked with frequent genetic mutations in KRAS,
TP53, CDKN2A, and SMAD4. Activating mutations in the KRAS oncogene were observed
in 92–95% of patients and constitute major steps in tumor initiation and progression [45].
Additional mutations in the tumor suppressor genes TP53, CDKN2A, and SMAD4 further
aggravate the progression of tumors. The genetic alterations in these key driver genes
mediate oncogenic functions by rewiring cellular metabolism [6]. We therefore investigated
whether there is any link between PTGES and mutations in common driver genes found
in pancreatic cancer patients. Pancreatic cancer patients with high PTGES expression
correlated with a high mutational burden. This mutational enrichment was specifically
observed with the PTGES isoform but not with PTGES2 and PTGES3 expression. Interest-
ingly, TP53 was the most significantly mutated gene, with a very high number of cancer
hotspot mutations. TP53 mutations facilitate malignant transformation into tumors from
PanIN lesions, and they are implicated in lymph node metastasis [4]. Although it is not
clear how PTGES induces mutations in key driver genes, it could be a potential mechanism
of oncogenesis and requires further investigation in the future. Further, a comparison of dif-
ferentially regulated genes with mutated genes did not yield a greater overlap, suggesting
that widespread mutational changes do not translate into expression-level changes.

Previous studies have demonstrated that metabolic reprogramming in pancreatic can-
cer cells is intricately associated with epigenetic modifications [46,47]. Aberrant genome-
wide DNA methylation is one such epigenetic mechanism that regulates transcriptional
changes associated with tumorigenesis and metastasis [48]. Aberrant DNA methylation has
also been proposed as a prognostic marker for pancreatic cancer. Alterations in the promoter
methylation level of genes affect the transcription of oncogenes and tumor suppressors,
thus regulating tumorigenesis [49]. We therefore checked whether PTGES-regulated tran-
scriptional changes are regulated by DNA methylation. Our focused comparative analysis
of positively regulated genes by PTGES with hypomethylated genes identified a greater
overlap, suggesting that decreased promoter methylation could be a possible mechanism
for increased transcription of genes. More than 80% of pathways were commonly regu-
lated, including EMT and metabolic pathways such as hypoxia and glycolysis, which are
well-known factors promoting oncogenesis. A variety of immune pathways, including
inflammatory response and interferon pathways, were also regulated in a methylation-
dependent manner. A previous study in colorectal cancer identified DNA methylation
as regulating multiple genes in the prostaglandin pathway [50]. However, our study re-
vealed the presence of methylated-differentially expressed genes that could be critical for
oncogenic transformation in pancreatic cancer.

Prostanoids have been known to induce inflammation and inhibit anti-tumor immu-
nity. However, their immunostimulatory function in dendritic cells, macrophages, and Th
cells was recently recognized [35]. PGE2 suppresses the effector function of innate and
adaptive immune cells, including CD8+ T cells, NK cells, macrophages, dendritic cells, and
T helper cells [51]. In a lung metastatic mice model, PGE2 signaling activation recruited
immunosuppressive MDSC cells to the tumor and led to dysfunction of cytotoxic CD8+

T cells [52]. In another study utilizing single-cell sequencing data of pancreatic cancer,
PTGES3 expression was prominently seen in multiple immune cells, whereas PTGES ex-
pression was mostly confined to fibroblast and tumor cells [19]. In our analysis, PTGES
was found to be associated with many important genes belonging to immune pathways
implied in cancer and immune cell crosstalk. Linear regression analysis showed that PTGES
downregulated antigen presentation machinery, which may limit cancer antigen presen-
tation to immune cells. PTGES expression also correlated negatively with immune cell
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dysfunction and especially inhibited cytotoxic CD8+ T cells. Importantly, PTGES expres-
sion associates better with poor prognosis of pancreatic cancers and patient survival in an
immune-deficient microenvironment. Therefore, we postulate that PTGES could limit the
infiltration of immune cells into the TME and suppress anti-tumor immunity.

To summarize, our comprehensive study identified that PTGES could be a major
regulator of oncogenic signaling and a prognostic marker for pancreatic cancer patients.
PTGES expression is positively correlated with the glycolytic phenotype of cancer cells
and can potentially fuel their proliferation and metastasis. PTGES may further support
oncogenesis by suppressing anti-tumor immunity. Thus, our study here provided valuable
insights into the plausible mechanism of PTGES-mediated oncogenic effects in pancreatic
cancer. While our computational analysis identified multiple potential modes of oncogenic
regulation by PTGES, future studies utilizing experimental approaches are required to
validate our findings.

4. Materials and Methods
4.1. Data Source and Collection

Normalized RNA sequencing (fragments per kilobase million, FPKM) for TCGA PAAD
were obtained from TCGA (https://portal.gdc.cancer.gov/, accessed on 12 January 2023).
The raw data, processed data, and clinical data can be found in the legacy archive of the
National Cancer Institute’s Genomic Data Commons (GDC) (https://portal.gdc.cancer.
gov/legacy-archive/search/f accessed on 12 January 2023). The clinical information of
the TCGA PAAD patients was obtained from the Memorial Sloan Kettering Cancer Center
cBioPortal (http://www.cbioportal.org accessed on 12 January 2023) [53,54]. A total of
179 PAAD tissues from the TCGA database were analyzed. The top and bottom quartiles of
PDAC patients based on PTGES expression were selected and classified as PTGESHigh and
PTGESLow groups for further analysis. PTGES, PTGES2, and PTGES3 mRNA expression
data from human pancreatic cancer patients were downloaded from the GENT2 database
(http://gent2.appex.kr/gent2/ accessed on 29 January 2023) [55]. The messenger RNA
(mRNA) expression of all the PTGES isoforms in matched human normal and PDAC
tissues was obtained from the GEO database (GDS4103). The comparative expression of the
PTGES isoforms between normal pancreas tissues from the GTEx portal and tissue from
the pancreatic ductal adenocarcinoma patients from the TCGA database were compared
using GEPIA 2 software and expressed as log2 (TPM+1) values [56].

4.2. Immunohistochemical Analysis of PTGES Isoforms from Protein Atlas

The immunohistochemical images showing the protein expression levels of PTGES,
PTGES2, and PTGES3 were obtained from Human Protein Atlas Database for normal and
pancreatic cancerous tissues (https://www.proteinatlas.org accessed on 7 February 2023).
IHC staining scores for PTGES, PTGES2, and PTGES3 were calculated by multiplying scores
for the intensity of staining and the extent of staining (percentage of stained cells) [57].
The parameter used to score the tissue staining based on intensity was as follows: 0-no
staining, 1-weak, 2-moderate, and 3-high staining. The criteria used to score the staining of
the tissues based on the percentage of cells stained were as follows: 0—0% stained cells;
1—1–25% stained cells; 2—26–50%; 3—51–75%; and 4—>75%.

4.3. Survival Analysis of PTGES Isoforms in TCGA PAAD Cohort

To determine the independent prognostic value for PTGES isoforms, we performed
Kaplan–Meier survival analysis in the TCGA PAAD patient cohort by the Mantel–Cox
log-rank test to determine the significance of overall survival and disease-free survival [58].
The samples were divided into high-expression or low-expression groups according to the
top and bottom quartiles of gene expression, respectively.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/legacy-archive/search/f
https://portal.gdc.cancer.gov/legacy-archive/search/f
http://www.cbioportal.org
http://gent2.appex.kr/gent2/
https://www.proteinatlas.org
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4.4. RNA-Seq Analysis of PTGESHigh and PTGESLow Patient Groups in Pancreatic Cancer

The log2 ratio of the mean mRNA expression values (RSEM) of the genes between
the PTGESHigh and PTGESLow groups in the TCGA PAAD samples were obtained from
the cBioPortal (http://www.cbioportal.org accessed on 23 January 2023) [53,54]. The
significance of the expression ratio was calculated using the Benjamini–Hochberg procedure.
The genes with log2 fold-change values greater than 1 were considered upregulated,
whereas expression values less than −1 were considered downregulated genes. Genes with
q-values < 0.05 were considered significant. The linear regression analysis of PTGES mRNA
expression with MUC oncoproteins or glycolytic gene expression in TCGA PAAD samples
was computed using Spearman’s rank correlation analysis.

4.5. RNA-Seq Data Validation in PDAC Patient Cohort from GSE57495 Study

We obtained the gene expression data of 63 early-stage pancreatic ductal adenocar-
cinoma tumor samples using the microarray data based on GPL15048 (Rosetta/Merck
Human RSTA Custom Affymetrix 2.0 microarray HuRSTA 2a520709.CDF) (Affymetrix,
Tampa, FL, United States). The data were accessed at Gene Expression Omnibus (GEO;
http://www.ncbi.nlm.nih.gov/geo/ accessed on 12 March 2023), from the GSE57495 study.
The PDAC patient cohort was stratified into PTGESHigh and PTGESLow groups based on
the PTGES gene expression sorted by quartile. The differential gene expression analysis
between the two groups was performed by GEO2R using the limma method. The statistical
significance was calculated by the Benjamini–Hochberg test. The gene set enrichment
analysis between the two groups was performed using the hallmark pathways database.

4.6. Gene Set Enrichment Analysis of Differentially Expressed Gene

Gene set enrichment analysis of differentially expressed genes was performed be-
tween PTGESHigh and PTGESLow tumor samples. The log-ranked file (.rnk) generated for
differentially expressed genes was processed using GSEA, version 4.2.3, with 1000 permu-
tations in the classic scoring scheme using the h.all.v2022.Hs.symbols.gmt database from
the Broad Institute. The positively enriched pathways in PTGESHigh patients were plotted
using normalized enrichment scores (NES) and FDR-corrected p-values. The differentially
expressed genes were depicted by volcano plot using log2 fold change values of expression
and -log10 p-values of significance in GraphPad Prism Software (version 9.4.1).

4.7. Tumor Mutational Burden Analysis in PTGESHigh and PTGESLow Cohorts

The percentage alteration in somatic mutations in pancreatic tumor samples be-
longing to the PTGESHigh and PTGESLow groups was computed using the cBioPortal
(http://www.cbioportal.org, accessed on 23 January 2023) [53,54]. The percentage alter-
ation in driver genes of pancreatic cancer between the groups was analyzed based on
PTGES isoform expression, and p-values were calculated using Fisher’s one-sided exact
test. The comparative analysis of significantly mutated genes with p-values < 0.05 and
significantly downregulated genes from RNA-seq analysis (>2 fold change in expression
and q-val < 0.05) identified a common set of 24 genes. The protein interaction network
of these 24 genes was constructed using strings software (https://string-db.org accessed
on 5 February 2023) with an interaction cut-off score of 0.4. The prognostic value of this
24-gene signature with overall and disease-free survival was computed using GEPIA 2
software [56]. Kaplan–Meier analysis of pancreatic cancer patients’ overall survival with
the degree of mutational burden was performed to investigate the prognostic impact of
PTGES using the Kaplan–Meier Plotter software (https://www.kmplot.com accessed on
24 January 2023).

4.8. DNA Methylation Analysis

The log2 ratio of mean methylation value of the genes between PTGESHigh and
PTGESLow patients from the TCGA PAAD group was computed using the cBioPortal
(http://www.cbioportal.org accessed on 23 January 2023) [53,54] The significance of

http://www.cbioportal.org
http://www.ncbi.nlm.nih.gov/geo/
http://www.cbioportal.org
https://string-db.org
https://www.kmplot.com
http://www.cbioportal.org
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the comparison between the two groups was defined by q-values calculated using the
Benjamini–Hochberg procedure. A cut-off value of 10% methylation change with q-value
significance < 0.05 was considered to identify hypomethylated and hypermethylated genes.
To identify methylation-regulated differential genes, the hypomethylated, q-value sig-
nificant genes were compared with significantly upregulated differential genes (>2 fold
change in expression and q-val < 0.05) from the RNA-Seq data using Venny software
(https://bioinfogp.cnb.csic.es accessed on 3 February 2023). The heatmap of percent-
age methylation changes in the selected genes was plotted in GraphPad Prism Software
(version 9.4.1).

4.9. Tumor-Infiltrating Immune Cell Prediction in Bulk RNA-Seq Samples

The immune cell composition and density prediction in pancreatic cancer samples
belonging to the PTGESHigh and PTGESLow groups were obtained from the Cancer Im-
munome Atlas (https://www.tcia.at accessed on 16 February 2023) [59,60]. The compo-
sition and fraction of all immune cell types relative to all cells in the pancreatic tumor
samples were quantified using QuanTIseq [61] and the CIBERSORT method using the
LM22 signature (https://cibersortx.stanford.edu/ accessed on 16 February 2023). The
overall immune score prediction in the PTGESHigh and PTGESLow cohorts was computed
using xCell [62]. The linear regression analysis of PTGES gene expression with major
histocompatibility complex genes or CD8 T cell activation marker gene expression in the
TCGA PAAD cohort was computed using Spearman’s rank correlation in GraphPad Prism
software (version 9.4.1).

4.10. Survival Analysis of PTGES Gene with Tumor-Infiltrating Immune Cells

The overall survival of pancreatic cancer patients stratified by quartile-based expression
of the PTGES gene in immune cell subtype-enriched or -decreased samples was performed
using Kaplan–Meier Plotter (https://www.kmplot.com accessed on 22 January 2023) to de-
termine the overall survival [63]. The significance of overall survival between the PTGESHigh

and PTGESLow groups in the context of macrophage, CD8 T cell, B cell, CD4 T cell, and
eosinophil infiltration was computed using the Mantel–Cox log-rank test in GraphPad Prism
software (version 9.4.1).

4.11. Statistical Analysis

The statistical comparison between two groups was analyzed by Student’s t-test and
more than two groups by one-way ANOVA with Tukey’s post-hoc test. The statistical
significance in survival of Kaplan–Meier plots was analyzed the Mantel–Cox log-rank
test. The linear regression analysis between the expression of genes was performed using
Spearman’s rank correlation. All statistical comparisons were calculated by GraphPad
Prism software, version 9. The p-values are denoted by * < 0.05, ** < 0.01, and *** < 0.001.
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